Symmetrische matrices

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Symmetrische matrices"

Transcriptie

1 Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie eigenschappen De belangrijkste eigenschap van een symmetrische matrix is dat die altijd diagonaliseerbaar is We zullen dit in stappen laten zien We beginnen met : Stelling Als A een symmetrische matrix, dan zijn eigenvectoren van A behorende bij verschillende eigenwaarden orthogonaal Bewijs Stel dat Av = λ v en Av = λ v met λ λ Dan geldt : λ (v v = (λ v v = (λ v T v = (Av T v = v T A T v = v T Av = v T (λ v = v (λ v = λ (v v Dus : (λ λ (v v = Maar λ λ, dus : v v = en dat betekent dat v v Oftewel : v en v zijn orthogonaal We definiëren nu : Definitie Een matrix A heet orthogonaal diagonaliseerbaar als er een orthogonale matrix P en een diagonaalmatrix D bestaan zodat A = P DP = P DP T Een orthogonale matrix is een vierkante matrix met orthonormale kolommen (zie : Lay, 6 Voor een orthogonale matrix P geldt dus dat P T P = I en dat P vierkant is Dus : P is inverteerbaar en P = P T Nu geldt de volgende prachtige stelling : Stelling Een vierkante matrix A is orthogonaal diagonaliseerbaar dan en slechts dan als A symmetrisch is Deze stelling zegt dus dat elke symmetrische matrix niet alleen diagonaliseerbaar is, maar zelfs orthogonaal diagonaliseerbaar Bovendien is elke orthogonaal diagonaliseerbare matrix een symmetrische matrix Dat laatste is erg eenvoudig in te zien : Bewijs Als A orthogonaal diagonaliseerbaar is, dan geldt : A = P DP T voor zekere orthogonale matrix P en diagonaalmatrix D Maar dan geldt dus : A T = (P DP T T = (P T T D T P T = P D T P T = P DP T = A Dus : A T = A Oftewel : A is symmetrisch Het bewijs van het omgekeerde is lastiger In de vraagstukken 3 en 4 van van Lay hebben we al gezien dat een symmetrische matrix alleen reële eigenwaarden heeft In stelling

2 hebben we gezien dat eigenvectoren van een symmetrische matrix behorende bij verschillende eigenwaarden orthogonaal zijn Die eigenvectoren kunnen dus ook orthonormaal gekozen worden Als een eigenwaarde van een symmetrische matrix een meetkundige multipliciteit groter dan heeft, dan kunnen we met behulp van het proces van Gram-Schmidt eenvoudig een orthonormale basis van de bijbehorende eigenruimte construeren Het is echter niet zo eenvoudig om aan te tonen dat voor elke eigenwaarde de algebraïsche multipliciteit gelijk is aan de meetkundige multipliciteit Dat deel van het bewijs laten we achterwege Voorbeeld Stel A = ( 7 4, dan is A een symmetrische matrix Nu volgt : 7 λ 4 λ = λ λ + 4 = (λ 8(λ 3 De eigenwaarden van A zijn dus : λ = 8 en λ = 3 Verder volgt : ( ( ( λ = 8 : = E 4 8 = Span{ en λ = 3 : ( 4 ( ( = E 3 = Span{ Het is duidelijk dat E 8 E 3 Nu geldt dus (bijvoorbeeld : A = P DP T met P = ( en D = ( Voorbeeld Stel dat A = 4, dan is A een symmetrische matrix Nu volgt : λ 4 4 λ λ = λ λ 4 λ λ = ( λ 4 λ = ( λ 4 9 λ λ 4 λ = ( λ 9 λ 4 λ = ( λ(λ λ + = ( λ(λ (λ De eigenwaarden van A zijn dus : λ = met algebraïsche multipliciteit en λ = met algebraïsche multipliciteit Verder volgt : 4 λ = : 4 = E = Span{ } 8 } }

3 en λ = : = E = Span{, Ook nu is eenvoudig in te zien dat E E Met behulp van het orthogonaliseringsproces van Gram-Schmidt (eventueel kunnen we een orthogonale basis van E construeren : E = Span{, } met 4 4 Ten slotte vinden we dat : = 3, = en 4 = 8 = 3 Nu geldt dus (bijvoorbeeld : A = P DP T met D = diag(,, en /3 / /3 P = /3 / /3 /3 4/3 = } Spectraaldecompositie van een symmetrische matrix Een symmetrische (n n-matrix is orthogonaal diagonaliseerbaar Dit betekent dat er een orthonormale basis {u,, u n } van R n bestaat geheel bestaande uit eigenvectoren van A, zeg : Au i = λ i u i voor i =,,, n Dan geldt dus : A = P DP T met P = u u n en D = diag(λ,, λ n Dit kan ook geschreven worden in de vorm A = λ u u T + + λ n u n u T n Dit heet een spectraaldecompositie van de matrix A Merk op dat elke term in deze som een (n n-matrix is met rang, want elke kolom van λ i u i u T i is een veelvoud van u i Elke matrix u i u T i is een projectiematrix, want u i u T i x = (ut i xu i = (x u i u i is de (orthogonale projectie van x langs de vector u i Voorbeeld 3 In voorbeeld vonden we voor A = vonden we (bijvoorbeeld u = ( Nu geldt dus : A = λ u u T + λ u u T A = 8 ( ( ( 3 + oftewel ( 7 4 en u = ( ( = 8 ( 4 : λ = 8 en λ = 3 Verder + 3 ( 4 3

4 Het bewijs van de spectraaldecompositie volgt eenvoudig door uitschrijven : λ u T A = P DP T = u u n = λ u λ n u n u T λ n u T n = λ u u T + + λ n u n u T n u T n Kwadratische vormen Een aardige toepassing van symmetrische matrices treedt op bij kwadratische vormen : Definitie 3 Een kwadratische vorm op R n is een functie Q : R n R die voor elke x R n geschreven kan worden in de vorm Q(x = x T Ax met A een symmetrische (n n-matrix Deze symmetrische matrix A heet de matrix van de kwadratische vorm Q Enkele voorbeelden : ( 7 A = : Q 4 (x = x T Ax = ( ( ( 7 x x x = 7x 4 x + 4x x + 4x ( Q (x = x + x x + 3x = xt Ax met A = Dus : A is de matrix van de 3 kwadratische ( vorm Q Merk op, dat ook geldt : Q (x = x T Bx met (bijvoorbeeld B = Maar B is geen symmetrische matrix 3 3 Q 3 (x = x + x + 3x 3 + 4x x 8x x 3 6x x 3 = x T Ax met A = De coëfficiënten van de kwadraten komen op de hoofddiagonaal en de coëfficiënten van de zogenaamde kruisproducten worden netjes over twee plaatsen verdeeld zodat er een symmetrische matrix ontstaat Deze matrix is dus uniek en heet daarom de matrix van de kwadratische vorm Q 4 Q 4 (x = (x x +4(x +x 3 +(x 3x 3 Dan geldt : Q 4 (x = x 4x x +4x + 4x + 8x x 3 + 4x 3 + x x x 3 + 8x 3 = x + 6x + x 3 4x x + 8x x 3 x x 3 = 4 x T Ax met A = 6 6 Aan de eerste vorm zien we dat Q(x, omdat 4 6 het een som van kwadraten is met positieve coëfficiënten Verder zien we vrij gemakkelijk dat Q 4 (x = x = o Dus : Q 4 (x > voor alle x o We noemen zo n kwadratische vorm dan positief definiet of definiet positief Merk op, dat dit bij de laatste vorm niet zo evident is 4

5 We definiëren nu eerst : Definitie 4 Een kwadratische vorm Q heet positief definiet of definiet positief als Q(x > voor alle x o, negatief definiet of definiet negatief als Q(x < voor alle x o, 3 indefiniet als Q(x zowel positieve als negatieve waarden aanneemt Als slechts geldt dat Q(x voor alle x en Q(x = voor zekere x o, dan noemt men Q positief semidefiniet Als slechts geldt dat Q(x voor alle x en Q(x = voor zekere x o, dan noemt men Q negatief semidefiniet Enkele voorbeelden : Q (x = (x x (x + x 3 (x 4x 3 is negatief definiet Q (x = (x x (x + x 3 is negatief semidefiniet Immers, er geldt (bijvoorbeeld dat Q (x = voor x = o 3 Q 3 (x = (x +x (x x 3 is indefiniet Immers : Q 3 (x = > voor x = en Q 3 (x = < voor x = 4 Q 4 (x = x + 6x + x 3 + 4x x x x 3 is positief definiet, want : Q(x = (x + x + x + x 3 x x 3 = (x + x + (x 3x 3 + 4x 3 Stel nu Q(x = x T Ax met A een symmetrische matrix Dan is A orthogonaal diagonaliseerbaar, dat wil zeggen : A = P DP T voor zekere orthogonale matrix P en diagonaalmatrix D Stel nu x = P y, dan volgt : Q(x = x T Ax = (P y T AP y = y T P T AP y = y T Dy Omdat D een diagonaalmatrix is, D = diag(λ,, λ n, bevat de laatste uitdrukking géén kruisproducten : y T Dy = λ y + + λ n y n Hieraan is eenvoudig te zien of de kwadratische vorm Q positief definiet, negatief definiet of indefiniet is Er geldt :

6 Stelling 3 Als A een symmetrische matrix is en Q(x = x T Ax Dan geldt : Q is positief definiet dan en slechts dan als alle eigenwaarden van A positief zijn, Q is negatief definiet dan en slechts dan als alle eigenwaarden van A negatief zijn, 3 Q is indefiniet dan en slechts dan als A zowel positieve als negatieve eigenwaarden heeft Als er een eigenwaarde optreedt dan geldt : als alle andere eigenwaarden van A positief zijn, dan is Q positief semidefiniet en als alle andere eigenwaarden van A negatief zijn, dan is Q negatief semidefiniet Door de transformatie x = P y kunnen we de kwadratische vorm Q(x = x T Ax schrijven in de gedaante y T Dy zonder kruisproducten Dit noemt men het op hoofdassen brengen van de kwadratische vorm De kolommen van de matrix P worden wel de hoofdassen van de kwadratische vorm genoemd Deze terminologie wordt verklaard door de volgende voorbeelden : Beschouw de vergelijking x ( 4x x + x = 48 Dit kan geschreven worden in de vorm x T Ax = 48 met A = Dan volgt : Verder volgt : en λ λ = 7 : λ = 3 : ( ( λ = λ λ + = (λ 7(λ 3 ( ( = u = ( = u = ( De vergelijking is dus equivalent met 7y + 3y = 48 waarbij x = P y met P = u u = ( Dit leidt tot de ellips in figuur 3 op pagina 44 van Lay Beschouw de vergelijking ( x 8x x x = 6 Dit kan geschreven worden in de vorm 4 x T Ax = 6 met A = Dan volgt : 4 λ 4 4 λ = λ + 4λ = (λ + 7(λ 3 6

7 Verder volgt : en λ = 3 : λ = 7 : ( ( ( ( = u = ( = u = ( De vergelijking is dus equivalent met 3y 7y = 6 waarbij x = P y met P = u u = ( Dit leidt tot de hyperbool in figuur 3 op pagina 44 van Lay Voorbeeld 4 De kwadratische ( vorm Q(x = 7x + 4x x + 4x is positief definiet, want 7 Q(x = x T Ax met A = en in voorbeeld hebben we gezien dat A de eigenwaarden 4 λ = 8 en λ = 3 heeft Voorbeeld De kwadratische vorm Q(x = x + x + x 3 8x x 4x x 3 + 4x x 3 is 4 positief definiet, want Q(x = x T Ax met A = 4 en in voorbeeld hebben we gezien dat A de eigenwaarden λ = (eenmaal en λ = (tweemaal heeft Voorbeeld 6 De kwadratische vorm Q(x = x T Bx met B = Immers, Q(x = x T Ax met A = is indefiniet en A is symmetrisch Dus : A is de matrix van de kwadratische vorm Q (en dus niet B De eigenwaarden van A zijn λ =, λ = en λ 3 =, want : λ 3 3 λ 3 λ = λ + λ 3 λ 3 λ = ( + λ 3 λ = ( + λ 3 λ 3 4 λ 4 λ = ( + λ(λ 7λ + = (λ + (λ (λ De eigenwaarden van B zeggen dus blijkbaar niets over de kwadratische vorm Q 7

Eigenwaarden en eigenvectoren in R n

Eigenwaarden en eigenvectoren in R n Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante

Nadere informatie

Voorwaardelijke optimalisatie

Voorwaardelijke optimalisatie Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie.

(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie. Vraag op 5 punten de sfeer met middelpunt in,, 4 en straal 6; de omwentelingscilinder met straal 6 en als as de rechte door,, met richtingsvector,, Bepaal een affiene transformatie of een coördinatentransformatie,

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer Samenvatting Lineaire Algebra 1 - Collegejaar 2013-2014 Dictaat met verwijzing naar het boek Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst

Nadere informatie

Het orthogonaliseringsproces van Gram-Schmidt

Het orthogonaliseringsproces van Gram-Schmidt Het orthogonaliseringsproces an Gram-Schmidt Voor het berekenen an een orthogonale projectie an een ector y op een deelruimte W an R n is een orthogonale basis {u,, u p } zeer gewenst De orthogonale projectie

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A. TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

1 Triangulatiestellingen voor lineaire transformaties

1 Triangulatiestellingen voor lineaire transformaties Triangulatiestellingen voor lineaire transformaties Zoals bekend kan niet iedere lineaire transformatie L : V V van een vectorruimte (V, K) gediagonaliseerd worden. Als het lichaam K echter algebraïsch

Nadere informatie

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting

Nadere informatie

Studiehandleiding. Lineaire Algebra 1. voor. Maritieme Techniek. wi1313mt. Dr. R. Koekoek. gebouw ITS, kamer HB tel (tst.

Studiehandleiding. Lineaire Algebra 1. voor. Maritieme Techniek. wi1313mt. Dr. R. Koekoek. gebouw ITS, kamer HB tel (tst. Studiehandleiding Lineaire Algebra 1 voor Maritieme Techniek wi1313mt Dr. R. Koekoek gebouw ITS, kamer HB 04.300 tel. 015-2787218 (tst. 87218) e-mail : R.Koekoek@ITS.TUDelft.NL website : http://aw.twi.tudelft.nl/

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)

Nadere informatie

Matrixgroepen. SL n (K) = S GL n (K)

Matrixgroepen. SL n (K) = S GL n (K) B Matrixgroepen De lineaire algebra is niet alleen een theorie waar de functionaalanalyse op voort bouwt, omgekeerd hebben sommige resultaten uit de hoofdtext ook consequenties voor de lineaire algebra.

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden College Lineaire

Nadere informatie

Voorbeeld theorie examen

Voorbeeld theorie examen Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

1 Stelsels lineaire vergelijkingen.

1 Stelsels lineaire vergelijkingen. Stelsels lineaire vergelijkingen Ter herinnering: in de tweede klas Havo/Atheneum leer je twee vergelijkingen met twee onbekenden oplossen Voorbeeld: { x + y = 5 x + y = 0 Twee keer de eerste vergelijking

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

Lineaire Algebra SUPPLEMENT II

Lineaire Algebra SUPPLEMENT II Lineaire Algebra SUPPLEMENT II FBeukers 2012 Departement Wiskunde UU Inhoudsopgave 13 Eigenwaarden en eigenvectoren 3 131 Inleiding 3 132 Berekening van eigenwaarden en eigenvectoren 5 133 Basiseigenschappen

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

OPGAVEN LINEAIRE ALGEBRA 2

OPGAVEN LINEAIRE ALGEBRA 2 OPGAVEN BIJ HET COLLEGE LINEAIRE ALGEBRA 2 ******** RJKooman Universiteit Leiden najaar 2007 0 In de opgaven gebruiken we de notatie K voor het lichaam van scalairen van een vectorruimte In alle gevallen

Nadere informatie

Lineaire algebra voor ingenieurs

Lineaire algebra voor ingenieurs Lineaire algebra voor ingenieurs Guido Herweyers KHBO Campus Oostende Oostende, mei 006 Inleiding De ingenieursopleidingen aan de K.U.Leuven en de KHBO Campus Oostende gebruiken voor lineaire algebra het

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

6. Lineaire operatoren

6. Lineaire operatoren 6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria

Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria Deliverable 3.5 J. Brandts, F. Beukers, H. Cuypers, H. de Graaf Inleiding In deze deliverable zullen we voor het domein van de lineaire algebra de

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi2030wbmt 1 / 14 Niet-lineaire diff. vgl. en stabiliteit Niet-lineaire

Nadere informatie

Principale Componenten Analyse:

Principale Componenten Analyse: Principale Componenten Analyse: Doelstellingen: dimensiereductie inzicht in de variabiliteit van de data dataexploratie PCA is een transformatie: van p oorspronkelijke variabelen naar p PC s ˆΣ Σ variantie

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Frobenius lage rang benaderingen

Frobenius lage rang benaderingen Falcuteit Wetenschappen en Bio-Ingenieurswetenschappen Departement Wiskunde Frobenius lage rang benaderingen Proefschrift ingediend met het oog op het behalen van de graad Bachelor in de Wiskunde Dina

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op dinsdag 9 april 8, 9.. uur. Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord

Nadere informatie

Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte

Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte Lineaire algebra en kegelsneden Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk Reële vectorruimten. De reële vectorruimte van de reële n-tallen Definitie Een reëel

Nadere informatie

Oefeningen bij de Cursus Lineaire Algebra, Eerste Kandidatuur Informatica. Complexe Getallen en Veeltermvergelijkingen over R en C

Oefeningen bij de Cursus Lineaire Algebra, Eerste Kandidatuur Informatica. Complexe Getallen en Veeltermvergelijkingen over R en C Oefeningen bij de Cursus Lineaire Algebra, Eerste Kandidatuur Informatica Stefaan De Winter en Koen Thas Universiteit Gent, Vakgroep Zuivere Wiskunde en Computeralgebra Galglaan, Gent sgdwinte@cagerugacbe;

Nadere informatie

Elliptische krommen en hun topologische aspecten

Elliptische krommen en hun topologische aspecten Elliptische krommen en hun topologische aspecten René Pannekoek 25 januari 2011 Dit is een korte introductie tot elliptische krommen voor het bachelorseminarium van de Universiteit Leiden. De bespreking

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

Lineaire Algebra (2DD12) Laatste nieuws in 2012

Lineaire Algebra (2DD12) Laatste nieuws in 2012 Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of

Nadere informatie

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode Examenvragen Meetkunde en lineaire algebra Tweede examenperiode 2008-2009 Een rechte conoïde met als richtrechte de X-as, en als richtoppervlak de sfeer met middelpunt in (0, 16, 0) en straal 9. (1) Stel

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Opgaven Matlab - Week 2, sessie 2: De Singulierewaardendecompositie

Opgaven Matlab - Week 2, sessie 2: De Singulierewaardendecompositie Opgaven Matla - Week 2, sessie 2: De Singulierewaardendecompositie Laat A R n k. Dan etaan er unitaire matrices V R k k en U R n n zodanig, dat AV = UΣ, (1) waarij Σ R n k een niet-negatieve diagonaalmatrix

Nadere informatie

3.2 Kritieke punten van functies van meerdere variabelen

3.2 Kritieke punten van functies van meerdere variabelen Wiskunde voor kunstmatige intelligentie, 007/008 Als in een kritiek punt x 0 ook de tweede afgeleide f (x 0 ) = 0 is, kunnen we nog steeds niet beslissen of de functie een minimum, maximum of een zadelpunt

Nadere informatie

Radboud Universiteit Nijmegen

Radboud Universiteit Nijmegen Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica Kubische grafen met integraal spectrum Naam: Studentnummer: Studie: Begeleider: Tweede lezer: Daan van Rozendaal

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

1. Lineaire Vergelijkingen in Lineaire Algebra 2. Matrix Algebra 3. Determinanten 4. Vectorruimten 5. Eigenwaarden en Eigenvec.

1. Lineaire Vergelijkingen in Lineaire Algebra 2. Matrix Algebra 3. Determinanten 4. Vectorruimten 5. Eigenwaarden en Eigenvec. LINEAIRE ALGEBRA Eric Jespers Vrije Universiteit Brussel Referentie: David C. Lay, Linear Algebra and Its Applications, Fourth edition, Pearson International Edition, 2012, ISBN: 9781408287859 verplicht

Nadere informatie

De 15-stelling. Dennis Buijsman 23 augustus Begeleiding: S. R. Dahmen

De 15-stelling. Dennis Buijsman 23 augustus Begeleiding: S. R. Dahmen De 15-stelling Dennis Buijsman 23 augustus 2015 Begeleiding: S. R. Dahmen Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit van Amsterdam

Nadere informatie

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS deel 2 LOTHAR PAPULA 2e druk > ACADEMIC 5 E R V I C Inhoud 1 Lineaire algebra 1 1.1 Vectoren I 1.2 Matrices 4 1.2.1 Een inleidend voorbeeld 4 1.2.2 Definitie

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( ) Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie

Nadere informatie

De n-dimensionale ruimte Arjen Stolk

De n-dimensionale ruimte Arjen Stolk De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

maplev 2010/12/22 15:06 page 183 #185 Lineaire algebra.

maplev 2010/12/22 15:06 page 183 #185 Lineaire algebra. maplev // : page 8 #8 Module Lineaire algebra Onderwerp Voorkennis Expressies Bibliotheken Zie ook Stelsels lineaire vergelijkingen: Gauss(-Jordan)-eliminatie; Gram-Schmidt; Eigenwaarden, eigenvectoren.

Nadere informatie