Lineaire Algebra Een Samenvatting

Maat: px
Weergave met pagina beginnen:

Download "Lineaire Algebra Een Samenvatting"

Transcriptie

1 Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle u V en v V, (2) u + (v + w) = (u + v) + w voor alle u V, v V en w V, (3) er bestaat 0 V, zodat u + 0 = u voor alle u V, (4) voor alle u V bestaat u V, zodat u + ( u) = 0, (b) u V en c R cu V, (5) c(u + v) = cu + cv voor alle u V, v V en c R, (6) (c + d)u = cu + du voor alle u V, c R en d R, (7) c(du) = (cd)u voor alle u V, c R en d R, (8) 1u = u voor alle u V. Definitie: Zij V een vectorruimte en W V. W is een deelruimte van V als W een vectorruimte is m.b.t. de operaties in V. Stelling: Zij V een vectorruimte en W V met W niet leeg. Als (a) u W en v W u + v W, (b) u W en c R cu W, dan is W een deelruimte van V. Definitie: Zij V een vectorruimte en v 1, v 2,..., v n V. Een vector v is een lineaire combinatie van v 1, v 2,..., v n als v = a 1 v 1 + a 2 v a n v n voor zekere a 1, a 2,..., a n R. Definitie: Zij V een vectorruimte, v 1, v 2,..., v n V en S = {v 1, v 2,..., v n }, dan is span S het opspansel van S, d.w.z. span S = {a 1 v 1 + a 2 v a n v n a 1, a 2,..., a n R}. 1

2 Definitie: Zij V een vectorruimte en v 1, v 2,..., v n V. De vectoren v 1, v 2,..., v n zijn lineair onafhankelijk als a 1 v 1 + a 2 v a n v n = 0 a 1 = a 2 =... = a n = 0. Stelling: Zij V een vectorruimte en S en T eindige deelverzamelingen van V met S T, dan geldt T is lineair onafhankelijk S is lineair onafhankelijk. Definitie: Zij V een vectorruimte. Een basis van V is een verzameling {v 1, v 2,..., v n } met v 1, v 2,..., v n V, zodat (a) V = span{v 1, v 2,..., v n }, (b) v 1, v 2,..., v n zijn lineair onafhankelijk. Stelling: Zij V een vectorruimte en S een basis van V, dan kan iedere vector v in V geschreven worden als een unieke lineaire combinatie van vectoren in S. Nota Bene: We beschouwen louter vectorruimten V die een basis hebben, of V = {0}. Stelling: Zij V een vectorruimte en S een eindige deelverzameling van V met span S = V, dan is een zekere deelverzameling van S een basis van V. Stelling: Zij V een vectorruimte. Als {v 1, v 2,..., v n } en {w 1, w 2,..., w m } bases van V zijn, dan geldt n = m. Definitie: Zij V een vectorruimte met V {0}, dan is de dimensie van V met notatie dim V het aantal vectoren van een basis van V. We definiëren dim {0} = 0. Definitie: Zij V een vectorruimte en S = {v 1, v 2,..., v n } een geordende basis van V. Zij v V, dan is a 1 a 2 [v] S =. a n met v = a 1 v 1 + a 2 v a n v n de coördinaatvector van v m.b.t. de geordende basis S. De elementen van [v] S zijn de coördinaten van v m.b.t. de geordende basis S. Definitie: Een m n-matrix A is een rechthoekige ordening van reële getallen in m rijen en n kolommen, d.w.z. a 11 a a 1n a 21 a a 2n A =.... a m1 a m2... a mn 2

3 Voor j = 1, 2,..., n is de j-de kolom van A gelijk aan a 1j a 2j a j =.. a mj Stelling: De verzameling van m n-matrices voorzien van een additieve en multiplicatieve operatie = a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn c + b 11 b b 1n b 21 b b 2n... b m1 b m2... b mn a 11 + b 11 a 12 + b a 1n + b 1n a 21 + b 21 a 22 + b a 2n + b 2n... a m1 + b m1 a m2 + b m2... a mn + b mn a 11 a a 1n a 21 a a 2n... = a m1 a m2... a mn, ca 11 ca ca 1n ca 21 ca ca 2n... ca m1 ca m2... ca mn is een vectorruimte. De notatie van deze vectorruimte is R m n. Ook noteren we R m = R m 1. Definitie: Zij A = (a ij ) een m k-matrix en B = (b ij ) een k n-matrix, dan is het matrixproduct AB de m n-matrix C = (c ij ) met elementen c ij = a i1 b 1j + a i2 b 2j + + a ik b kj voor i = 1, 2,..., m en j = 1, 2,..., n., Definitie: Zij A = ( ) a 1 a 2... a n een m n-matrix, dan is het bereik van A gelijk aan range A = span {a 1, a 2,..., a n }, en de rang van A gelijk aan rank A = dim range A. Definitie: Zij A een m n-matrix, dan is de kern van A gelijk aan ker A = {x R n Ax = 0}, en het defect (de nulliteit) van A gelijk aan null A = dim ker A. 3

4 Stelling: Zij A een m n-matrix, dan geldt rank A + null A = n. Definitie: Een n n-matrix A is inverteerbaar (niet singulier) als Ax = 0 x = 0 voor alle x R n. De inverse matrix A 1 wordt gegeven door x = A 1 y y = Ax. Definitie: Zij V een vectorruimte met geordende bases S en T, dan wordt de transitiematrix P S T van T naar S gegeven door [v] S = P S T [v] T voor alle v V. Stelling: Zij V een vectorruimte met geordende bases S = {v 1, v 2,..., v n } en T = {w 1, w 2,..., w n }, dan P S T = ( [w 1 ] S [w 2 ] S... [w n ] S ). De matrix P S T is inverteerbaar met P 1 S T = P T S. Definitie: Zij V een vectorruimte. Een functie : V R is een norm op V als (a) u 0 voor alle u V ; u = 0 u = 0, (b) u + v u + v voor alle u V en v V, (c) cu = c u voor alle u V en c R. Een genormeerde vectorruimte is een vectorruimte voorzien van een norm. Definitie: Zij V een vectorruimte. Een functie (, ) : V V R is een inproduct op V als (a) (u, u) 0 voor alle u V ; (u, u) = 0 u = 0, (b) (v, u) = (u, v) voor alle u V en v V, (c) (u + v, w) = (u, w) + (v, w) voor alle u V, v V en w V, (d) (cu, v) = c(u, v) voor alle u V, v V en c R. 4

5 Een inproductruimte is een vectorruimte voorzien van een inproduct. Stelling: Zij V een inproductruimte, dan geldt de Cauchy-Schwarz ongelijkheid (u, v) (u, u)(v, v) voor alle u V en v V. Stelling: Zij V een inproductruimte en u = (u, u) voor alle u V, dan is V een genormeerde vectorruimte. Definitie: Zij V een inproductruimte met een geordende basis S = {v 1, v 2,..., v n }, dan wordt de inproductmatrix A = (a ij ) m.b.t. S gegeven door a ij = (v j, v i ) voor i, j = 1, 2,..., n. Definitie: Zij A = (a ij ) een m n-matrix, dan is de getransponeerde matrix de n m-matrix A T = (a ji ). Definitie: Een vierkante matrix A is symmetrisch als A T = A. Stelling: Zij V een inproductruimte met een geordende basis S en A de inproductmatrix m.b.t. S, dan geldt (a) A is symmetrisch, (b) (v, w) = [v] T S A[w] S voor alle v V en w V. Definitie: Zij V een inproductruimte, dan zijn de vectoren u en v in V orthogonaal als (u, v) = 0. Definitie: Zij V een inproductruimte met een basis S = {v 1, v 2,..., v n }, dan is S orthonormaal als (u j, u i ) = δ ij voor i, j = 1, 2,..., n. Stelling: Zij V een inproductruimte met een geordende orthonormale basis S, dan geldt (u, v) = [u] T S [v] S voor alle u V en v V. Definitie: Zij V een inproductruimte met een basis {u 1, u 2,..., u n }, dan wordt het gemodificeerde Gram-Schmidt proces gegeven door v 1 = u 1 / u 1 en v k = u k (u k, v 1 )v 1 (u k, v 2 )v 2... (u k, v k 1 )v k 1 u k (u k, v 1 )v 1 (u k, v 2 )v 2... (u k, v k 1 )v k 1 5

6 voor k = 2,..., n. Stelling: Zij V een inproductruimte met een basis {u 1, u 2,..., u n }, dan levert het gemodificeerde Gram-Schmidt proces een orthonormale basis {v 1, v 2,..., v n }. Definitie: Zij V een inproductruimte en W een deelruimte van V. Het orthogonale complement W van W wordt gegeven door u W (u, v) = 0 voor alle v W. Definitie: Zij V een vectorruimte en W 1 en W 2 deelruimten van V met W 1 W 2 = {0}, dan wordt de directe som van W 1 en W 2 gegeven door W 1 W 2 = {w 1 + w 2 w 1 W 1 en w 2 W 2 }. Stelling: Zij V een inproductruimte en W een deelruimte van V, dan V = W W. Stelling: Zij A een m n-matrix, dan (a) ker A T = (range A), (b) range A T = (ker A). Definitie: Zij A R m n en b R m, dan is Ax = b met onbekende vector x R n een stelsel lineaire vergelijkingen. Het stelsel is consistent als Ax = b voor zekere vector x R n. De oplossing van het stelsel is de verzameling {x R n Ax = b}. Stelling: Zij A R m n en b R m, dan geldt Ax = b is consistent b range A. Definitie: Een matrix is in de gereduceerde rij-echelonvorm als: (a) Er zijn louter nulrijen onderaan in de matrix. (b) Het eerste element ongelijk aan 0 van een niet-nulrij heet de spil van de rij. (c) Alle elementen linksonder een spil zijn gelijk aan 0. Definitie: Een elementaire rij-operatie van een matrix is een van de volgende operaties: (a) Verwissel twee rijen. 6

7 (b) Vermenigvuldig een rij met een getal ongelijk aan 0. (c) Tel een veelvoud van een rij op bij een andere rij. Definitie: Een matrix A is rij-equivalent met een matrix B als B m.b.v. elementaire rijoperaties uit A verkregen kan worden. Stelling: Een m n-matrix A is rij-equivalent met een matrix B als B = P A voor zekere inverteerbare m m-matrix P. Stelling: Als de matrices A en B rij-equivalent zijn, dan (a) ker A = ker B, (b) rank A = rank B. Stelling: Zij A een matrix in gereduceerde rij-echelonvorm, dan is de rang van A gelijk aan het aantal spillen. Definitie: Zij A R m n en b R m, dan is het stelsel Ax = b rij-equivalent met het stelsel Bx = c als de matrix ( B c ) rij-equivalent is met ( A x ). Stelling: Rij-equivalente stelsels lineaire vergelijkingen hebben dezelfde oplossing. Definitie: Zij S = [ n ], dan is een permutatie van S een herordening van de elementen van S. Stelling: Zij S = [ n ], dan kan iedere permutatie van S uit S verkregen worden door opeenvolgende verwisselingen van elementen. Definitie: Zij S = [ n ] en een permutatie van S verkregen door n opeenvolgende rijverwisselingen, dan is de permutatie even of oneven als n even resp. oneven is. Definitie: Zij A = (a ij ) een n n-matrix, dan wordt de determinant van A gegeven door det A = (±)a 1j1 a 2j2... a njn, waarbij wordt gesommeerd over alle permutaties [ j 1 j 2... j n ] van de verzameling [ n ]. Het teken is + of als de permutatie [ j1 j 2... j n ] even resp. oneven is. Stelling: Zij A een n n-matrix, dan det A T = det A. Definitie: Een n n-matrix A = (a ij ) is een bovendriehoeksmatrix als i > j a ij = 0. 7

8 Stelling: Zij de n n-matrix A = (a ij ) een bovendriehoeksmatrix, dan det A = a 11 a a nn. Stelling: Zij de n n-matrix A rij-equivalent met een matrix B, waarbij B uit A verkregen kan worden m.b.v. elementaire rij-operaties zonder rijvermenigvuldigingen en k rijverwisselingen, dan geldt det A = ( 1) k det B. Stelling: Zij A een n n-matrix, dan geldt A is singulier det A = 0. Definitie: Een n n-matrix A = (a ij ) is een diagionaalmatrix als i j a ij = 0. Stelling: Iedere inverteerbare matrix is rij-equivalent met een diagonaalmatrix met diagonaalelementen ongelijk aan 0. Stelling Zij A en B n n-matrices, dan det (AB) = det A det B. Stelling: Zij A een inverteerbare matrix, dan det A 1 = 1 det A. Definitie: De Euclidische norm op R n wordt gegeven door x 2 = x T x voor alle x R n. Definitie: Zij A R m n en b R m, dan is de vector x een kleinste-kwadratenoplossing van het stelsel Ax = b als b A x 2 b Ax 2 voor alle x R n. Stelling: Zij A R m n en b R m, dan geldt x is een kleinste-kwadratenoplossing van Ax = b A T A x = A T b. Stelling: Zij A R m n en b R m. Als rank A = n, dan is A T A inverteerbaar en heeft Ax = b een unieke kleinste-kwadratenoplossing x = (A T A) 1 A T b. 8

9 Definitie: Zij A een n n-matrix, dan is het getal λ een eigenwaarde van A behorende bij een eigenvector x met x 0 als Ax = λx. Definitie: Een identiteitsmatrix is een n n-matrix I = (δ ij ). Definitie: Zij A een n n-matrix, dan wordt het karakterisktieke polynoom van A gegeven door p(λ) = det (λi A) voor alle λ R. Stelling: Zij A een n n-matrix, dan zijn de eigenwaarden van A de wortels van het karakteristieke polynoom van A. Definitie: Zij A en B n n-matrices, dan is B similair met A als B = P 1 AP voor zekere inverteerbare n n-matrix P. Stelling: Similaire matrices hebben dezelfde eigenwaarden. Definitie: Een n n-matrix A is diagonaliseerbaar als A similair is met een diagonaalmatrix. Stelling: Zij A een n n-matrix, dan geldt A is diagonaliseerbaar A heeft n lineair onafhankelijke eigenvectoren. Stelling: Als het karakteristieke polynoom van een n n-matrix n verschillende wortels heeft, dan is A diagonaliseerbaar. Stelling: Een symmetrische n n-matrix heeft n orthogonale eigenvectoren. Definitie: Een n n-matrix is orthogonaal als A T A = I. Stelling: Zij A een symmetrische matrix, dan is er een diagonaalmatrix D en een orthogonale matrix P, zo dat AP = P D. 9

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

1. Lineaire Vergelijkingen in Lineaire Algebra 2. Matrix Algebra 3. Determinanten 4. Vectorruimten 5. Eigenwaarden en Eigenvec.

1. Lineaire Vergelijkingen in Lineaire Algebra 2. Matrix Algebra 3. Determinanten 4. Vectorruimten 5. Eigenwaarden en Eigenvec. LINEAIRE ALGEBRA Eric Jespers Vrije Universiteit Brussel Referentie: David C. Lay, Linear Algebra and Its Applications, Fourth edition, Pearson International Edition, 2012, ISBN: 9781408287859 verplicht

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Lineaire Algebra (2DD12) Laatste nieuws in 2012

Lineaire Algebra (2DD12) Laatste nieuws in 2012 Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

Voorbeeld theorie examen

Voorbeeld theorie examen Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( ) Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie

Nadere informatie

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden College Lineaire

Nadere informatie

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

Zomercursus Wiskunde. Lineaire algebra (versie 15 september 2008)

Zomercursus Wiskunde. Lineaire algebra (versie 15 september 2008) Katholieke Universiteit Leuven September 2008 Lineaire algebra (versie 15 september 2008) 2 Lineaire algebra Deze module wordt zowel gegeven in het A-programma als in het B-programma van de zomercursus

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 2 Lineaire afbeeldingen 21 Inleiding Een afbeelding f van een verzameling V naar een verzameling W is een regel die aan ieder element v van V een element f(v) van W toevoegt maw een generalisatie

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

Lineaire Algebra 2. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven

Lineaire Algebra 2. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Lineaire Algebra 2 Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven 2012-2013 ii Syllabus in wording bij Lineaire Algebra 2 (2WF30 Inhoudsopgave 1 Lineaire afbeeldingen 1 11 Lineaire

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Zomercursus Wiskunde. Module 3 Lineaire algebra A (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 3 Lineaire algebra A (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 3 Lineaire algebra A (versie 22 augustus 2011) Inhoudsopgave 1 Vectoren in R n 1 2 Lineaire combinaties 2 3 Matrices 7 31 Het begrip matrix 7 32 Som

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

1 Inleidende begrippen 5 1.1 Velden... 6 1.2 Veeltermen... 13 1.3 Matrices... 17 1.4 Stelsels van lineaire vergelijkingen... 22

1 Inleidende begrippen 5 1.1 Velden... 6 1.2 Veeltermen... 13 1.3 Matrices... 17 1.4 Stelsels van lineaire vergelijkingen... 22 Inhoudsopgave Inhoudsopgave iii 0 Inleiding: De vectorruimte R n 1 1 Inleidende begrippen 5 1.1 Velden............................... 6 1.2 Veeltermen............................ 13 1.3 Matrices..............................

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn

Nadere informatie

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix Hoofdstuk 3 Matrices en stelsels 3.1 Matrices Een matrix is in DERIVE gedefinieerd als een vector van vectoren. De rijen van de matrix zijn de elementen van de vector. Op de volgende manier kan je een

Nadere informatie

b + b c + c d + d a + a

b + b c + c d + d a + a Voorwoord De wiskundige vorming die in de wiskundig sterke richtingen van het Vlaamse secundair onderwijs wordt aangeboden, vormt een zeer degelijke basis voor hogere studies in wetenschappelijke, technologische

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Wiskunde 1 voor kunstmatige intelligentie. Bernd Souvignier

Wiskunde 1 voor kunstmatige intelligentie. Bernd Souvignier Wiskunde voor kunstmatige intelligentie Bernd Souvignier voorjaar 2003 Hoofdstuk I Lineaire Algebra Les Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria

Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria Deliverable 3.5 J. Brandts, F. Beukers, H. Cuypers, H. de Graaf Inleiding In deze deliverable zullen we voor het domein van de lineaire algebra de

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

Wiskunde 1 voor kunstmatige intelligentie (WB033B) Bernd Souvignier

Wiskunde 1 voor kunstmatige intelligentie (WB033B) Bernd Souvignier Wiskunde voor kunstmatige intelligentie (WB33B Bernd Souvignier voorjaar 24 Deel I Lineaire Algebra Wiskunde voor kunstmatige intelligentie, 24 Les Stelsels lineaire vergelijkingen Om te beginnen is hier

Nadere informatie

Matrixgroepen. SL n (K) = S GL n (K)

Matrixgroepen. SL n (K) = S GL n (K) B Matrixgroepen De lineaire algebra is niet alleen een theorie waar de functionaalanalyse op voort bouwt, omgekeerd hebben sommige resultaten uit de hoofdtext ook consequenties voor de lineaire algebra.

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

Lineaire algebra. v + w. s x (v) s x (λv) = λs x (v) s x (w) s x (v + w) = s x (v) + s x (w) Paul Igodt & Wim Veys

Lineaire algebra. v + w. s x (v) s x (λv) = λs x (v) s x (w) s x (v + w) = s x (v) + s x (w) Paul Igodt & Wim Veys Lineaire algebra auteursrechtelijk beschermd materiaal y v + w w v λv Paul Igodt & Wim Veys s x (v) x s x (λv) = λs x (v) s x (w) s x (v + w) = s x (v) + s x (w) Voorwoord Met dit handboek kunnen studenten

Nadere informatie

1 Stelsels lineaire vergelijkingen.

1 Stelsels lineaire vergelijkingen. Stelsels lineaire vergelijkingen Ter herinnering: in de tweede klas Havo/Atheneum leer je twee vergelijkingen met twee onbekenden oplossen Voorbeeld: { x + y = 5 x + y = 0 Twee keer de eerste vergelijking

Nadere informatie

Schoolagenda klas 5d GWi8-WWi8

Schoolagenda klas 5d GWi8-WWi8 Schoolagenda klas 5d GWi8-WWi8 Koen De Naeghel Onze-Lieve-Vrouwecollege Assebroek schooljaar 2014-2015 Eerste trimester Toetsen 6 repetities en enkele kleine, aangekondigde testen (75% TTE) dag en datum

Nadere informatie

Matrices, determinanten en stelsels lineaire vergelijkingen

Matrices, determinanten en stelsels lineaire vergelijkingen Hoofdstuk 2 Matrices, determinanten en stelsels lineaire vergelijkingen 2.1 Matrix : definitie en bijzondere gevallen R DEFINITIE 2.1 m n matrix Een reële (resp. complexe) m n matrix, of matrix van de

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Oefeningen bij de Cursus Lineaire Algebra, Eerste Kandidatuur Informatica. Complexe Getallen en Veeltermvergelijkingen over R en C

Oefeningen bij de Cursus Lineaire Algebra, Eerste Kandidatuur Informatica. Complexe Getallen en Veeltermvergelijkingen over R en C Oefeningen bij de Cursus Lineaire Algebra, Eerste Kandidatuur Informatica Stefaan De Winter en Koen Thas Universiteit Gent, Vakgroep Zuivere Wiskunde en Computeralgebra Galglaan, Gent sgdwinte@cagerugacbe;

Nadere informatie

2. Transformaties en matrices

2. Transformaties en matrices Transformaties en matrices Lineaire afbeelding Onder een lineaire afbeelding van R n naar R m verstaan we een functie A die aan iedere vector uit R n een vector uit R m toevoegt en van het volgende type

Nadere informatie

Voortgezette Lineaire Algebra. Prof. dr. J. van Mill Dr. F. van Schagen

Voortgezette Lineaire Algebra. Prof. dr. J. van Mill Dr. F. van Schagen Voortgezette Lineaire Algebra Prof. dr. J. van Mill Dr. F. van Schagen Inhoud Hoofdstuk I. Complexe vectorruimten en inwendige producten 5 I.1. Vectorruimten 5 I.2. Hermitische producten 8 I.3. Inwendig-productruimten

Nadere informatie

Inleiding in de lineaire algebra

Inleiding in de lineaire algebra Inleiding in de lineaire algebra (SV.9) W.Oele P.J. den Brok 6 maart 4 Inleiding De cursus lineaire algebra bestaat uit een aantal colleges in de matrix- en de vectorrekening. De colleges over en de oefenopdrachten

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

(alleen het startkapitaal brengt winst op) Samengestelde Na een periode van n jaar is het kapitaal aangegroeid tot de eindwaarde:

(alleen het startkapitaal brengt winst op) Samengestelde Na een periode van n jaar is het kapitaal aangegroeid tot de eindwaarde: Wiskunde Semester 2 Theorie Hoofdstuk 1 Getallenrijen Bewijzen: pag. 3 + 5 + 10 + 11 1.1 Getallenrijen Getallenrij Constante getallenrij Partieelsom Reekssom Een geordende (oneindige) verzameling van getallen.

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel C Lineaire Algebra Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Seymour Lipschutz, Marc L. Lipson: (Schaum s Outline of Theory and Problems of) Linear Algebra. McGraw-Hill Companies,

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

Radboud Universiteit Nijmegen

Radboud Universiteit Nijmegen Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica Kubische grafen met integraal spectrum Naam: Studentnummer: Studie: Begeleider: Tweede lezer: Daan van Rozendaal

Nadere informatie

3. Stelsels van vergelijkingen

3. Stelsels van vergelijkingen . Stelsels van vergelijkingen We gaan de theorie van de voorgaande hoofdstukken toepassen op stelsels van lineaire vergelijkingen. Een voorbeeld: bepaal alle oplossingen (x,, ) van het stelsel vergelijkingen

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Wiskunde in de curricula van de K.U.Leuven en campus Kortrijk

Wiskunde in de curricula van de K.U.Leuven en campus Kortrijk Wiskunde in de curricula van de K.U.Leuven en campus Kortrijk Waarom, wat en hoe? K.U.Leuven Dag van Wiskunde, 20 november 2010 Overzicht 1 Rol van wiskunde in de universitaire curricula 2 3 4 Waarom wiskunde?

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel C Lineaire Algebra Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Seymour Lipschutz, Marc L. Lipson: (Schaum s Outline of Theory and Problems of) Linear Algebra. McGraw-Hill Companies,

Nadere informatie

Vectorruimten en lineaire afbeeldingen tussen vectorruimten

Vectorruimten en lineaire afbeeldingen tussen vectorruimten Hoofdstuk 3 Vectorruimten en lineaire afbeeldingen tussen vectorruimten 3.1 Vectorruimte : definitie en voorbeelden R DEFINITIE 3.1 vectorruimte Een vectorruimte of lineaire ruimte over een veld F is een

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert. Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Hoofdstuk 4 Eigenwaarden en eigenvectoren 4.1 Inleiding Tot nu toe zijn al onze vectoren en matrices reëel geweest d.w.z. de theorie voor stelsels lineaire vergelijkingen en de theorie der matrices en

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Algebra Determinanten en stelsels. Cursus voor de vrije ruimte

Algebra Determinanten en stelsels. Cursus voor de vrije ruimte Algebra Determinanten en stelsels Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Determinanten 1.1 Determinant van de orde twee We gaan na wat de voorwaarde is waaraan

Nadere informatie

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus 2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus Kwartiel 2, week 7.b Op het college op donderdagochtend 7 januari is behandeld: - hoek tussen vectoren en cosinus regel - driehoeksongelijkheid

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Inhoudsopgave. I Theorie 1

Inhoudsopgave. I Theorie 1 Inhoudsopgave I Theorie 1 1 Verzamelingen 3 1.1 Inleiding........................................ 3 1.2 Bewerkingen met verzamelingen........................... 6 1.2.1 Vereniging (unie) van twee verzamelingen.................

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen

Nadere informatie

Lineaire Algebra WISB121. F.Beukers 2013 Departement Wiskunde

Lineaire Algebra WISB121. F.Beukers 2013 Departement Wiskunde Lineaire Algebra WISB F.Beukers 3 Departement Wiskunde UU Inhoudsopgave Vectoren in de ruimte 7. Het intuïtieve vectorbegrip..................... 7. Vlakke en ruimtelijke meetkunde.................. 9.3

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie