4 Positieve en niet-negatieve lineaire algebra

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "4 Positieve en niet-negatieve lineaire algebra"

Transcriptie

1 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid, druk, zijn allemaal niet-negatief. Definitie 4.1 (Positieve en niet-negatieve matrices) Laat (a ij ) = A R n k. Als a ij > 0 voor alle i, j {1,..., n} schrijven we A > 0 en heet A een positieve matrix. Als a ij 0 voor alle i, j {1,..., n} schrijven we A 0 en heet A een niet-negatieve matrix. Opmerking 4.2 Als gevolg schrijven we A > B als A B > 0 en A B als A B 0, en A voor de matrix waarvan de entries de absolute waarden zijn van de entries van A. Opmerking 4.3 Als x R en x 0 en x 0 dan is x > 0. Echter, als A R n k met nk > 1 en A 0 en A 0, impliceert dit niet dat A positief is: zie bijvoorbeeld A = [1 0]. Zonder bewijs vermelden we de volgende eigenschappen. Lemma 4.4 (E1) Als A > 0 en x 0, x 0, dan is Ax > 0; (E2) Als A > 0 en x > y dan is Ax > Ay; (E3) Als A 0 en x y dan is Ax Ay; (E4) Voor alle A R n k en x R k geldt dat Ax A x ; (E5) Voor alle matrices A en B waarvoor AB bestaat geldt dat AB A B. 4.1 De Neumannrij en de Neumannreeks Als r R en r < 1 dan convergeert dat de meetkundige reeks j=0 r k = 1 1 r, want 1 + r + r2 + + r k = 1 rk+1 1 r (1) voor alle k en k r k+1 = 0. Een soortgelijk resultaat werd voor matrices met bepaalde eigenschappen bewezen door de Duitse wiskundige Carl Neumann. Carl Neumann ( ) Eerst een definitie, die de voorwaarde r < 1 voor convergentie helpt te generaliseren. 1

2 Definitie 4.5 (Spectraalstraal) Laat A C n n. De spectraalstraal van A is het reële, niet-negatieve getal ρ(a) = max{ λ λ σ(a)} waarbij σ(a) de verzameling van eigenwaarden van A is, het spectrum van A. Dus ρ(a) is de straal van de kleinste schijf rond 0 C waarop alle eigenwaarden van A liggen. De met (1) corresponderende uitspraak verdelen we over twee lemma s en een stelling. Lemma 4.6 Laat λ C met λ < 1 en laat l N. Dan geldt dat λ k l = 0. (2) k l Bewijs. Dit volgt uit de begrenzing van de binomiaalcoëfficiënt middels kl l l!, gevold door toepassing van de regel van de l Hopital. Lemma 4.7 (Neumannrij) Laat A C n n en veronderstel ρ(a) < 1, dan geldt dat de iet voor k van de Neumannrij (A k ) k 0 gelijk is aan de nulmatrix, k Ak = 0. Bewijs. Eerder bewezen we dat er een X GL n (C) bestaat zo, dat T X 1 0 T... AX = T p (3) waarbij T j = λ j I +M j met M j C m j m j strict bovendriehoeks. Hierbij is m j de meetkundige multipliciteit van de eigenwaarde λ j van A. Nu volgt eenvoudig dat T1 k A k 0 T = X k Tp k X 1. Omdat de beide matrices λ j I en M j commuteren, vinden we met behulp van het binomium van Newton dat voor alle k N, T k j = (λ j I + M j ) k = k l=0 λ k l j Mj l = l m j l=1 λ k l j Mj l. l waarbij de laatste gelijkheid geldt omdat M j nilpotent is met index ten hoogste m j. Omdat λ j < 1 wegens de aanname dat ρ(a) < 1 volgt met Lemma 4.6 dat de iet voor k naar oneindig van T k j gelijk is aan de nulmatrix, en dus ook die van Ak. 2

3 Stelling 4.8 (Neumannreeks) Laat A C n n en veronderstel dat ρ(a) < 1, dan geldt dat A k = (I A) 1. (4) j=0 Bewijs. Voor iedere gehele k 0 geldt dat (I + A + A A k )(I A) = I A k+1. De iet voor k van het rechterlid bestaat volgens Lemma 4.7 en dus vinden we dat A k (I A) = I. j=0 Omdat I A vierkant is, is de som links van de matrix I A kennelijk zijn inverse Perron-Frobeniustheorie voor positieve matrices Oskar Perron en Georg Frobenius bewezen resultaten voor eigenwaarden en eigenvectoren van niet-negatieve matrices. Oskar Perron ( ) en Georg Ferdinand Frobenius ( ) De bewijzen zijn het eenvoudigst voor positieve matrices. Lemma 4.9 Laat A R n n. Als A > 0 dan is zijn spectraalstraal ρ(a) > 0. Bewijs. Stel dat ρ(a) = 0. Dit betekent dat alle eigenwaarden van A gelijk zijn aan nul. Maar dan is A nilpotent en bestaat er dus een p met A p = 0. Echter, als A > 0 dan is ook A k > 0 voor alle k. Deze tegenspraak bewijst de bewering. Lemma 4.10 Laat A R n n, A > 0. Als Ax = x voor zekere x 0, x 0, dan is x > 0. Bewijs. Volgens (E1) uit Lemma 4.4 is Ax > 0. Omdat Ax = x geldt dus ook x > 0. Stelling 4.11 Laat A R n n. Als A > 0 dan bestaat er een x > 0 zodanig dat waarbij ρ(a) de spectraalstraal is van A. Ax = ρ(a)x. (5) 3

4 Bewijs. Veronderstel op grond van Lemma 4.9 zonder verlies van algemeenheid dat ρ(a) = 1. Dit betekent dat er een λ σ(a) bestaat met λ = 1 en een y 0 waarvoor Ay = λy. Voor deze λ en y geldt y = λ y = λy = Ay A y = A y, waarbij we gebruik maken van eigenschap (E4) uit Lemma 4.4. We concluderen dat w = A y y 0. (6) Veronderstel nu dat w 0. Omdat A > 0 volgt met (E1) uit Lemma 4.4 dat zowel Aw > 0 als dat A y > 0, oftewel, AA y > A y > 0. (7) Omdat iedere entry van AA y groter is dan de overeenkomstige entry van A y, bestaat er een ε > 0 met A A y > A y > ε (8) Schrijf nu B = A 1 + ε en z = A y. Met deze notatie verandert (8) in Bz > z > 0. Maar dan is met (E2) uit Lemma 4.4 ook B 2 z = B(Bz) > Bz want B > 0, en met inductie zien we dat B k z > z > 0 voor alle k N. Echter ρ(b) = ρ(a) 1 + ε = ε < 1, en Lemma 4.7 geeft dat B k 0 voor k. Dit is in tegenspraak met B k z > z > 0 voor alle k. Hieruit volgt dat A y = y. Maar dan is x = y = 0 blijkbaar een eigenvector van A behorende bij een eigenwaarde λ = 1 van A, en uit Lemma 4.10 volgt tot slot dat x > 0. Opmerking 4.12 Het feit dat B k 0 is niet in tegenspraak met B k z > 0 voor alle k. Het is dus noodzakelijk om de ongelijkheid B k z > z > 0 te bewijzen in plaats van slechts B k z > 0. De eigenruimte van de eigenwaarde ρ(a) van A bevat dus een positieve vector x > 0. We laten zien dat alle andere eigenvectoren behorende bij ρ(a) hier veelvouden van zijn. Stelling 4.13 Laat A R n n. Laat A > 0. Dan is dim ker(a ρ(a)i) = 1. Bewijs. Veronderstel wegens Lemma 4.9 zonder verlies van algemeenheid dat ρ(a) = 1. Uit Stelling 4.11 volgt dat er een x > 0 bestaat met Ax = x. Laat nu y 0 met Ay = y. We tonen aan dat y een veelvoud is van x. Merk hiertoe op dat er een α R bestaat zodanig dat z = y + αx 0, terwijl z ook ten minste één entry gelijk aan nul heeft. Als nu z 0 volgt uit Az = z en Lemma 4.10 dat z > 0, wat in tegenspraak is met het feit dat z ten minste één entry gelijk aan nul heeft. Dus z = 0 en dus is y = αx een veelvoud van x. Definitie 4.14 (Perronvector) Laat A R n n met A > 0. De unieke x > 0 waarvoor Ax = ρ(a)x en e x = 1, waarbij e = e e n de all-ones vector is, heet de Perronvector van A. 4

5 Opmerking 4.15 Een van de bekendste en tevens meest recente Perronvectoren is de Google PageRank vector van Larry Page en Sergey Brin. Stelling 4.16 De enige eigenwaarde van 0 < A R n n met absolute waarde ρ(a) is ρ(a). Bewijs. Volgens Stelling 4.11 is ρ(a) σ(a). Resteert de uniciteit aan te tonen. Veronderstel op grond van Lemma 4.9 zonder verlies van algemeenheid dat ρ(a) = 1. Laat λ σ(a) met λ = 1. Dan bestaat er dus een y 0 met Ay = λy. Hiervoor geldt net als in het bewijs van Steling 4.11 dat A y = y > 0. Per definitie van matrix-vectorvermenigvuldiging impliceren de respectievelijke gelijkheden A y = y en Ay = λy, dat voor alle k {1,..., n}, en dus, y k = a kj y j en λy k = a kj y j = y k = a kj y j (9) a kj y j. (10) Nu geldt dat de absolute waarde z 1 + +z n van de som van n complexe getallen alleen gelijk is aan de som z , + z n van de absolute waarden als ze allemaal hetzelfde argument hebben. Dus concluderen we uit (10) dat y k = α k y 1 met α k > 0 voor alle k {1,..., n}. Dus is y een eventueel complex veelvoud y 1 α van een positieve vector α. Maar dan is ook α een eigenvector van A behorende bij eigenwaarde λ. En omdat Aα reëel is, gelijk aan λα, en in het bijzonder positief, is λ dat ook. We concluderen dat λ = De machtsmethode, ook wel Von Mises-iteratie genaamd De Von Mises-iteratie, ook wel machtsmethode genoemd, is een methode, al gebruikt door Jacobi, om een eigenvector te berekenen horend bij de eigenwaarde van A die het grootst is in absolute waarde, en waarvan de eigenruimte dimensie één heeft. Richard von Mises ( ) en Carl Jacobi ( ) Stelling 4.17 Laat A R n n met A > 0. Veronderstel dat ρ(a) = 1. Dan geldt dat waarbij Au = u > 0 met u = 1 en A w = w 0. k Ak = uw (11) 5

6 Bewijs. Omdat A > 0 is volgens Stelling 4.11 ρ(a) = 1 een eigenwaarde van A, en bestaat er een unieke positieve eigenvector u > 0 met u = 1 zo, dat Au = u. Dus bestaat er een Schurdecompositie van AU = UT van A van de vorm [ ] 1 b AU = UT waarbij T =, met U U = I en Ue 1 = u. De eigenwaarden van R zijn de eigenwaarden van A ongelijk aan 1. Op grond van Stelling 4.16 zijn deze allemaal kleiner dan 1 in absolute waarde. Dus ρ(r) < 1. We berekenen nu machten van A, A k = ( [ 1 b U ] ) k [ U 1 b = U Met volledige inductie kan eenvoudig worden aangetoond dat [ 1 b ] k [ 1 b(i + R + + R = k 1 ) k ] k U. ]. (12) Omdat ρ(r) < 1 volgt met behulp van Lemma 4.7 en Stelling 4.8 dat [ ] 1 b(i R) 1 k Ak = U U = Ue v U waarbij v = [1, b(i R) 1 ] en dus vinden we dat k Ak = uw waarbij u = Ue 1 en w = v U. Omdat kennelijk k (A ) k = wu is w een eigenvector bij λ = 1 van de getransponeerde matrix A. Dit bewijst de bewering.. Gevolg 4.18 Als x R n zodanig is dat w x = α 0, dat k Ak x = u(w x) = αu. Dus, de rij (A k x) k 0 convergeert naar een niet-triviaal veelvoud van de eigenvector bij λ = 1. Opmerking 4.19 Matrixvermenigvuldiging is associatief: (A k )x = A k 1 (Ax). Het is echter veel rekenwerk om A tot de k-de macht te verheffen en A k te vermenigvuldigen met x. Efficiënter is x 1 = Ax uit te rekenen, dan x 2 = Ax 1, tot en met x k = Ax k 1 = A k x. Het laatste vergt k matrix-vectorvermenigvuldigingen, het eerste k matrix-matrixvermenigvuldigingen. Opmerking 4.20 De Google Pagerankvector wordt in de praktijk niet precies uitgerekend, maar in drie decimalen nauwkeurig benaderd met x k = Ax k 1 = A k x voor zekere k << n. 4.4 Een alternatief analystisch bewijs Perron-Frobeniusstellingen kunnen ook worden bewezen middels technieken uit de Analyse. Definitie 4.21 (Convexe verzameling) Een verzameling C R n heet convex als voor iedere x, y C geldt dat tx + (1 t)y C voor alle t [0, 1]. 6

7 Een belangrijk resultaat uit de Analyse zegt het volgende. Stelling 4.22 (Dekpuntstelling van Brouwer) Laat D R n gesloten, begrensd, en convex zijn, en f : D D continu. Dan bestaat er een x D waarvoor f(x) = x. Luitzen Brouwer ( ) Opmerking 4.23 Ingeval D = [a, b] een gesloten interval is, zegt de stelling niets anders dan dat de grafiek van f de lijn y = x snijdt, wat direct uit de Tussenwaardestelling volgt. De dekpuntstelling aannemende wordt Perron-Frobeniustheorie iets inzichtelijker en intuïtiever. Immers, associeer met de matrix A > 0 de lineaire afbeelding L A : R n 0 R n 0, x Ax van het onbegrensde niet-negatieve orthant R n 0 naar zichzelf. Definieer S = {x R n 0 e t x = 1}. Oftewel, S is het deel van het hypervlak met vergelijking x x n = 1 dat in R n 0 ligt. Dan is S gesloten, begrensd, en convex. Bekijk nu de continue afbeelding S S : x L A(x) e t L A (x). De dekpuntstelling zegt nu dat er een x S is waarvoor S(x) = x. Voor deze x geldt dat Ax = (e t Ax)x. Omdat x S geldt dat x 0 en x 0. Omdat x 0 en x 0 is Ax > 0. Omdat Ax = (e t Ax)x vinden we dus tot slot dat e t Ax > 0 en x > 0. Dit bewijst de existentie van de Perronvector op analytische wijze. 7

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Geadjungeerde en normaliteit

Geadjungeerde en normaliteit Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Eigenwaarden en eigenvectoren in R n

Eigenwaarden en eigenvectoren in R n Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

1 Triangulatiestellingen voor lineaire transformaties

1 Triangulatiestellingen voor lineaire transformaties Triangulatiestellingen voor lineaire transformaties Zoals bekend kan niet iedere lineaire transformatie L : V V van een vectorruimte (V, K) gediagonaliseerd worden. Als het lichaam K echter algebraïsch

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

1 Rekenen in eindige precisie

1 Rekenen in eindige precisie Rekenen in eindige precisie Een computer rekent per definitie met een eindige deelverzameling van getallen. In dit hoofdstuk bekijken we hoe dit binnen een computer is ingericht, en wat daarvan de gevolgen

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

2 De Jordannormaalvorm voor lineaire transformaties

2 De Jordannormaalvorm voor lineaire transformaties 2 De Jordannormaalvorm voor lineaire transformaties We zagen dat iedere lineaire transformatie L : V V van een vectorruimte (V, K) over een algebraïsch afgesloten lichaam K op bovendriehoeksvorm kan worden

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

6. Lineaire operatoren

6. Lineaire operatoren 6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 14 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 14 september 2016 1 / 30 Modelleren van LP en ILP problemen

Nadere informatie

Lineaire programmering

Lineaire programmering Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum

Nadere informatie

AANVULLINGEN WISKUNDE MET (BEDRIJFS)ECONOMISCHE TOEPASSINGEN: OEFENINGEN

AANVULLINGEN WISKUNDE MET (BEDRIJFS)ECONOMISCHE TOEPASSINGEN: OEFENINGEN AANVULLINGEN WISKUNDE MET (BEDRIJFS)ECONOMISCHE TOEPASSINGEN: OEFENINGEN Hieronder volgt een korte beschrijving van de vragen van het oefeningengedeelte met antwoord. We geven ook kort weer wat regelmatig

Nadere informatie

3 De duale vectorruimte

3 De duale vectorruimte 3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire

Nadere informatie

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

7.1 Het aantal inverteerbare restklassen

7.1 Het aantal inverteerbare restklassen Hoofdstuk 7 Congruenties in actie 7.1 Het aantal inverteerbare restklassen We pakken hier de vraag op waarmee we in het vorige hoofdstuk geëindigd zijn, namelijk hoeveel inverteerbare restklassen modulo

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A. TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π OVER IRRATIONALE GETALLEN EN MACHTEN VAN π KOEN DE NAEGHEL Samenvatting. In deze nota buigen we ons over de vraag of een macht van π een irrationaal getal is. De aangereikte opbouw en bewijsmethoden zijn

Nadere informatie

1 De permanent van een matrix

1 De permanent van een matrix De permanent van een matrix Schrijf S n voor de symmetrische groep, met als elementen alle permutaties σ van de getallen {,..., n}. De permanent van een n n matrix A = (a ij ) is een getal dat formeel

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Oplossing van opgave 6 en van de kerstbonusopgave.

Oplossing van opgave 6 en van de kerstbonusopgave. Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Leeswijzer bij het college Functies en Reeksen

Leeswijzer bij het college Functies en Reeksen Leeswijzer bij het college Functies en Reeksen Erik van den Ban Najaar 2012 Introductie eze leeswijzer bij het dictaat Functies en Reeksen (versie augustus 2011) heeft als doel een gewijzigde opbouw van

Nadere informatie

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud college 6 en lineaire collegejaar college build slides Vandaag : : : : 6-7 6 9 juni 27 3 2 3 van een matrix Toepassing: oppervlakte en inhoud.6-7[6] vandaag van de 2 2-matrix a b c d is gelijk aan ad bc.

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

3 Opgaven bij Hoofdstuk 3

3 Opgaven bij Hoofdstuk 3 3 Opgaven bij Hoofdstuk 3 Opgave 3. Voor k beschouwen we de functie f k : x sin(x/k). Toon aan dat f k 0 uniform op [ R, R] voor iedere R > 0. Opgave 3.2 Zij V een verzameling. Een functie f : V C heet

Nadere informatie

1 Stelsels lineaire vergelijkingen.

1 Stelsels lineaire vergelijkingen. Stelsels lineaire vergelijkingen Ter herinnering: in de tweede klas Havo/Atheneum leer je twee vergelijkingen met twee onbekenden oplossen Voorbeeld: { x + y = 5 x + y = 0 Twee keer de eerste vergelijking

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Complexe Analyse - Bespreking Examen Juni 2010

Complexe Analyse - Bespreking Examen Juni 2010 Complexe Analyse - Bespreking Examen Juni 2010 Hier volgt een bespreking van het examen van Complexe Analyse op 18 juni. De bedoeling is je de mogelijkheid te geven na te kijken wat je goed en wat je minder

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Over de wiskunde die Google groot maakte

Over de wiskunde die Google groot maakte Over de wiskunde die Google groot maakte Jan Brandts, Universiteit van Amsterdam januari 9 Samenvatting Google vindt in een oogwenk de meest relevante web-bladzijden over een bepaald onderwerp. Omdat het

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte

Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte Lineaire algebra en kegelsneden Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk Reële vectorruimten. De reële vectorruimte van de reële n-tallen Definitie Een reëel

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

III.3 Supremum en infimum

III.3 Supremum en infimum III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 9 september 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 september 2015 1 / 23 Huiswerk Huiswerk 1 is beschikbaar op

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Oplossingen Oefeningen Bewijzen en Redeneren

Oplossingen Oefeningen Bewijzen en Redeneren Oplossingen Oefeningen Bewijzen en Redeneren Goeroen Maaruf 20 augustus 202 Hoofdstuk 3: Relaties. Oefening 3..2 (a) Persoon p is grootouder van persoon q. (b) (p, q) O o O r P : [ (p, r) O (r, q) O ]

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

Efficiente benadering van Google s PageRank (Engelse titel: Efficient approximation of Google s PageRank)

Efficiente benadering van Google s PageRank (Engelse titel: Efficient approximation of Google s PageRank) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Efficiente benadering van Google s PageRank (Engelse titel: Efficient approximation

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Modellen en Simulatie Lesliematrices Markovketens

Modellen en Simulatie Lesliematrices Markovketens Utrecht, 6 april 3 Modellen en Simulatie Lesliematrices Markovketens Program Meerdere leeftijdsklassen Leslie matrices Eigenwaarden en eigenvectoren Dominante eigenvector Irreducibele, a-periodieke matrices

Nadere informatie

Ruimtemeetkunde deel 1

Ruimtemeetkunde deel 1 Ruimtemeetkunde deel 1 1 Punten We weten reeds dat Π 0 het meetkundig model is voor de vectorruimte R 2. We definiëren nu op dezelfde manier E 0 als meetkundig model voor de vectorruimte R 3. De elementen

Nadere informatie

Optelling en scalaire vermenigvuldiging zijn weer plaatsgewijs gedefinieerd, bijvoorbeeld: 7 (x 1, x 2, x 3,...)

Optelling en scalaire vermenigvuldiging zijn weer plaatsgewijs gedefinieerd, bijvoorbeeld: 7 (x 1, x 2, x 3,...) 5. Lineaire ruimten Tot nu toe hebben we ons uitsluitend met de R n bezig gehouden. We gaan de behandelde theorie nu uitbreiden tot verzamelingen die een sterke overeenkomst met een R n vertonen. Een dergelijke

Nadere informatie

Frobenius lage rang benaderingen

Frobenius lage rang benaderingen Falcuteit Wetenschappen en Bio-Ingenieurswetenschappen Departement Wiskunde Frobenius lage rang benaderingen Proefschrift ingediend met het oog op het behalen van de graad Bachelor in de Wiskunde Dina

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Rationale punten op elliptische krommen

Rationale punten op elliptische krommen Rationale punten op elliptische krommen Anne Barten 6 juli 2015 Bachelorscriptie Begeleiding: dr. S. R. Dahmen Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Nadere informatie

(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie.

(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie. Vraag op 5 punten de sfeer met middelpunt in,, 4 en straal 6; de omwentelingscilinder met straal 6 en als as de rechte door,, met richtingsvector,, Bepaal een affiene transformatie of een coördinatentransformatie,

Nadere informatie

Constructie der p-adische getallen

Constructie der p-adische getallen Constructie der p-adische getallen Pim van der Hoorn Marcel de Reus 4 februari 2008 Voorwoord Deze tekst is geschreven als opdracht bij de cursus Kaleidoscoop 2007 2008 aan de Universiteit Utrecht. De

Nadere informatie

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert. Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie