Toepassingen op discrete dynamische systemen

Maat: px
Weergave met pagina beginnen:

Download "Toepassingen op discrete dynamische systemen"

Transcriptie

1 Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch systeem Als de n n-matrix A diagonaliseerbaar is dan bestaat er een basis {v v n } van R n bestaande uit eigenvectoren van A dat wil zeggen : Av i λ i v i i n Dat betekent dat elke startvector x R n geschreven kan worden als lineaire combinatie van de basisvectoren v v n zeg Hieruit volgt enzovoorts Dus : x c v + + c n v n x Ax c Av + + c n Av n c λ v + + c n λ n v n x Ax c λ Av + + c n λ n Av n c λ v + + c n λ nv n x k c λ k v + + c n λ k nv n k Voorbeeld Beschouw het discreet dynamisch systeem x k+ Ax k k met / /4 A Merk op dat A een stochastische matrix of Markov-matrix is Nu / 3/4 volgt : A λi / λ /4 / 3/4 λ λ 4 λ + 4 λ λ 4 De eigenwaarden van A zijn dus λ en λ /4 Verder volgt : / /4 λ : v / /4 en λ /4 : /4 /4 / / De oplossing kan dus geschreven worden als x k c λ k v + c λ k k v c + c 4 v k waarbij c en c bepaald kunnen worden uit c v + c v x We zien dat lim x k bestaat k voor elke startvector x : lim x k c k

2 / waarbij c afhankelijk is van de keuze van de startvector x Als we bijvoorbeeld x / kiezen dan is c /3 Dit kunnen we snel vinden omdat het een Markov-proces betreft In het algemeen vinden we c en c door : c v + c v x c + c / / en dus / / 3 / 3 3 / c /3 c /6 Voorbeeld Beschouw het voorbeeld van het autoverhuurbedrijf uit de tweede week : x k+ Ax k met k en A Dan volgt tel de tweede en de derde rij op bij de eerste : λ A λi λ λ λ λ λ λ λ λ λ λ λ λ λ De eigenwaarden van A zijn dus λ λ en λ 3 Verder volgt : 3 λ : 3 E Span{ 3 zoals we eerder hebben gezien λ : en λ 3 : E Span{ E Span{ De algemene oplossing van het dynamische systeem x k+ Ax k met k is dus x k c + c k + c 3 k k } } }

3 waarbij c c en c 3 gevonden kunnen worden uit : c + c Als bijvoorbeeld x + c 3 dan volgt ga na! : x c c c 3 In dat geval is de oplossing dus gelijk aan x k k Duidelijk is dan dat lim k x k bestaat en dat lim x k k k 3 4 Merk op dat we nu in staat zijn de oplossing expliciet te bepalen Dat betekent dat we de situatie voor elke waarde van k { } kunnen berekenen We zien nu ook dat de limiet lim x k daadwerkelijk bestaat Voorheen konden we de limiet alleen bepalen als we k aannemen dat deze bestaat Met de methode die we in voorbeeld gebruikten om het karakteristieke polynoom van de matrix A te bepalen kunnen we nu ook aantonen dat elke stochastische matrix of Markovmatrix een eigenwaarde heeft Beschouw namelijk A λi en tel de tweede tot en met de laatste rij op bij de eerste rij Alle elementen in de eerste rij zijn dan gelijk aan λ omdat in de Markov-matrix de som van alle elementen in één kolom gelijk is aan Dit betekent dat A λi deelbaar is door λ en dat λ dus een eigenwaarde van A is Dat betekent dat elke Markov-matrix dus een evenwichtstoestandsvector q met Aq q heeft zie : Lay pag 6 De oplossing van een discreet dynamisch systeem x k+ Ax k met k kan geschreven worden in de vorm x k A k x k waarbij x de startvector is Als A diagonaliseerbaar is dan is A P DP voor zekere inverteerbare matrix P en diagonaalmatrix D Dan is A k P D k P voor k 3

4 Stel dat A diagonaliseerbaar is en dat A P DP voor zekere inverteerbare matrix P en diagonaalmatrix D Stel vervolgens x k P y k voor k dan volgt : x k+ Ax k P y k+ AP y k P DP P y k P Dy k k Aangezien P inverteerbaar is kunnen we links en rechts vermenigvuldigen met P Dan volgt dus : x k+ Ax k y k+ Dy k k c λ k Als D diagλ λ n dan volgt hieruit dat y k voor k Met c n λ k n P v v n volgt dan : x k P y k v v n c λ k c n λ k n c λ k v + + c n λ k nv n k In het geval dat A een -matrix is kunnen we de vectoren {x k } k die voldoen aan x k+ Ax k voor k plotten in het platte vlak R De grafiek van {x k } k wordt een baan van het discrete dynamische systeem x k+ Ax k genoemd Merk op dat zo n baan bestaat uit allemaal losse punten in R en dat deze alleen afhankelijk is van de keuze van de startvector x Als voor de eigenwaarden λ en λ van A geldt dat λ < en λ < dan gaan alle oplossingen x k c λ k v + c λ k v voor k naar de oorsprong O Men zegt dan dat de oorsprong O een aantrekker attractor is van het dynamische systeem x k+ Ax k Als voor de eigenwaarden λ en λ van A geldt dat λ > en λ > dan gaan alle oplossingen x k c λ k v + c λ k v voor k naar oneindig weg van de oorsprong O Men zegt dan dat de oorsprong O een afstoter is van het dynamische systeem x k+ Ax k Als λ < en λ > dan noemt men de oorsprong wel een zadelpunt van het dynamische systeem x k+ Ax k Sommige banen bewegen dan in de richting van de oorsprong terwijl andere naar oneindig gaan afhankelijk van de startvector x In het geval van niet-reële en dus complex geconjugeerde eigenwaarden hebben de banen de vorm van een spiraal zie : Lay pag 344 Als λ α ± iβ met α β R en β dan zijn de banen naar de oorsprong toe gericht als λ α + β < en juist van de oorsprong af gericht als λ α + β > 4

5 Numerieke methoden voor het bepalen van eigenwaarden We bestuderen twee iteratieve methoden voor het benaderen van de eigenwaarden van een matrix De eerste methode is de machtmethode of ook wel powermethode en de tweede is de inverse machtmethode De tweede methode is afgeleid van de eerste De machtmethode of powermethode kan worden gebruikt om van een n n-matrix A de strikt dominante eigenwaarde λ te vinden Een eigenwaarde λ heet strikt dominant als deze in absolute waarde strikt groter is dan de absolute waarden van de andere eigenwaarden Neem aan dat A diagonaliseerbaar en dat er dus een basis {v v n } van R n bestaat bestaande uit eigenvectoren van A behorende bij de eigenwaarden λ λ n respectievelijk waarbij λ > λ λ 3 λ n Dan is dus λ de strikt dominante eigenwaarde van A Omdat {v v n } een basis van R n is kan elke vector x R n geschreven worden in de vorm x c v + + c n v n Omdat Av i λ i v i voor i n volgt dan : A k x c λ k v + + c n λ k nv n k Delen door λ k geeft dan k k A k λ λn x c v + c v λ + + c n v λ n k λ k Nu is λ i /λ < voor alle i 3 n en dus A k x c v voor k λ k Dit geeft aanleiding tot het volgende algoritme details laten we achterwege : Kies een startvector x waarvan de in absolute waarde grootste coördinaat gelijk aan is Voor k Bereken Ax k Kies voor µ k de in absolute waarde grootste coördinaat van de vector Ax k Bereken x k+ /µ k Ax k Voor bijna elke keuze van de startvector x zal de rij {µ k } k naderen naar de strikt dominante eigenwaarde van A en de rij {x k } k naar een bijbehorende eigenvector Voorbeeld 3 De matrix A heeft de eigenwaarden λ 4 6 en λ 3 ga na! Er geldt dus : λ > λ dus : λ is een strikt dominante eigenwaarde van A

6 Kies nu bijvoorbeeld x Ax 4 4 Dan volgt : /4 4 µ 4 en x / 9/ Ax 9 µ 4 9/ 9 en x Ax µ 4 / en x 3 Ax 3 Ax / 3/ 4/ / 4 3/ µ en x 4 3/ / 3 /3 µ en x / / 3/ /3 De convergentie is niet erg snel maar er geldt : lim µ k 6 en lim x k k k / De convergentie is sneller als de startvector beter in de richting van de eigenvector gekozen wordt Kiezen we bijvoorbeeld x dan volgt : Ax 4 Ax Ax 4 4 / /3 / / 9/ /3 /3 µ en x /3 µ 4 en x 3 / µ en x 3 6 / /3 /

7 Ax 3 4 Ax 4 4 / / 99/ 4/ 99 / µ en x 4 6/ 3/ 6 3/6 µ en x / 3/6 Door dezelfde methode los te laten op een andere matrix kunnen we ook andere eigenwaarden van een matrix A benaderen Stel dat α R een redelijke benadering is van één van de eigenwaarden λ λ n van A Stel nu B A αi dan geldt dat λ α λ α λ n α de eigenwaarden zijn van B De in absolute waarde grootste eigenwaarde is die met de in absolute waarde kleinste noemer λ p α Passen we de machtmethode of powermethode toe op de matrix B dan wordt die strikt dominante eigenwaarde /λ p α benaderd Aangezien we de waarde van α kennen kunnen we hiermee de waarde van de eigenwaarde λ p benaderen Dit wordt de inverse machtmethode of inverse powermethode genoemd Hierbij treedt echter een klein probleem op als we Bx k A αi x k willen berekenen Daarvoor hebben we immers de inverse van A αi nodig In plaats van het berekenen van y k A αi x k lossen we echter de vergelijking A αiy k x k op bijvoorbeeld via een LU-decompositie Dit geeft aanleiding tot het volgende algoritme : Kies een geschikte waarde voor α voldoende dicht bij de gezochte eigenwaarde λ Kies een startvector x waarvan de in absolute waarde grootste coördinaat gelijk aan is Voor k Los A αiy k x k op Kies voor µ k de in absolute waarde grootste coördinaat van de vector y k Bereken ν k α + /µ k Bereken x k+ /µ k y k Voor bijna elke keuze van de startvector x zal de rij {ν k } k naderen naar de eigenwaarde λ van A en de rij {x k } k naar een bijbehorende eigenvector Voorbeeld 4 Als we α kiezen als een grove benadering van de eigenwaarde λ 3 3 van de matrix A dan geldt dus : A αi A I 4

8 Kiezen we nu als startvector x A Iy x : 3 dan volgt : y / y /4 / µ ν + / 4 en x 3 3/4 A Iy x : y y / 3 / 4 µ 3 4 ν en x /6 / /6 A Iy x : 3 y /6 y / / µ 966 ν en x 3 / / y 3 / y 3 43/44 / /6 µ ν en x 4 y 4 /6 y 4 / 34/344 µ ν en x y 34/34 y 63/64 4/ µ ν en x 6 Het lijkt er op dat ν k 3 en dat x k A 4 /6 34/34 34/34 36/366 36/366 voor k Er geldt inderdaad 3 3 3

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1.

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1. Blokmatrices Soms kan het handig zijn een matrix in zogenaamde blokken op te delen, vooral als sommige van deze blokken uit louter nullen bestaan Berekeningen kunnen hierdoor soms aanzienlijk worden vereenvoudigd

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Voorwaardelijke optimalisatie

Voorwaardelijke optimalisatie Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Voorbeeld theorie examen

Voorbeeld theorie examen Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi2030wbmt 1 / 14 Niet-lineaire diff. vgl. en stabiliteit Niet-lineaire

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Hoofdstuk 5 - Recursie

Hoofdstuk 5 - Recursie Hoofdstuk 5 - Recursie Een banktegoed waarover je jaarlijks rente krijgt uitgekeerd is een voorbeeld van recursie. Je kunt steeds het nieuwe banktegoed berekenen op basis van het banktegoed van vorig jaar.

Nadere informatie

Wetenschappelijk Rekenen

Wetenschappelijk Rekenen Wetenschappelijk Rekenen Examen - Bacheloropleiding informatica Oefeningen 3 september 204. Beschouw de matrix A = 8 6 3 5 7 4 9 2 Deze matrix heeft 5 als dominante eigenwaarde. We proberen deze eigenwaarde

Nadere informatie

Voorbeeldopgaven Meetkunde voor B

Voorbeeldopgaven Meetkunde voor B Voorbeeldopgaven Meetkunde voor B Hoofdstuk 2: Opgave 2 1 Gegeven zijn de vlakken U : x + y + z = 0 en V : x y + az = 0 waarbij a een parameter is. a) Bereken de cosinus van de hoek tussen de twee vlakken

Nadere informatie

Monitoraatssessie Wiskunde

Monitoraatssessie Wiskunde Monitoraatssessie Wiskunde 1 Overzicht van de cursus Er zijn drie grote blokken, telkens voorafgegaan door de rekentechnieken die voor dat deel nodig zullen zijn. Exponentiële en logaritmische functies;

Nadere informatie

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong Hoofdstuk 4 Verloop van functies Met DERIVE is het mogelijk om tal van eigenschappen van functies experimenteel te ontdekken. In een eerste paragraaf onderzoeken we het verband tussen de grafieken van

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie

Nadere informatie

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( ) Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie

Nadere informatie

Module 10 Lineaire Algebra

Module 10 Lineaire Algebra L Vak 57.5 Les 36. Module Lineaire Algebra Afbeeldingen (vervolg (b)) In deze les worden de eigenwaarden en eigenvectoren van lineaire afbeeldingen behandeld. Inhoud van de leskern Basistransformatie *:;*

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Examenvragen Numerieke Wiskunde 2012

Examenvragen Numerieke Wiskunde 2012 Examenvragen Numerieke Wiskunde 2012 Dennis Frett, Karel Domin, Jonas Devlieghere 3 oktober 2014 1 Inhoudsopgave 1 Programma verschil, verklaar afwijking 4 2 Matrix met dominante eigenwaarde 6 3 Functiewaarden

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Beknopte uitwerking Examen Neurale Netwerken (2L490) d.d. 11-8-2004.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Beknopte uitwerking Examen Neurale Netwerken (2L490) d.d. 11-8-2004. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Beknopte uitwerking Eamen Neurale Netwerken (2L490) d.d. 11-8-2004. 1. Beschouw de volgende configuratie in het platte vlak. l 1 l 2

Nadere informatie

Efficiente benadering van Google s PageRank (Engelse titel: Efficient approximation of Google s PageRank)

Efficiente benadering van Google s PageRank (Engelse titel: Efficient approximation of Google s PageRank) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Efficiente benadering van Google s PageRank (Engelse titel: Efficient approximation

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Hoofdstuk 4 Eigenwaarden en eigenvectoren 4.1 Inleiding Tot nu toe zijn al onze vectoren en matrices reëel geweest d.w.z. de theorie voor stelsels lineaire vergelijkingen en de theorie der matrices en

Nadere informatie

x 3x x 7x x 2x x 5x x 4x G&R havo B deel 1 3 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/12 TOETS VOORKENNIS

x 3x x 7x x 2x x 5x x 4x G&R havo B deel 1 3 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/12 TOETS VOORKENNIS G&R havo B deel Vergelijkingen en ongelijkheden C. von Schwartzenberg / a x = x =. b x = x x =. c d x (x ) 0 x = 0 =. 9. e f x 0 x ( x ) 0. x x = x x ( x )( x + ). TOETS VOORKENNIS a ( x + ) = x c x e

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

Lineaire algebra voor ingenieurs

Lineaire algebra voor ingenieurs Lineaire algebra voor ingenieurs Guido Herweyers KHBO Campus Oostende Oostende, mei 006 Inleiding De ingenieursopleidingen aan de K.U.Leuven en de KHBO Campus Oostende gebruiken voor lineaire algebra het

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

Lineaire Algebra (2DD12) Laatste nieuws in 2012

Lineaire Algebra (2DD12) Laatste nieuws in 2012 Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden College Lineaire

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr.

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr. Numerieke aspecten van de vergelijking van Cantor Opgedragen aan Th. J. Dekker H. W. Lenstra, Jr. Uit de lineaire algebra is bekend dat het aantal oplossingen van een systeem lineaire vergelijkingen gelijk

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

b + b c + c d + d a + a

b + b c + c d + d a + a Voorwoord De wiskundige vorming die in de wiskundig sterke richtingen van het Vlaamse secundair onderwijs wordt aangeboden, vormt een zeer degelijke basis voor hogere studies in wetenschappelijke, technologische

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS deel 2 LOTHAR PAPULA 2e druk > ACADEMIC 5 E R V I C Inhoud 1 Lineaire algebra 1 1.1 Vectoren I 1.2 Matrices 4 1.2.1 Een inleidend voorbeeld 4 1.2.2 Definitie

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

NETWERKEN VAN WACHTRIJEN

NETWERKEN VAN WACHTRIJEN NETWERKEN VAN WACHTRIJEN Tot nog toe keken we naar wachtrijmodellen bestaande uit 1 station. Klanten komen aan bij het station,... staan (al dan niet) een tijdje in de wachtrij,... worden bediend door

Nadere informatie

1. Vectoren in R n. y-as

1. Vectoren in R n. y-as 1. Vectoren in R n Vectoren en hun meetkundige voorstelling. Een vector in R n is een rijtje (a 1, a 2,..., a n ) van reële getallen. De getallen a i heten de coördinaten van de vector. In het speciale

Nadere informatie

Lineaire programmering

Lineaire programmering Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum

Nadere informatie

De wiskunde achter Google Mathematics behind Google

De wiskunde achter Google Mathematics behind Google Technische Universiteit Delft Faculteit Elektrotechniek, Wiksunde en Informatica Delft Institute of Applied Mathematics De wiskunde achter Google Mathematics behind Google Verslag ten behoeve van het Delft

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

3.2 Kritieke punten van functies van meerdere variabelen

3.2 Kritieke punten van functies van meerdere variabelen Wiskunde voor kunstmatige intelligentie, 007/008 Als in een kritiek punt x 0 ook de tweede afgeleide f (x 0 ) = 0 is, kunnen we nog steeds niet beslissen of de functie een minimum, maximum of een zadelpunt

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

exponentiële standaardfunctie

exponentiële standaardfunctie 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is

Nadere informatie

Types differentiaal vergelijkingen

Types differentiaal vergelijkingen 1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

d τ (t) dt = 1 voor alle τ 0.

d τ (t) dt = 1 voor alle τ 0. 65 Impulfunctie In deze paragraaf kijken we naar verchijnelen waarbij in zeer korte tijd een (grote kracht op een yteem wordt uitgeoefend Zo n plotelinge kracht kunnen we bechrijven met behulp van een

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Mengen van scheikundige stoffen en het oplossen van scheikundige reacties, een wiskundig model. Wiskens&co Yoeri Dijkstra en Loes Knoben

Mengen van scheikundige stoffen en het oplossen van scheikundige reacties, een wiskundig model. Wiskens&co Yoeri Dijkstra en Loes Knoben Mengen van scheikundige stoffen en het oplossen van scheikundige reacties, een wiskundig model Wiskens&co Yoeri Dijkstra en Loes Knoben oktober 9 Inleiding In dit rapport zal gekeken worden naar verschillende

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Modellen en Simulatie Lesliematrices Markovketens

Modellen en Simulatie Lesliematrices Markovketens Utrecht, 6 april 3 Modellen en Simulatie Lesliematrices Markovketens Program Meerdere leeftijdsklassen Leslie matrices Eigenwaarden en eigenvectoren Dominante eigenvector Irreducibele, a-periodieke matrices

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie