Aanvullingen bij Hoofdstuk 8

Maat: px
Weergave met pagina beginnen:

Download "Aanvullingen bij Hoofdstuk 8"

Transcriptie

1 Aanvullingen bij Hoofdstuk Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los van de context van lineaire afbeeldingen. We kunnen anderzijds een vierkante matrix altijd beschouwen als de matrix van een lineaire afbeelding ten opzichte van een basis en dan moeten deze begrippen natuurlijk overeenkomen. Definitie 8.4. Zij B een (p p)-matrix. (1) De karakteristieke veelterm van B is f B (t) := det(ti p B). (2) Een eigenwaarde van B is een wortel van f B (t). (3) Een eigenvector van B met eigenwaarde λ is een vector (v 1... v p ) R p zodat (v 1... v p ) (0... 0) en v 1 v 1 B. = λ.. v p v p Anders gezegd als B : R p R p de lineaire afbeelding is met matrix B ten opzichte van de standaardbasis van R p dan is een eigenwaarde of eigenvector van B precies een eigenwaarde of eigenvector van B. Stelling 8.3. Zij B een (p p)-matrix en P een inverteerbare (p p)-matrix. Dan is f B = f P 1 BP en hebben B en P 1 BP dus dezelfde eigenwaarden. Bewijs. Oefening. Stelling 8.4. De eigenwaarden van een boven- of benedendriehoeksmatrix zijn de elementen op de hoofddiagonaal. Bewijs. Zij A een (p p)-boven- of benedendriehoeksmatrix. We noteren met a 11 a a pp de elementen op de hoofddiagonaal van A. Wegens Stelling 5.3 is p f A (t) = det(ti p A) = (t a ii ). 1

2 Definitie 8.5. Een (p p)-matrix B is diagonaliseerbaar als (1) R p een basis heeft bestaande uit eigenvectoren van B of equivalent hiermee als (2) er een inverteerbare (p p)-matrix P bestaat zodat P 1 BP een diagonaalmatrix is. Het bewijs van de equivalentie is eenvoudig. (Als je dit niet inziet kijk dan naar Stelling 8.2 en het bewijs hiervan.) 8.6 Criteria voor diagonaliseerbaarheid Omdat diagonaalmatrices de meest eenvoudige matrices zijn zowel om theoretisch mee te werken als praktisch ( met de hand of met de computer) loont het zeker de moeite om te onderzoeken wanneer precies een lineaire afbeelding diagonaliseerbaar is. Hiervoor gaan we eerst eigenvectoren en eigenwaarden wat van naderbij bestuderen. Belangrijke opmerking. We hebben de begrippen karakteristieke veelterm eigenwaarde eigenvector eigenruimte en diagonaliseerbaarheid intussen ook ingevoerd voor vierkante matrices. De resultaten en definities in dit deeltje gelden ook als je in de formuleringen de lineaire transformatie A vervangt door een vierkante matrix A. Stelling 8.5. Zij A een lineaire transformatie van een eindigdimensionale vectorruimte V. Zij λ 1... λ r verschillende eigenwaarden van A. (1) Zij v i een eigenvector van A met eigenwaarde λ i voor i = 1... r. Dan zijn v 1 v 2... v r lineair onafhankelijk. (2) De som r E λ i is een directe inwendige som. Bewijs. (1) Dit tonen we aan per inductie op r; het geval r = 1 is alvast in orde. We veronderstellen nu dat r > 1. Wegens de inductiehypothese mogen we aannemen dat v 1 v 2... v r 1 lineair onafhankelijk zijn. Stel dat v 1 v 2... v r lineair afhankelijk zouden zijn. Dan geldt voor zekere α i R dat v r = α 1 v 1 + α 2 v α r 1 v r 1. Inderdaad bij een afhankelijkheidsrelatie tussen v 1 v 2... v r moet v r expliciet voorkomen omdat de anderen lineair onafhankelijk zijn. Enerzijds is nu A(v r ) = A(α 1 v 1 + α 2 v α r 1 v r 1 ) = α 1 A(v 1 ) + α 2 A(v 2 ) + + α r 1 A(v r 1 ) = α 1 λ 1 v 1 + α 2 λ 2 v α r 1 λ r 1 v r 1 2

3 en anderzijds is ook Hieruit volgt dat A(v r ) = λ r v r = α 1 λ r v 1 + α 2 λ r v α r 1 λ r v r 1. α 1 (λ 1 λ r )v 1 + α 2 (λ 2 λ r )v α r 1 (λ r 1 λ r )v r 1 = 0. Omdat v 1 v 2... v r 1 lineair onafhankelijk zijn zijn dan alle λ i λ r waarvoor α i 0 gelijk aan nul. Dus is er zeker één λ i = λ r. Dit levert een contradictie. (2) We gebruiken Stelling We schrijven de nulvector als 0 = w i waarbij elke w i E λi en moeten dan aantonen dat elke w i = 0. Stel dat minstens één van deze w j 0. Dan zegt bovenstaande gelijkheid dat een aantal eigenvectoren horende bij verschillende eigenwaarden lineair afhankelijk zijn. En dit kan niet wegens (1). Hieruit kunnen we reeds het volgende speciale geval halen in verband met diagonaliseerbaarheid. Stelling 8.6. Als een lineaire transformatie A van een p-dimensionale vectorruimte p verschillende eigenwaarden heeft dan is A diagonaliseerbaar. Bewijs. Kies bij elke eigenwaarde een eigenvector. Deze p eigenvectoren zijn lineair onafhankelijk en vormen dus een basis van de gegeven p-dimensionale vectorruimte. Opmerking. In dit geval is elke eigenruimte dus ééndimensionaal. Nu gaan we op zoek naar een nodige en voldoende voorwaarde voor diagonaliseerbaarheid. Hierbij zullen we de multipliciteit van een eigenwaarde nodig hebben. Definitie 8.6. Zij A een lineaire transformatie van een eindigdimensionale vectorruimte en λ een eigenwaarde van A. De (algebraïsche) multipliciteit van λ genoteerd mult A λ of kortweg mult λ is het aantal keer dat λ een wortel is van de karakteristieke veelterm van A; anders gezegd : mult λ = m als f A (t) = (t λ) m g(t) met λ geen wortel van g. 3

4 Stelling 8.7. Zij A een lineaire transformatie van een eindigdimensionale vectorruimte. Voor elke eigenwaarde λ van A geldt : dim E λ mult λ. Bewijs. Zij p de dimensie van de vectorruimte en k = dim E λ. Neem een basis v 1... v k van E λ en breid deze basis uit tot een basis van V met p k vectoren v k+1... v p. De matrix van A ten opzichte van de basis v 1... v p is van de vorm λik B A = O C waarbij O de (p k) k-nulmatrix is B een k (p k)-deelmatrix en C een (p k) (p k)- deelmatrix. De karakteristieke veelterm van A is dus f A (t) = ti p A = ti k λi k B O ti p k C = (t λ)i k B O ti p k C. Ontwikkelen naar de eerste k kolommen levert f A (t) = (t λ) k ti p k C. Dit zegt dat λ minstens multipliciteit k heeft als wortel van f A en dus inderdaad dat de multipliciteit van λ minstens even groot is als dim E λ. Opmerking. De dimensie van E λ heet ook de meetkundige multipliciteit van λ. Dan zegt de vorige stelling : (meetkundige multipliciteit van λ) (algebraïsche multipliciteit van λ). In Voorbeeld 8.10 bleek voor de enige eigenwaarde λ = 1 dat dim E λ < mult λ; in Stelling 8.7 kan de ongelijkheid dus strikt zijn. Dit was ook de reden waarom de transformatie in Voorbeeld 8.10 niet diagonaliseerbaar was. Zij nu A : V V een lineaire transformatie van een p-dimensionale vectorruimte en λ 1... λ r alle verschillende eigenwaarden van A. Dan is altijd r mult λ i p waarbij gelijkheid optreedt precies wanneer f A volledig splitst in lineaire factoren over R. Uit Stelling 8.7 volgt alvast dat steeds ( ) dim E λi mult λ i p. Deze ongelijkheden zijn belangrijk bij het bewijs van de volgende criteria voor diagonaliseerbaarheid. 4

5 Stelling 8.8. Zij A : V V een lineaire transformatie van een eindigdimensionale vectorruimte V. Zij λ 1... λ r alle verschillende eigenwaarden van A. Dan zijn volgende uitspraken equivalent : (1) A is diagonaliseerbaar (2) V = r E λ i (3) V = r E λ i (4) f A splitst volledig in lineaire factoren over R en dim E λi = mult λ i voor elke i = 1... r. Bewijs. Noteer p := dim V. (1) (2) Per definitie van diagonaliseerbaar heeft V dan een basis van eigenvectoren en is dus zeker V = r E λ i. (2) (3) Dit volgt uit Stelling 8.5(2). (3) (4) Uit het gegeven en ( ) volgt dat p = dim V = dim E λi mult λ i p. Dit kan enkel als alle ongelijkheden gelijkheden zijn. Dan is r mult λ i = p wat betekent dat f A volledig splitst in lineaire factoren over R en r dim E λ i = r mult λ i wat (wegens Stelling 8.7) impliceert dat dim E λi = mult λ i voor elke i = 1... r. (4) (1) Kies in elke E λi een basis B i (van eigenvectoren dus). Het aantal vectoren in r B i is volgens het gegeven r dim E λ i = r mult λ i = p. Wegens stelling 8.5 zijn deze vectoren lineair onafhankelijk en vormen dus een basis van V. Gevolg. Als A diagonaliseerbaar is vormt de (disjuncte) unie van basissen van de E λi een basis van V. 8.7 Trianguleren Zelfs als de karakteristieke veelterm van een lineaire transformatie A volledig splitst in lineaire factoren over R hoeft A niet diagonaliseerbaar te zijn; zie Voorbeeld De tweede voorwaarde in Stelling 8.8(4) is dus echt nodig. Maar dan kunnen we wel steeds een nog redelijk eenvoudige matrixvoorstelling van A vinden; ten opzichte van een geschikte basis wordt de matrix van A namelijk een bovendriehoeksmatrix. Men zegt dan dat A trianguleerbaar is. In het bewijs komt de notie van invariante deelruimte te voorschijn. 5

6 Definitie 8.7. Zij A : V V een lineaire transformatie van een vectorruimte V. Een A-invariante deelruimte van V is een deelruimte W van V waarvoor A(W ) W. Merk op dat de beperking van A tot W dan een lineaire transformatie is van W. Stelling 8.9. Zij A : V V een lineaire transformatie van een eindigdimensionale vectorruimte V. Als f A volledig splitst in lineaire factoren over R dan bestaat er een basis E van V zodat de matrix van A ten opzichte van E een bovendriehoeksmatrix is. Bewijs. We argumenteren per inductie op de dimensie p van V. Het geval p = 1 is evident. We nemen nu p > 1. Zij λ 1 een eigenwaarde van A en v 1 een eigenvector met eigenwaarde λ 1. W 1 := <v 1 > een A-invariante deelruimte van V. Dan is Breid nu v 1 uit tot een basis v 1 v 2... v p van V. Dan is W 2 := <v 2... v p > een supplementaire deelruimte van W 1 met andere woorden V = W 1 W 2 maar W 2 is niet noodzakelijk A-invariant. De matrix van A ten opzichte van v 1 v 2... v p is dus van de vorm λ1 A = O R waarbij O een kolom is van p 1 nullen R een (p 1) (p 1)-deelmatrix en een rij van p 1 getallen. (Indien W 2 ook A-invariant zou zijn wordt dit een nulrij.) Zij A R de lineaire transformatie van W 2 met matrix R ten opzichte van de basis v 2... v p van W 2. Een belangrijke opmerking voor het vervolg is dat voor elke w W 2 de verschilvector A(w) A R (w) tot W 1 behoort. Door de determinant van ti p A te ontwikkelen naar de eerste kolom verkrijgen we f A (t) = (t λ 1 )f AR (t). Bijgevolg splitst ook f AR volledig in lineaire factoren over R. Nu levert de inductiehypothese toegepast op de (p 1)-dimensionale vectorruimte W 2 en de lineaire transformatie A R een basis v 2... v p van W 2 zodat de matrix R van A R ten opzichte van deze nieuwe basis een bovendriehoeksmatrix is. De vectoren v 1 v 2... v p vormen ook een basis van V en de matrix van A ten opzichte van deze basis is van de vorm A λ1 = O R. Verifieer dit! Omdat R een bovendriehoeksmatrix is is A dit natuurlijk ook. Gevolg. Zij A een lineaire transformatie van een eindigdimensionale vectorruimte. Als f A volledig splitst in lineaire factoren over R dan : 6

7 (1) det(a) is het product van alle eigenwaarden van A (2) Sp(A) is de som van alle eigenwaarden van A. Hierbij moeten de eigenwaarden wel geteld worden met hun multipliciteit. 8.8 En nu met complexe getallen Hiermee wordt alles niet complexer maar eenvoudiger! Voorbeeld 8.9bis. De matrix cos α sin α A = sin α cos α had als karakteristieke veelterm f A (t) = t 2 2(cos α)t + 1. Als cos α ±1 heeft A geen reële wortels en dus geen eigenwaarden en geen eigenvectoren. Over C heeft f A wel twee wortels namelijk λ 1 = cos α + i sin α (= e iα ) en λ 2 = cos α i sin α (= e iα ). We zeggen dat λ 1 en λ 2 complexe eigenwaarden zijn van A. We kunnen de matrix A eigenlijk ook beschouwen als een matrix over C en hieraan de afbeelding C 2 C 2 : ( z1 z 2 ) z1 A z 2 associëren. Analoog als in Definities 8.1 en 8.2 kunnen we complexe eigenvectoren en( eigenruimtes ) ( invoeren. ) Bijvoorbeeld voor λ 1 zijn dit de oplossingen in C 2 van z1 z1 A = λ z 1 dus van het homogene stelsel met coëfficiëntenmatrix 2 z 2 i sin α sin α λ 1 I 2 A =. sin α i sin α De oplossingen hiervan zijn alle complexe veelvouden van (1 i). Analoog vormen alle complexe veelvouden van (1 i) de complexe eigenruimte van λ 2. We voeren deze begrippen nu in het algemeen in. (A) Alles wat we tot nu toe gezien hebben blijft geldig met C in plaats van R. Hiermee bedoelen we het volgende : 7

8 Stel dat voor de verzameling V in Definitie 2.1 als tevoren een vectoroptelling gedefinieerd is maar nu een scalaire vermenigvuldiging met complexe in plaats van reële getallen. Vervang in de axioma s overal R door C. Men noemt V dan een complexe vectorruimte of vectorruimte over C. Alle ingevoerde begrippen kunnen we nu ook beschouwen voor complexe vectorruimten en alle geziene resultaten blijven geldig (waarbij we telkens reëel getal moeten vervangen door complex getal )! Opmerking. Wat we tot nu toe steeds gewoon vectorruimte genoemd hebben wordt ook reële vectorruimte of vectorruimte over R genoemd. Dit is nuttig voor de gevallen waarin er keuze is om over R of over C te werken; zie (C) hieronder. (B) We bekijken nu in het bijzonder de complexe versie van Definities 8.1 en 8.2. Aan lineaire transformaties van complexe vectorruimten respectievelijk aan complexe vierkante matrices associëren we eigenwaarden in C en eigenvectoren met complexe coördinaten (ten opzichte van een basis) respectievelijk eigenvectoren in C n. Zij A een lineaire transformatie van een eindigdimensionale complexe vectorruimte. De karakteristieke veelterm f A van A splitst volledig in lineaire factoren over C; dit betekent dat de eigenwaarden van A samenvallen met alle wortels van f A. (Over R waren de complexe niet-reële wortels van de karakteristieke veelterm geen eigenwaarden.) Hieruit volgt ook dat er over C steeds een eigenwaarde (en dus eigenvector) is. De formuleringen van de Stellingen 8.8 en 8.9 zijn over C dan iets eenvoudiger. Voor de duidelijkheid geven we deze formuleringen expliciet. Stelling 8.8. Zij A : V V een lineaire transformatie van een eindigdimensionale complexe vectorruimte V en λ 1... λ r alle verschillende eigenwaarden van A. Dan zijn volgende uitspraken equivalent : (1) A is diagonaliseerbaar (2) V = r E λ i (3) V = r E λ i (4) dim E λi = mult λ i voor elke i = 1... r. Stelling 8.9. Zij A : V V een lineaire transformatie van een eindigdimensionale complexe vectorruimte V. Dan bestaat er een basis E van V zodat de matrix van A ten opzichte van E een bovendriehoeksmatrix is. Gevolg. Zij A een lineaire transformatie van een eindigdimensionale complexe vectorruimte. Dan : (1) det(a) is het product van alle eigenwaarden van A 8

9 (2) Sp(A) is de som van alle eigenwaarden van A waarbij de eigenwaarden geteld moeten worden met hun multipliciteit. We vermelden tenslotte expliciet als gevolg van de complexe versie van Stelling 6.4 : Een complexe (p p)-matrix A is diagonaliseerbaar als en slechts als er een inverteerbare complexe (p p)-matrix B bestaat zodat B 1 AB een (complexe) diagonaalmatrix is. (C) Zij A een reële (p p)-matrix. Naargelang we A beschouwen als reële of als complexe matrix geldt er een andere notie van diagonaliseerbaarheid. Voor de duidelijkheid is het hier beter om altijd expliciet diagonaliseerbaar over R of diagonaliseerbaar over C te zeggen. Even herhalen : A is diagonaliseerbaar over R R p heeft een basis van (reële) eigenvectoren van A f A splitst volledig in lineaire factoren over R en voor elke (reële) eigenwaarde λ van A is dim E λ = mult λ A is diagonaliseerbaar over C C p heeft een basis van (complexe) eigenvectoren van A voor elke complexe eigenwaarde λ van A is dim E λ = mult λ. Merk op dat in het eerste geval E λ een reële vectorruimte is en in het tweede geval een complexe vectorruimte. Bijvoorbeeld is de matrix in Voorbeeld 8.9 diagonaliseerbaar over C maar niet over R. Opgave 8.9. Zij λ een complexe niet-reële eigenwaarde van een reële vierkante matrix. Dan heeft λ geen reële eigenvectoren. Opmerking. Zelfs als we enkel geïnteresseerd zijn in reële eigenschappen van een reële vierkante matrix kan het nuttig zijn om complexe eigenwaarden en eigenvectoren te kennen en te gebruiken. We zullen hiervan voorbeelden zien bij een toepassing van lineaire algebra en bij de hoofdstelling over symmetrische matrices in Hoofdstuk 9. Een eenvoudig voorbeeldje van dit principe zagen we al bij de berekening van de determinant en het spoor van een reële vierkante matrix A. Deze zijn natuurlijk beide reëel maar kunnen berekend worden als respectievelijk het product en de som van alle complexe eigenwaarden van A. Merk op dat wanneer de karakteristieke veelterm van A niet volledig in lineaire factoren splitst over R det(a) en Sp(A) in het algemeen niet gelijk zijn aan respectievelijk product en som van alle reële eigenwaarden van A. 9

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Lineaire Algebra (2DD12) Laatste nieuws in 2012

Lineaire Algebra (2DD12) Laatste nieuws in 2012 Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

b + b c + c d + d a + a

b + b c + c d + d a + a Voorwoord De wiskundige vorming die in de wiskundig sterke richtingen van het Vlaamse secundair onderwijs wordt aangeboden, vormt een zeer degelijke basis voor hogere studies in wetenschappelijke, technologische

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Lineaire Algebra. Samenvatting. De Roover Robin

Lineaire Algebra. Samenvatting. De Roover Robin Lineaire Algebra Samenvatting De Roover Robin 21-211 Deze samenvatting is een overzicht van alle definities, stellingen, lemma's en proposities met hun bijhorende bewijzen. Deze samenvatting is gebaseerd

Nadere informatie

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode Examenvragen Meetkunde en lineaire algebra Tweede examenperiode 2008-2009 Een rechte conoïde met als richtrechte de X-as, en als richtoppervlak de sfeer met middelpunt in (0, 16, 0) en straal 9. (1) Stel

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Voorwaardelijke optimalisatie

Voorwaardelijke optimalisatie Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert. Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer

Nadere informatie

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( ) Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Schoolagenda klas 5d GWi8-WWi8

Schoolagenda klas 5d GWi8-WWi8 Schoolagenda klas 5d GWi8-WWi8 Koen De Naeghel Onze-Lieve-Vrouwecollege Assebroek schooljaar 2014-2015 Eerste trimester Toetsen 6 repetities en enkele kleine, aangekondigde testen (75% TTE) dag en datum

Nadere informatie

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden College Lineaire

Nadere informatie

1. Lineaire Vergelijkingen in Lineaire Algebra 2. Matrix Algebra 3. Determinanten 4. Vectorruimten 5. Eigenwaarden en Eigenvec.

1. Lineaire Vergelijkingen in Lineaire Algebra 2. Matrix Algebra 3. Determinanten 4. Vectorruimten 5. Eigenwaarden en Eigenvec. LINEAIRE ALGEBRA Eric Jespers Vrije Universiteit Brussel Referentie: David C. Lay, Linear Algebra and Its Applications, Fourth edition, Pearson International Edition, 2012, ISBN: 9781408287859 verplicht

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Voorbeeld theorie examen

Voorbeeld theorie examen Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

Oefeningen bij de Cursus Lineaire Algebra, Eerste Kandidatuur Informatica. Complexe Getallen en Veeltermvergelijkingen over R en C

Oefeningen bij de Cursus Lineaire Algebra, Eerste Kandidatuur Informatica. Complexe Getallen en Veeltermvergelijkingen over R en C Oefeningen bij de Cursus Lineaire Algebra, Eerste Kandidatuur Informatica Stefaan De Winter en Koen Thas Universiteit Gent, Vakgroep Zuivere Wiskunde en Computeralgebra Galglaan, Gent sgdwinte@cagerugacbe;

Nadere informatie

Vectorruimten en lineaire afbeeldingen tussen vectorruimten

Vectorruimten en lineaire afbeeldingen tussen vectorruimten Hoofdstuk 3 Vectorruimten en lineaire afbeeldingen tussen vectorruimten 3.1 Vectorruimte : definitie en voorbeelden R DEFINITIE 3.1 vectorruimte Een vectorruimte of lineaire ruimte over een veld F is een

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

2. Transformaties en matrices

2. Transformaties en matrices Transformaties en matrices Lineaire afbeelding Onder een lineaire afbeelding van R n naar R m verstaan we een functie A die aan iedere vector uit R n een vector uit R m toevoegt en van het volgende type

Nadere informatie

1. Vectoren in R n. y-as

1. Vectoren in R n. y-as 1. Vectoren in R n Vectoren en hun meetkundige voorstelling. Een vector in R n is een rijtje (a 1, a 2,..., a n ) van reële getallen. De getallen a i heten de coördinaten van de vector. In het speciale

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

3. Stelsels van vergelijkingen

3. Stelsels van vergelijkingen . Stelsels van vergelijkingen We gaan de theorie van de voorgaande hoofdstukken toepassen op stelsels van lineaire vergelijkingen. Een voorbeeld: bepaal alle oplossingen (x,, ) van het stelsel vergelijkingen

Nadere informatie

Matrixgroepen. SL n (K) = S GL n (K)

Matrixgroepen. SL n (K) = S GL n (K) B Matrixgroepen De lineaire algebra is niet alleen een theorie waar de functionaalanalyse op voort bouwt, omgekeerd hebben sommige resultaten uit de hoofdtext ook consequenties voor de lineaire algebra.

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

Zomercursus Wiskunde. Lineaire algebra (versie 15 september 2008)

Zomercursus Wiskunde. Lineaire algebra (versie 15 september 2008) Katholieke Universiteit Leuven September 2008 Lineaire algebra (versie 15 september 2008) 2 Lineaire algebra Deze module wordt zowel gegeven in het A-programma als in het B-programma van de zomercursus

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H.A. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1.

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1. Blokmatrices Soms kan het handig zijn een matrix in zogenaamde blokken op te delen, vooral als sommige van deze blokken uit louter nullen bestaan Berekeningen kunnen hierdoor soms aanzienlijk worden vereenvoudigd

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie

Inleiding tot groepentheorie

Inleiding tot groepentheorie Hoofdstuk Inleiding tot groepentheorie 1 Basisdefinities Een algebraïsche structuur bestaat meestal uit een verzameling waarop één of meerdere bewerkingen gedefinieerd zijn. Definitie Een inwendige bewerking

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 2 Lineaire afbeeldingen 21 Inleiding Een afbeelding f van een verzameling V naar een verzameling W is een regel die aan ieder element v van V een element f(v) van W toevoegt maw een generalisatie

Nadere informatie

Meetkunde I [B-KUL-G0N31B]

Meetkunde I [B-KUL-G0N31B] KU Leuven Meetkunde I [B-KUL-G0N31B] Notities Tom Sydney Kerckhove Gestart 24 september 2014 Gecompileerd 18 januari 2016 Docent: Prof. Wendy Goemans Inhoudsopgave 1 Affiene meetkunde 4 1.1 Affiene ruimte.......................................

Nadere informatie

Lineaire Algebra 2. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven

Lineaire Algebra 2. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Lineaire Algebra 2 Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven 2012-2013 ii Syllabus in wording bij Lineaire Algebra 2 (2WF30 Inhoudsopgave 1 Lineaire afbeeldingen 1 11 Lineaire

Nadere informatie

De n-dimensionale ruimte Arjen Stolk

De n-dimensionale ruimte Arjen Stolk De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS deel 2 LOTHAR PAPULA 2e druk > ACADEMIC 5 E R V I C Inhoud 1 Lineaire algebra 1 1.1 Vectoren I 1.2 Matrices 4 1.2.1 Een inleidend voorbeeld 4 1.2.2 Definitie

Nadere informatie

1 Triangulatiestellingen voor lineaire transformaties

1 Triangulatiestellingen voor lineaire transformaties Triangulatiestellingen voor lineaire transformaties Zoals bekend kan niet iedere lineaire transformatie L : V V van een vectorruimte (V, K) gediagonaliseerd worden. Als het lichaam K echter algebraïsch

Nadere informatie

Een korte beschrijving van de inhoud

Een korte beschrijving van de inhoud Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige toepassingen op

Nadere informatie

Module 10 Lineaire Algebra

Module 10 Lineaire Algebra L Vak 57.5 Les 36. Module Lineaire Algebra Afbeeldingen (vervolg (b)) In deze les worden de eigenwaarden en eigenvectoren van lineaire afbeeldingen behandeld. Inhoud van de leskern Basistransformatie *:;*

Nadere informatie