Lineaire Algebra voor W 2Y650
|
|
- Brecht Claes
- 1 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: , 1
2 Herhaling: opspansel De vectoren v 1,..., v k V spannen de vectorruimte V op als iedere vector u V te schrijven is als een lineaire combinatie van de vectoren v 1,..., v k. Notatie: span{v 1,..., v k } = V. 2
3 Herhaling: lineaire onafhankelijkheid De vectoren v 1,..., v k V zijn lineair onafhankelijk indien uit a 1 v 1 + a 2 v a k v k = 0 volgt dat a 1 = a 2 = = a k = 0. Indien de vectoren v 1,..., v k niet lineair onafhankelijk zijn, dan noemen we ze lineair afhankelijk. 3
4 Herhaling: basis De vectoren v 1,..., v k vormen een basis voor de vectorruimte V als (1) v 1,..., v k spannen V op, (2) v 1,..., v k zijn lineair onafhankelijk. Iedere basis van V heeft hetzelfde aantal elementen. Dit aantal heet de dimensie van vectorruimte V, notatie dim V. 4
5 Coördinaten: Zij S = {v 1,..., v n } een geordende basis van de n-dimensionale vectorruimte V. Dan kan iedere vector v V op unieke wijze geschreven worden als lineaire combinatie van v 1,..., v n : v = a 1 v 1 + a 2 v a n v n. Dan heet [v] S = a 1 a 2.. a n de coördinatenvector van v ten opzichte van de geordende basis S. 5
6 Basisovergang en transitiematrices Beschouw twee geordende bases van de n-dimensionale vectorruimte V : S = {v 1,..., v n }, T = {w 1,..., w n }. Zij v V. Wat is dan het verband tussen de coördinaten vectoren [v] S en [v] T? 6
7 Zij v = c 1 w 1 + c 2 w c n w n, dat wil zeggen Dan geldt [v] T = (c 1, c 2,..., c n ) T. [v] S = [c 1 w 1 + c 2 w c n w n ] S = [c 1 w 1 ] S + [c 2 w 2 ] S + + [c n w n ] S = c 1 [w 1 ] S + c 2 [w 2 ] S + + c n [w n ] S. c 1. = ([w 1 ] S [w 2 ] S [w n ] S ).. c n 7
8 Druk nu iedere vector van de basis T uit in coördinaten ten opzichte van S: [w j ] S = Dit betekent: a 1j a 2j.. a nj. w j = a 1j v 1 + a 2j v a nj v n. 8
9 De overgangsmatrix van de basis T naar de basis S, notatie P S T, is de n n matrix, waarvan (voor j = 1,..., n) kolom j gelijk is aan [w j ] S. Dan geldt voor iedere vector v V : [v] S = P S T [v] T. Eigenschappen Een overgangsmatrix P S T is inverteerbaar. P 1 S T = P T S. Immers, als [v] S = P S T [v] T voor iedere v V, dan [v] T = P 1 S T [v] S voor alle v V, en dus volgt uit de definitie van P T S dat P 1 S T = P T S. 9
10 Zij E = {e 1,..., e n } de standaardbasis van R n (dus e j = (0,..., 0, 1, 0,..., 0) T, met de 1 op de j-de positie). Beschouw ook de geordende bases van R n : S = {v 1,..., v n }, T = {w 1,..., w n }. Dan is de j-de kolom van de matrix M T = P E T gelijk aan w j. Evenzo is de i-de kolom van de matrix M S = P E S gelijk aan v i. Er volgt: P S T = P S E P E T = M 1 S M T. 10
11 Inproductruimten Een inproductruimte V is een reële vectorruimte waarop een functie is gedefinieerd, die aan ieder paar vectoren u, v V een reëel getal (u, v) koppelt, het zogenaamde inproduct, met de volgende eigenschappen: (a) (u, u) 0 en (u, u) = 0 dan en slechts dan als u = 0, (b) (u, v) = (v, u) voor alle u, v V, (c) (u + v, w) = (u, w) + (v, w) voor alle u, v, w V, (d) (cu, v) = c(u, v) voor alle u, v V en c R. 11
12 Voorbeeld: Vectorruimte R n. a = a 1 a 2.., b = b 1 b 2... a n b n Inproduct: (a, b) = a 1 b 1 + a 2 b 2 + a n b n = a T b. 12
13 Lengte van een vector v: v = (v, v). Afstand tussen vectoren u en v: u v. Twee vectoren u, v zijn orthogonaal (staan loodrecht op elkaar) als (u, v) = 0. Een eindig-dimensionale inproductruimte wordt een Euclidische ruimte genoemd. 13
14 Orthogonale en orthonormale stelsels Een verzameling vectoren S heet een orthogonaal stelsel als ieder tweetal vectoren uit S orthogonaal zijn. Als bovendien alle vectoren uit S lengte 1 hebben, dan heet het stelsel orthonormaal. Voorbeeld: de standaardbasis in R n is een orthonormaal stelsel. Stelling: Zij S = {v 1, v 2,... v k } een orthogonaal stelsel van vectoren ongelijk aan 0. Dan is S lineair onafhankelijk. 14
15 Zij S = {u 1, u 2,..., u n } een orthonormale basis van de Euclidische ruimte V. Dan geldt voor iedere vector v V : v = (u 1, v)u 1 + (u 2, v)u (u n, v)u n. Anders gezegd: met v = c 1 u 1 + c 2 u c n u n, c i = (u i, v). 15
16 Stelling: Zij S = {u 1, u 2,..., u n } een orthonormale basis van de Euclidische ruimte V. Zij Dan geldt v = a 1 u 1 + a 2 u a n u n, w = b 1 u 1 + b 2 u b n u n. (v, w) = a 1 b 1 + a 2 b a n b n. 16
17 Loodrechte projectie: Stelling: Zij S = {u 1, u 2,..., u n } een orthonormale basis van de Euclidische ruimte V. Zij v = a 1 u 1 + a 2 u a n u n, V. Dan wordt de loodrechte projectie van v op de deelruimte span({u 1,..., u k }) gegeven door P v = a 1 u 1 + a 2 u a k u k. P v is de vector in span({u 1,..., u k }) met de kleinst mogelijke afstand tot v. 17
18 Orthogonale matrices Zij S = {u 1, u 2,..., u n } een orthonormale basis van de Euclidische ruimte V. Dan geldt u T 1 als i = j i u j = 0 als i j Definieer U = (u 1 u 2 u n ). Dan geldt U T U = UU T = I, oftewel U is inverteerbaar en U 1 = U T. Een matrix U met de eigenschap dat U 1 = U T wordt een orthogonale matrix genoemd. 18
19 Herhaling: projectie op kolommenruimte Zij A een n k matrix, met rang(a) = k, en zij b R n. Dan is het stelsel Ax = b wellicht niet oplosbaar. Zoek nu ˆx R k zó dat Aˆx b R(A). Normaalvergelijking A T Aˆx = A T b Projectie van b op R(A): P b = Aˆx = A(A T A) 1 A T b. De projectiematrix op R(A) wordt gegeven door P = A(A T A) 1 A T. 19
20 Eigenschappen projectiematrix P : P 2 = P, P T = P. 20
21 Projectie bij orthonormale stelsels Zij {u 1, u 2,..., u k } een orthonormaal stelsel in de n-dimensionale Euclidische ruimte V. Zij W = span{u 1, u 2,..., u k }. Gevraagd: loodrechte projectie op W. A = (u 1 u 2 u k ), A T A = I k Zij nu b V. Dan geldt: P b = A I k A T b = A u T 1 b. u T k b = (u 1, b)u 1 + (u 2, b)u (u k, b)u k. 21
22 Projectie bij orthogonale stelsels Zij {v 1, v 2,..., v k } een orthogonaal stelsel in de n-dimensionale Euclidische ruimte, en zij W de deelruimte van V opgespannen door v 1, v 2,..., v k. De loodrechte projectie van b V op de deelruimte W wordt gegeven door P b = (v 1, b) (v 1, v 1 ) v 1 + (v 2, b) (v 2, v 2 ) v (v k, b) (v k, v k ) v k. 22
23 Gramm-Schmidt orthogonalisatie Veronderstel dat {v 1, v 2,..., v k } een basis van de deelruimte W van de Euclidische ruimte V. Hoe maak je dan een orthonormale basis van W? (1) u 1 = v 1 v 1. (2) Projecteer v 2 op span{u 1 }. Dit geeft (u 1, v 2 )u 1. Daaruit volgt w 2 = v 2 (u 1, v 2 )u 1 u 1. Kies u 2 = w 2 w 2. 23
24 (3) Projecteer v 3 op span{u 1, u 2 }. Dit geeft (u 1, v 3 )u 1 + (u 2, v 3 )u 2. Daaruit volgt w 3 = v 3 (u 1, v 3 )u 1 (u 2, v 3 )u 2 u 1, u 2. Kies u 3 = w 3 w 3. (4) Ga zo door; na k stappen is een orthonormale basis van W geconstrueerd. 24
25 Gramm-Schmidt orthogonalisatie; alternatief (1) w 1 = v 1. (2) w 2 = v 2 (w 1, v 2 ) (w 1, w 1 ) w 1. (3) w 3 = v 3 (w 1, v 3 ) (w 1, w 1 ) w 1 (w 2, v 3 ) (w 2, w 2 ) w 2. (4) Ga zo door tot en met w k. (5) Kies u i = w i, voor i = 1,..., k. w i 25
26 Orthogonale complement Zij W een deelruimte van de inproductruimte V. Dan is het orthogonale complement (orthoplement) W gedefinieerd door Voorbeeld: W = {x V (x, w) = 0 voor alle w W } W = W = { x y z (lijn door oorsprong) R3 3x y+2z = 0} (vlak door oorsprong loodrecht op W ) 26
27 Eigenschappen: (a) W is een deelruimte van V. (b) W W = {0}. (c) (W ) = W. (d) W W = V. Eigenschap (d) betekent dat iedere vector v V op unieke wijze te schrijven is als de som van een vector w uit W en een vector y uit W : v = w + y. 27
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)
Tentamen Lineaire Algebra B
Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een
Lineaire Algebra Een Samenvatting
Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle
Matrices en Stelsel Lineaire Vergelijkingen
Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een
Unitaire en Hermitese transformaties
Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het
Coördinatiseringen. Definitie 1. Stel dat B = {b 1,..., b n } een basis is van een vectorruimte V en dat v V. iedere vector v V :
Coördinatiseringen Het rekenen met vectoren in R n gaat erg gemakkelijk De coördinaten bieden de mogelijkheid om handig te rekenen (vegen Het is nu ook mogelijk om coördinaten in te voeren voor vectoren
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op maandag juni Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord vragen. De
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op dinsdag 9 april 8, 9.. uur. Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT (2DM20) op vrijdag 12 juni 2009, 9.00 Dit tentamen bestaat uit 5 open vragen, en 4 kort-antwoord vragen.
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)
Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie
Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.
Inwendig product, lengte en orthogonaliteit in R n
Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T
UITWERKINGEN 1 2 C : 2 =
UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 8 J.Keijsper
Lineaire Algebra C 2WF09
Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H.A. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09
Samenvatting Lineaire Algebra, periode 4
Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax
Lineaire Algebra C 2WF09
Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H.A. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 5 J.Keijsper (TUE)
Vectorruimten met inproduct
Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 8 J.Keijsper (TUE)
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)
Geadjungeerde en normaliteit
Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Dit tentamen bestaat uit 4 open vragen, en kort-antwoord vragen. De uitwerkingen van de open vragen dienen volledig, duidelijk geformuleerd
TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,
TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding
Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
Lineaire Algebra C 2WF09
Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09
Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)
Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het
UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,
UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht
Inwendig product, lengte en orthogonaliteit
Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper
Lineaire afbeeldingen
Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn
EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie
EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI 2011 1. Theorie Opgave 1. (a) In Voorbeelden 2.1.17 (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters
Antwoorden op de theoretische vragen in de examen voorbereiding
Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie
Dimensie van een deelruimte en rang van een matrix
Dimensie van een deelruimte en rang van een matrix Definitie (Herinnering) Een basis voor een deelruimte H van R n is een lineair onafhankelijke verzameling vectoren die H opspant. Notatie Een basis van
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 93 email: JCMKeijsper@tuenl studiewijzer: http://wwwwintuenl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 JKeijsper (TUE) Lineaire
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra maandag 3--27, 3.3-6.3 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken. Schrijf op elk
Eerste deeltentamen Lineaire Algebra A
Eerste deeltentamen Lineaire Algebra A 8 november 2011, 13u30-16u30 Bij dit tentamen mag het dictaat niet gebruikt worden. Schrijf op elk vel je naam, studnr en naam practicumleider (Victor Blasjo, Esther
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)
Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00
Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire
Stelsels Vergelijkingen
Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit
Oefensommen tentamen Lineaire algebra 2 - december A =
Oefensommen tentamen Lineaire algebra 2 - december 2012 Opg 1 De schaakbordmatrix A is de 8 bij 8 matrix 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 A = 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1
Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen
Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:
Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen
Vector-en matrixvergelijkingen (a) Parallellogramconstructie (b) Kop aan staartmethode Figuur: Vectoren, optellen (a) Kop aan staartmethode, optellen (b) Kop aan staart methode, aftrekken Figuur: Het optellen
Eindtermen Lineaire Algebra voor E vor VKO (2DE01)
Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale
Tentamen Lineaire Algebra UITWERKINGEN
Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen
Het orthogonaliseringsproces van Gram-Schmidt
Het orthogonaliseringsproces an Gram-Schmidt Voor het berekenen an een orthogonale projectie an een ector y op een deelruimte W an R n is een orthogonale basis {u,, u p } zeer gewenst De orthogonale projectie
Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen
Tweede huiswerkopdracht Lineaire algebra 1 en opmerkingen November 10, 2009 Opgave 1 Gegeven een vectorruimte V met deelruimtes U 1 en U 2. Als er geldt dim U 1 = 7, dimu 2 = 9, en dim(u 1 U 2 ) = 4, wat
Vectormeetkunde in R 3
Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie
Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.
Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper
Eigenwaarden en Diagonaliseerbaarheid
Hoofdstuk 3 Eigenwaarden en Diagonaliseerbaarheid 31 Diagonaliseerbaarheid Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit
College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie
College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.
Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.
TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0
Tentamen Lineaire Algebra voor BMT en TIW (2DM20) op vrijdag 11 mei 2007, 9:00 12:00 uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op vrijdag mei 7, 9: : uur. U mag bij het tentamen geen computer (notebook, laptop), boeken
EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I
EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I Theorie Opgave 1. In deze opgave wordt gevraagd om een aantal argumenten of overgangen uit de cursusnota s in detail te verklaren. In delen (a) (b) peilen we naar
Hoofdstuk 9. Vectorruimten. 9.1 Scalairen
Hoofdstuk 9 Vectorruimten 9.1 Scalairen In de lineaire algebra tot nu toe, hebben we steeds met reële getallen als coëfficienten gewerkt. Niets houdt ons tegen om ook matrices, lineaire vergelijkingen
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen
Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet
Lineaire algebra I (wiskundigen)
Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
Stelsels lineaire vergelijkingen
Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte
Vectorruimten en deelruimten
Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie
Tentamen Lineaire Algebra
Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische
Wiskundigen. Tentamen Lineaire Algebra 1. Donderdag 18 december 2008, a ( )
Wiskundigen Tentamen Lineaire Algebra Donderdag 8 december 8,.-3. Naam: () Bepaal voor alle reële waarden van a de rang van de matrix a C a = a. 4a () Zij n een geheel getal en laat P n de vectorruimte
Symmetrische matrices
Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie
Voorbeeld theorie examen
Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht
a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.
. Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen
Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)
Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N
Examenvragen eerste zittijd academiejaar Vraag 1 (op 6 punten) Gegeven:
Examenvragen eerste zittijd academiejaar 2010-2011 Vraag 1 (op 6 punten) de vectorruimte V = {A R 3 3 tr(a) = 0 en a 12 = a 21, a 13 = a 32, a 23 = a 31 }; de afbeelding T : V V, A A T A. (1) Toon aan
Jordan normaalvorm. Hoofdstuk 7
Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er
De kleinste kwadratenmethode. Figuur: Probleem uit video 8.1 (Video)
De kleinste kwadratenmethode Figuur: Probleem uit video 8.1 (Video) Laat A een m n matrix zijn en b een vector in R m. Veronderstel dat de matrixvergelijking A x = b geen oplossingen heeft omdat b / Col(A).
x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α
Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 2015 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt
Aanvullingen bij Hoofdstuk 8
Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints
Examenvragen Meetkunde en lineaire algebra Eerste examenperiode
Examenvragen Meetkunde en lineaire algebra Eerste examenperiode 2008-2009 Door rotatie van de rechte r die bepaald wordt door de punten P(3, 1, 2) en Q(1, 1, 2) omheen de rechte s die gaat door het punt
Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA
Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 9 september 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 september 2015 1 / 23 Huiswerk Huiswerk 1 is beschikbaar op
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 215 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan. Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt
Aanvullingen bij Hoofdstuk 6
Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W
Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria
Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria Deliverable 3.5 J. Brandts, F. Beukers, H. Cuypers, H. de Graaf Inleiding In deze deliverable zullen we voor het domein van de lineaire algebra de
3 De duale vectorruimte
3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3. (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire afbeeldingen
Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014
Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:
FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j
FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van
CTB1002-D2 Lineaire Algebra 2
CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie HOVO Utrecht Les 1: Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Overzicht colleges 1. College 1 1. Goniometrie 2. Vectoren 2. College
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 14 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 14 september 2016 1 / 30 Modelleren van LP en ILP problemen
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De
Eigenwaarden en eigenvectoren in R n
Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante
Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer
Samenvatting Lineaire Algebra 1 - Collegejaar 2013-2014 Dictaat met verwijzing naar het boek Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst
Vierde huiswerkopdracht Lineaire algebra 1
Vierde huiswerkopdracht Lineaire algebra December, 00 Opgave : Voor positieve gehele getallen m, n schrijven we Mat(m n, R) voor de vectorruimte van alle m n matrices, met de gebruikelijke optelling en
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper
wordt de stelling van Pythagoras toegepast, in dit geval twee keer: eerst in de x y-vlakte en vervolgens in de vlakte loodrecht op de vector y.
Wiskunde voor kunstmatige intelligentie, 2 Les 5 Inproduct Als we het in de meetkunde (of elders) over afstanden en hoeken hebben, dan hebben we daar intuïtief wel een idee van. Maar wat is eigenlijk de