EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie
|
|
- Hugo Gerritsen
- 2 jaren geleden
- Aantal bezoeken:
Transcriptie
1 EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI Theorie Opgave 1. (a) In Voorbeelden (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van een vectorruimte V juist de basissen zijn in V. Men kan basissen ook karakteriseren als de minimale voortbrengende verzamelingen. Toon aan dat een deelverzameling S van een vectorruimte V een basis is voor V als en slechts als S een minimale voortbrengende verzameling is voor V. (Een minimale voortbrengende verzameling S voor een vectorruimte V is per definitie een voortbrengende verzameling voor V zodat voor alle S S, span(s ) V.) (b) Zij g : V W een lineaire afbeelding tussen twee K-vectorruimten. Als er een verzameling T in V bestaat zodat {g(v) v T } een voortbrengend stel is voor de ruimte W, dan is de lineaire afbeelding g surjectief. Bewijs dit! (d) Verklaar de volgende uitspraken uit het bewijs van het bestaan van een Jordan basis (Stelling 5.3.5): (i) Het deel van ker f dat in het complement zit van im f heeft dimensie n d e. (Zie blz. 92 bovenaan.) (ii) De oorspronkelijke gelijkheid wordt d n d e α i v i = γ i u i. Het linker- en rechterlid van deze gelijkheid moeten nul zijn vermits het linkerlid een element is van im f en het rechterlid in het complement zit van im f.(zie blz. 92, lijn -17). Je moet dus verklaren waarom span({u 1,..., u n d e }) span({v 1,..., v d }) = {0}. Antwoord 1. (a) Zij V een K-vectorruimte en S een minimale voortbrengende verzameling voor V. Elke minimaal voortbrengende verzameling voor V is een basis in V. Zij S een minimaal voortbrengende verzameling. We moeten aantonen dat S lineair onafhankelijk is. (Als dat zo is dan is S een basis, vermits het dan een lineair onafhankelijke en voortbrengende verzameling is.) 1
2 We onderstellen dat S een lineair afhankelijke verzameling is (en leiden hieruit een tegenspraak af). Er bestaat dan een relatie met λ i K, λ i 0, v i S. Dus λ 1 v 1 + λ 2 v λ m v m = 0 v m = m 1 λ i λ m v i. Voor de verzameling S = S \ {v m } S geldt dan, vermits v m span S, dat V = span S span S span S = V. Dus span S = V maar dan is S een voortbrengende verzameling voor V en S S, wat in tegenspraak is met de hypothese dat S een minimale voortbrengende verzameling is. Een basis B in V is een minimaal voortbrengende verzameling. We moeten aantonen dat geen enkele echte deelverzameling van B een voortbrengende verzameling is. Zij T B dan is T een lineair onafhankelijk verzameling (een lineaire relatie tussen de elementen van T is immers een lineaire relatie tussen elementen van B). Zij b B \ T dan is b span T (vermits uit b = m λ ib i met b i T zou volgen dat er een niet triviale lineaire relatie bestaat tussen de elementen van B, en dit is niet zo want B is een basis). Dus T is geen voortbrengend stel voor V. Opmerking: Als V een eindig dimensionale vectorruimte is, stel dim V = n, dan volgt uit lemma dat een minimaal voortbrengend stel n elementen heeft. En vermits elke basis n elementen heeft en uit stelling volgt dat elk voortbrengend stel een basis bevat kan men dan besluiten dat de minimaal voortbrengende stellen juist de basissen zijn in V. (b) Zij g : V W een lineaire afbeelding en T V zodat span({g(v) v T }) = W. We moeten aantonen dat voor alle w W er een v V bestaat zodat g(v) = w. Zij w W dan is w span({g(v) v T }) dus w = m λ ig(v i ) met λ i K en v i V. Uit de lineariteit van g volgt w = g( m λ iv i ) = g(v) met v = m λ iv i V. (c) (i) Zij ker f = (ker f im f) (ker f im f) c waarbij we dus een complement van ker f im f beschouwen in de ruimte ker f. We zoeken dim(ker f im f) c. Uit stelling volgt dat dim(ker f im f) c = dim ker f dim(ker f im f) = dim ker f e. Uit stelling volgt dat dim ker f = dim V dim im f = n d.
3 Dus dim(ker f im f) c = n d e. (ii) d n d e α i v i = γ j u j. met {v i },...,d een basis voor im f en {u j },...,n d e een basis voor (ker f im f) c (het complement genomen in de ruimte ker f). We moeten aantonen dat beide leden van de gelijkheid gelijk zijn aan nul. Het linkerlid is een element van span({v 1,..., v d }) en het rechterlid is een element van span({u 1,..., u n d e }). Het is dus voldoende aan te tonen dat span({u 1,..., u n d e }) span({v 1,..., v d }) = {0}. Zij y span({u 1,..., u n d e }) span({v 1,..., v d }). Dan is f(y) = 0 vermits span({u 1,..., u n d e }) ker f. En y im f vermits span({v 1,..., v d }) = im f. Dus y ker f im f, maar y span({u 1,..., u n d e }) = (ker f im f) c. Dan is y = 0 daar (ker f im f) (ker f im f) c = {0} (zie lemma ). Opgave 2. Bij de classificatie van kwadrieken in R 3 hebben we gezien dat het belangrijk is om te weten of een kwadriek een middelpunt heeft. (a) Een centrale kwadriek is een kwadriek die een uniek middelpunt heeft. Bovenaan op p. 128 in de nota s van (op pagina 122 in de nota s van ) staat dat een kwadriek dan en slechts dan centraal is als det(a 0 ) 0. Verklaar dit. (b) Waarom zijn er geen kwadrieken die een eindig aantal middelpunten hebben groter dan 1? (c) Zij Q een kwadriek, en veronderstel dat p en q twee verschillende middelpunten van Q zijn. Toon aan dat je bij reductie door translatie naar het middelpunt p enerzijds, en bij reductie door translatie naar het middelpunt q anderzijds, precies dezelfde gereduceerde vergelijking bekomt. (d) Wat zijn de mogelijkheden voor het aantal middelpunten van een singuliere kwadriek? Geef een voorbeeld voor elk van de mogelijkheden die je opgeeft, en een verklaring voor elk van de mogelijkheden die je niet opgeeft. 2. oefeningen Opgave 3. Beschouw de matrix A = M 3 (C) Bepaal de Jordan normaalvorm van A. Bepaal eveneens een matrix Q zodanig dat Q 1 AQ gelijk is aan de Jordan normaalvorm van A.
4 Antwoord 2. De matrix A is symmetrisch, dus we weten dat hij diagonaliseerbaar is. De Jordan normaalvorm is bijgevolg een diagonaalmatrix en een Jordanbasis een basis van eigenvectoren. Het karakteristiek polynoom is (x 4)(x+2) 2, er zijn dus twee eigenwaarden λ 1 = 4 met algebraïsche multipliciteit 1 en λ 2 = 2 met algebraïsche multipliciteit 2. Aangezien A diagonaliseerbaar is, is de Jordan normaalvorm De eigenruimte bij λ 1 is de eigenruimte bij λ 2 is Een basis van eigenvectoren is { s s s C}, s { t s t, s C}. t s Een mogelijke Q is { 1 1, 1 0, 0 1 } Q = Opgave 4. Beschouw in de Euclidische ruimte R 4 een hypervlak H bepaald door de vergelijking 2x 1 + x 2 + x 3 x = 0 en de affiene deelruimte D bepaald door de punten (2, 0, 0, 0), (1, 1, 0, 5), (2, 1, 0, 0) en (1, 0, 0, 5). (i) Vind een voorstelling van D in termen van plaats- en richtingsvectoren. Bepaal de dimensie van D. (ii) Toon aan dat D parallel is aan het hypervlak H. (iii) Vind een element van de Euclidische groep φ E(4) waarvoor φ(d) H en φ(d) parallel is aan D. Antwoord 3. (i) Stellen we p 1 = (2, 0, 0, 0), p 2 = (1, 1, 0, 5), p 3 = (2, 1, 0, 0) en p 4 = (1, 0, 0, 5), dan is de onderliggende deelruimte D 0 juist de ruimte voortgebracht door alle richtingsvectoren van D. Deze wordt voortgebracht door r 1 = p 2 p 1 = ( 1, 1, 0, 5), r 2 = p 3 p 1 = (0, 1, 0, 0) en r 3 = p 4 p 1 = ( 1, 0, 0, 5). De dimensie van D is nu per definitie juist gelijk aan de dimensie van D 0 als vectorruimte. Vermits r 1 + r 2 = r 3 zijn de drie gevonden richtingsvectoren niet lineair onafhankelijk, maar r 1 en r 2 zijn wil lineair onafhankelijk. Bijgevolg is de
5 dimensie van D 0 en dus ook die van D gelijk aan twee. Hieruit kunnen we ook direct besluiten dat elk punt van D te schrijven p 1 +λ 1 r 1 +λ 2 r 2 voor een zekere λ 1, λ 2 R (zie cursus p.111 Definitie ). (ii) Twee affiene deelruimten D en H zijn parallel als en slechts dan als voor hun onderliggende deelruimten geldt dat ofwel D 0 H 0 ofwel H 0 D 0. Vermits de dimensie van D 0 kleiner is dan die van H 0, moeten we bijgevolg aantonen dat D 0 H 0. Het volstaat aan te tonen dat de vectoren die D 0 voortbrengen (in ons geval zijn dit r 1 en r 2 ) behoren tot H 0. We merken op dat H 0 bepaald wordt door de vergelijking 2x 1 + x 2 + x 3 x 4 = 0 en dat zowel r 1 als r 2 aan deze vergelijking voldoen. (iii) Vermits D parallel is aan H, weten we zeker dat er een translatie T v bestaat, die D omzet in een affiene ruimte bevat in H. Kiezen we een willekeurige vector p = (0, 0, 0, 1) H, dan voldoet v := p p 1. Immers, het hypervlak H is ook te schrijven als p + H 0. Vermits T v (D) = T v (p 1 + D 0 ) = T v (p 1 ) + D 0 = p 1 + (p p 1 ) + D 0 en D 0 H 0, volgt hieruit dat T v (D) H. Opgave 5. Stel V een complexe inproduct-ruimte, met inproduct.,. (zie Definitie 6.1.1, in de nota s en in de nota s ). We beschouwen n 1 vectoren v 1,..., v n V. Definieer de volgende matrix v 1, v 1 v 2, v 1... v n, v 1 v 1, v 2 v 2, v 2... v n, v 2 A =... M n(c). v 1, v n v 2, v n... v n, v n Toon aan dat de matrix A inverteerbaar is als en slechts dan als {v 1,..., v n } lineair onafhankelijk is. Antwoord 4. : We bewijzen dit uit het ongerijmde en tonen aan dat als {v 1,..., v n } niet lineair onafhankelijk (m.a.w lineair afhankelijk) zijn, A niet inverteerbaar is. Als {v 1,..., v n } lineair afhankelijk bestaan er λ 1,..., λ n C die niet allemaal nul zijn waarvoor λ i v i = 0. We noteren de k de kolom van A met A k. Het volgt uit de additiviteit en lineariteit in het eerste lid van het inproduct dat 0, v 1 0 0, v 2 λ i A i =. = 0.. 0, v n 0 Dus de kolommen van A zijn lineair afhankelijk, hieruit volgt dat (zie stelling 4.3.5) det(a) = 0 en dat A niet inverteerbaar is.
6 : We bewijzen dit uit het ongerijmde en tonen aan dat als A niet inverteerbaar, {v 1,..., v n } niet lineair onafhankelijk (m.a.w lineair afhankelijk) zijn. Als A niet inverteerbaar is is det(a) = 0 en de kolommen van A zijn lineair afhankelijk. Dus er bestaan λ 1,..., λ n C die niet allemaal nul zijn waarvoor 0 λ i A i =.. 0 Uit de additiviteit en lineariteit in het eerste lid van het inproduct volgt dat n λ iv i, v 1 n λ iv i, v 2 0. =.. n λ 0 iv i, v n Hieruit concluderen we dat voor iedere k [1, n] λ i v i, v k = 0. We tonen aan dat hieruit moet volgen dat n λ iv i = 0 of dus dat de v i s lineair afhankelijk zijn. Uit het positief definiet zijn van het inproduct volgt dat het voldoende is om aan te tonen dat λ i v i, λ j v j = 0. Dit laatste geldt aangezien λ i v i, λ j v j = = λ j ( λ i v i, v j ) λ j (0) = 0.
EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I
EXAMEN LINEAIRE ALGEBRA EN MEETKUNDE I Theorie Opgave 1. In deze opgave wordt gevraagd om een aantal argumenten of overgangen uit de cursusnota s in detail te verklaren. In delen (a) (b) peilen we naar
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.
Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)
Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 215 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan. Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt
Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00
Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus
Antwoorden op de theoretische vragen in de examen voorbereiding
Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie
Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015
Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 2015 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt
Eigenwaarden en eigenvectoren in R n
Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
Tentamen Lineaire Algebra 1 (Wiskundigen)
Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren
Oefensommen tentamen Lineaire algebra 2 - december A =
Oefensommen tentamen Lineaire algebra 2 - december 2012 Opg 1 De schaakbordmatrix A is de 8 bij 8 matrix 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 A = 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1
Jordan normaalvorm. Hoofdstuk 7
Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er
Aanvullingen bij Hoofdstuk 8
Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los
Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
Eigenwaarden en Diagonaliseerbaarheid
Hoofdstuk 3 Eigenwaarden en Diagonaliseerbaarheid 31 Diagonaliseerbaarheid Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)
Samenvatting Lineaire Algebra, periode 4
Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax
Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie
Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte
Lineaire Algebra Een Samenvatting
Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters
TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,
TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra maandag 3--27, 3.3-6.3 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken. Schrijf op elk
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 93 email: JCMKeijsper@tuenl studiewijzer: http://wwwwintuenl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 JKeijsper (TUE) Lineaire
Uitwerkingen tentamen Lineaire Algebra 2
Uitwerkingen tentamen Lineaire Algebra 2 15 januari, 2016 Opgave 2 (10 punten (a Het karakteristiek polynoom van A is det(ti A = (t 1 5, dus er is maar één eigenwaarde, namelijk λ = 1 Er geldt (A I 2 =
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints
Matrices en Stelsel Lineaire Vergelijkingen
Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire
Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen
Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet
Unitaire en Hermitese transformaties
Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het
Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)
Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,
TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.
TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Herhaling: opspansel De vectoren v 1,..., v k V spannen
x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt).
76 Complexe eigenwaarden Ook dit hebben we reeds gezien bij Lineaire Algebra Zie: Lay, 57 Als xt ve rt een oplossing is van de homogene differentiaalvergelijking x t Axt, dan moet r een eigenwaarde van
UITWERKINGEN 1 2 C : 2 =
UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De
Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen
Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het
Eigenwaarden en eigenvectoren
Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als
Tentamen lineaire algebra 2 17 januari 2014, 10:00 13:00 zalen 174, 312, 412, 401, 402
Tentamen lineaire algebra 2 17 januari 214, 1: 13: zalen 174, 312, 412, 41, 42 Dit zijn geen complete uitwerkingen. Er is dus geen garantie dat het overschrijven met andere getallen voldoende is voor huiswerk
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding
Lineaire algebra I (wiskundigen)
Lineaire algebra I (wiskundigen) Voorbeelden van toetsopgaven, 011 en (1) (a) Bepaal de afstand van het punt Q = (1,, ) R 3 tot het vlak gegeven door x + y z = 1. (b) Bepaal de hoek tussen de vectoren
Symmetrische matrices
Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie
Geadjungeerde en normaliteit
Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of
(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie.
Vraag op 5 punten de sfeer met middelpunt in,, 4 en straal 6; de omwentelingscilinder met straal 6 en als as de rechte door,, met richtingsvector,, Bepaal een affiene transformatie of een coördinatentransformatie,
TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,
TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines
Lineaire Algebra (2DD12) Laatste nieuws in 2012
Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of
1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A.
. Oefen opgaven Opgave... Van de lineaire afbeelding A : R 3 R 3 is gegeven dat A = Bepaal de matrix van A. 4, 4 A =, A = 3 4. In de volgende opgave wordt het begrip injectiviteit en surjectiviteit van
Tweede huiswerkopdracht Lineaire algebra 1 Uitwerking en opmerkingen
Tweede huiswerkopdracht Lineaire algebra 1 en opmerkingen November 10, 2009 Opgave 1 Gegeven een vectorruimte V met deelruimtes U 1 en U 2. Als er geldt dim U 1 = 7, dimu 2 = 9, en dim(u 1 U 2 ) = 4, wat
Wiskundigen. Tentamen Lineaire Algebra 1. Donderdag 18 december 2008, a ( )
Wiskundigen Tentamen Lineaire Algebra Donderdag 8 december 8,.-3. Naam: () Bepaal voor alle reële waarden van a de rang van de matrix a C a = a. 4a () Zij n een geheel getal en laat P n de vectorruimte
extra sommen bij Numerieke lineaire algebra
extra sommen bij Numerieke lineaire algebra 31 oktober 2012 1. Stel, we willen met een rekenapparaat (dat arithmetische bewerkingen uitvoert met een relatieve nauwkeurigheid ξ, ξ ξ) voor twee getallen
Lineaire Algebra C 2WF09
Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H.A. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09
Aanvullingen bij Hoofdstuk 6
Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 8 J.Keijsper (TUE)
Stelsels Vergelijkingen
Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit
Tentamen Lineaire Algebra B
Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een
Coördinatiseringen. Definitie 1. Stel dat B = {b 1,..., b n } een basis is van een vectorruimte V en dat v V. iedere vector v V :
Coördinatiseringen Het rekenen met vectoren in R n gaat erg gemakkelijk De coördinaten bieden de mogelijkheid om handig te rekenen (vegen Het is nu ook mogelijk om coördinaten in te voeren voor vectoren
Tentamen Lineaire Algebra UITWERKINGEN
Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen
Tentamen Lineaire Algebra
Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische
Uitwerking 1 Uitwerkingen eerste deeltentamen Lineaire Algebra (WISB121) 3 november 2009
Departement Wiskunde, Faculteit Bètawetenschappen, UU. In elektronische vorm beschikbaar gemaakt door de TBC van A Eskwadraat. Het college WISB werd in 9- gegeven door Prof. Dr. F. Beukers. Uitwerking
a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.
. Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper
Examenvragen eerste zittijd academiejaar Vraag 1 (op 6 punten) Gegeven:
Examenvragen eerste zittijd academiejaar 2010-2011 Vraag 1 (op 6 punten) de vectorruimte V = {A R 3 3 tr(a) = 0 en a 12 = a 21, a 13 = a 32, a 23 = a 31 }; de afbeelding T : V V, A A T A. (1) Toon aan
Examenvragen Meetkunde en lineaire algebra Eerste examenperiode
Examenvragen Meetkunde en lineaire algebra Eerste examenperiode 2008-2009 Door rotatie van de rechte r die bepaald wordt door de punten P(3, 1, 2) en Q(1, 1, 2) omheen de rechte s die gaat door het punt
Voorbeeld theorie examen
Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht
Complexe eigenwaarden
Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 8 J.Keijsper
Vierde huiswerkopdracht Lineaire algebra 1
Vierde huiswerkopdracht Lineaire algebra December, 00 Opgave : Voor positieve gehele getallen m, n schrijven we Mat(m n, R) voor de vectorruimte van alle m n matrices, met de gebruikelijke optelling en
Eerste deeltentamen Lineaire Algebra A. De opgaven
Eerste deeltentamen Lineaire Algebra A 3 november 9, 3-6 uur Bij dit tentamen mogen dictaat en/of rekenmachine niet gebruikt worden. Schrijf op elk vel je naam, collegekaartnummer en naam van de practicumleider
Lineaire Algebra. Samenvatting. De Roover Robin
Lineaire Algebra Samenvatting De Roover Robin 21-211 Deze samenvatting is een overzicht van alle definities, stellingen, lemma's en proposities met hun bijhorende bewijzen. Deze samenvatting is gebaseerd
Affiene ruimten. Oefeningen op hoofdstuk Basistellingen
Oefeningen op hoofdstuk Affiene ruimten. Basistellingen Oefening.. Er zijn maar een eindig aantal lineaire afbeeldingen op een eindigdimensionale vectorruimte F n q over een eindig veld F q. Tel het aantal
Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte
Lineaire algebra en kegelsneden Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk Reële vectorruimten. De reële vectorruimte van de reële n-tallen Definitie Een reëel
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra donderdag 29 januari 205, 9.00-2.00 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken.
Lineaire Algebra C 2WF09
Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H.A. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09
3 De duale vectorruimte
3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire
Lineaire algebra I (wiskundigen)
Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie
Ruimtemeetkunde deel 1
Ruimtemeetkunde deel 1 1 Punten We weten reeds dat Π 0 het meetkundig model is voor de vectorruimte R 2. We definiëren nu op dezelfde manier E 0 als meetkundig model voor de vectorruimte R 3. De elementen
Gelijkvormigheid en de Jordan normaalvorm Aanvullende leerstof Lineaire Algebra C (2WF09)
Gelijkvormigheid en de Jordan normaalvorm Aanvullende leerstof Lineaire Algebra C (2WF09) LCGJM Habets Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Abstract In de syllabus bij het
Vectorruimten met inproduct
Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij
1 Eigenwaarden en eigenvectoren
Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan
Eindtermen Lineaire Algebra voor E vor VKO (2DE01)
Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale
Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door
Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal
Vectorruimten en deelruimten
Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie
11.0 Voorkennis V
11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix
Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002
Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002 1. We vatten {0, 1} op als het lichaam F 2. Een schuifregisterrij is een rij {s n } n=0 in F 2 gegeven door r startwaarden s
Lineaire afbeeldingen
Hoofdstuk 2 Lineaire afbeeldingen 21 Inleiding Een afbeelding f van een verzameling V naar een verzameling W is een regel die aan ieder element v van V een element f(v) van W toevoegt maw een generalisatie
Het karakteristieke polynoom
Hoofdstuk 6 Het karakteristieke polynoom We herhalen eerst kort de definities van eigenwaarde en eigenvector, nu in een algemene vectorruimte Definitie 6 Een eigenvector voor een lineaire transformatie
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)
Vectorruimten en lineaire afbeeldingen tussen vectorruimten
Hoofdstuk 3 Vectorruimten en lineaire afbeeldingen tussen vectorruimten 3.1 Vectorruimte : definitie en voorbeelden R DEFINITIE 3.1 vectorruimte Een vectorruimte of lineaire ruimte over een veld F is een
Tentamina Lineaire Algebra Cursussen. Uitgangspunten, aanbevelingen en opmerkingen
Tentamina Lineaire Algebra Cursussen Fons Daalderop, Joost de Groot, Roelof Koekoek Mei 4 Uitgangspunten, aanbevelingen en opmerkingen De inhoud van de cursus Lineaire Algebra is voor wat betreft de basisstof
Tentamen Lineaire Algebra 2
Lineaire algebra (NP010B) januari 013 Tentamen Lineaire Algebra Vermeld op ieder blad je naam en studentnummer. Lees eerst de opgaven voordat je aan de slag gaat. Schrijf leesbaar en geef uitleg over je
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
4 Positieve en niet-negatieve lineaire algebra
4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,
OPLOSSINGEN PROEFEXAMEN LINEAIRE ALGEBRA donderdag 18 november 2010
OPLOSSINGEN PROEFEXAMEN LINEAIRE ALGEBRA donderdag 18 november 2010 1. Zij V een vectorruimte en A = {v 1,..., v m } een deelverzameling van m vectoren uit V die voortbrengend is voor V, m.a.w. V = A.
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L Habets HG 809, Tel: 040-2474230, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y650 1 Herhaling: Oplossing homogene DV ẋ = Ax Aanname: A is diagonaliseerbaar
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT (2DM20) op vrijdag 12 juni 2009, 9.00 Dit tentamen bestaat uit 5 open vragen, en 4 kort-antwoord vragen.
Lineaire afbeeldingen
Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Dit tentamen bestaat uit 4 open vragen, en kort-antwoord vragen. De uitwerkingen van de open vragen dienen volledig, duidelijk geformuleerd