Complexe eigenwaarden

Maat: px
Weergave met pagina beginnen:

Download "Complexe eigenwaarden"

Transcriptie

1 Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie is dan wel dat de bijbehorende eigenvectoren ook complexe coördinaten hebben In plaats van vectoren in R n beschouwen we dan vectoren in C n Definitie Een vector x C n met x o heet een eigenvector van een (n n-matrix A als Ax λx voor zekere λ C Zo n (complex getal λ C heet dan een eigenwaarde van A Een vector x o met Ax λx noemen we een eigenvector van A behorende bij de eigenwaarde λ NB We zullen alleen reële matrices (met reële elementen beschouwen Dit betekent dat het karakteristieke polynoom alleen reële coefficienten heeft en dat niet-reële nulpunten (eigenwaarden dus alleen in complex geconjugeerde paren kunnen voorkomen ( Voorbeeld Stel dat A, dan volgt : A λi λ λ λ2 + De (complexe eigenwaarden van A zijn dus λ i en λ 2 i Voor de bijbehorende eigenvectoren vinden we nu : λ i : ( ( ( i i i E i i Span{ } en λ 2 i : ( i i ( i ( i E i Span{ Omdat A geen reële eigenwaarden heeft, is A niet diagonaliseerbaar Het is in principe mogelijk ook het begrip diagonaliseerbaarheid uit te breiden tot complexe diagonaliseerbaarheid, maar dat zullen we in deze cursus buiten beschouwing laten Als we het hebben over diagonaliseerbaarheid, dan bedoelen we dus reële diagonaliseerbaarheid, dus : een (n n-matrix A is diagonaliseerbaar als er een basis van R n bestaat geheel bestaande uit eigenvectoren van A } Vectoren in C n Voor vectoren in C n voeren we wat voor de hand liggende terminologie in : Definitie 2 Als x C n, dan is x C n, de complexe geconjugeerde van x, de vector waarvan alle coördinaten de complex geconjugeerden zijn van de overeenkomstige coördinaten van x Elke vector x C n kunnen we schrijven in de vorm x Re x + iim x, waarbij Re x en Im x vectoren in R n zijn ; respectievelijk het reële en imaginaire deel van de vector x Als A een willekeurige (m n-matrix is met complexe elementen, dan is A de matrix die uit A ontstaat door elk element te vervangen door z n complex geconjugeerde

2 Als A nu een reële (n n-matrix is, dan geldt natuurlijk dat A A en dus : Ax Ax Ax Dus : als Ax λx, dan volgt dat Ax Ax λx λx Dus : als x C n een eigenvector is van A behorende bij de eigenwaarde λ C, dan is de complex geconjugeerde x C n van x ook een eigenvector van A en wel behorende bij de eigenwaarde λ C Bij reële matrices komen niet-reële eigenwaarden dus alleen in complex geconjugeerde paren voor en de bijbehorende eigenvectoren zijn ook elkaars complex geconjugeerden Zie ook voorbeeld Hiervan maken we bij het rekenwerk natuurlijk dankbaar gebruik Bij het bepalen van de eigenvectoren proberen we dat rekenwerk tot een minimum te beperken ( 5 2 Voorbeeld 2 Stel dat A, dan volgt : 3 A λi 5 λ 2 3 λ λ2 8λ + 7 (λ De (complexe eigenwaarden zijn dus λ 4 ± i Voor de berekening van de eigenvectoren kiezen we één van de twee complex geconjugeerde eigenwaarden : ( i 2 λ 4 + i : i Omdat λ 4 + i een eigenwaarde is, weten we dat deze matrix slechts één pivotpositie heeft We hoeven dat niet te controleren door te vegen (dat is lastig rekenwerk met complexe getallen, maar bepalen een oplossing door naar de eerste of de tweede rij te kijken Alle andere eigenvectoren zijn dan immers veelvouden van die ene oplossing Dus : ( 2 E 4+i Span{ i } of E 4+i Span{ ( + i De eigenvectoren van A behorende bij de eigenwaarde λ 4 i volgen nu eenvoudig door de complex geconjugeerden te nemen (overal i vervangen door i : ( ( 2 i E 4 i Span{ } of E + i 4 i Span{ } } Uiteraard gaat het niet altijd zo eenvoudig Toch proberen we het rekenwerk te minimaliseren Veel rekenwerk met complexe getallen is immers vragen om moeilijkheden (rekenfouten 2 2 Voorbeeld 3 Als A 3 3, dan volgt : 2 A λi λ λ 3 ( λ 3 λ 3 2 λ 2 λ λ ( λ(λ 2 2λ λ + 4 λ 3 + 3λ 2 7λ + 5 Nu moeten we proberen dit karakteristieke polynoom in (complexe factoren te ontbinden Een derdegraads polynoom (met reële coëfficiënten kan hooguit twee niet-reële nulpunten 2

3 hebben, omdat die alleen in complex geconjugeerde paren kunnen voorkomen Er moet dus minstens één reëel nulpunt zijn Door proberen vinden we dat λ een eigenwaarde is Dus : A λi (λ 3 3λ 2 + 7λ 5 (λ (λ 2 2λ + 5 (λ [ (λ ] De andere twee (complexe eigenwaarden zijn dus : λ ± 2i Het loont soms de moeite om de determinant A λi uit te rekenen door handig te vegen, waardoor het karakteristieke polynoom min of meer automatisch in factoren wordt ontbonden Het is daarbij echter niet altijd eenvoudig om de handigste veegstappen te vinden : A λi λ λ 3 2 λ λ 3 λ 4 2 λ λ λ 3 λ 3 2 λ ( λ(λ2 2λ + 5 ( λ [ (λ ] Het bepalen van de eigenruimte E bij de eigenwaarde λ gaat als voorheen : 2 2 λ : 2 3 E Span{ 2 2 Voor de eigenruimten behorende bij λ ± 2i gaan we alsvolgt te werk Eerst kiezen we één van de twee eigenwaarden en proberen met zo min mogelijk rekenwerk een bijbehorende eigenvector te bepalen Alle andere eigenvectoren zijn dan immers veelvouden daarvan De eigenvectoren behorende bij de andere eigenwaarde zijn dan de complex geconjugeerden Dus : λ + 2i : 2i i i i 2 2i 3 + i Met slechts een paar kleine vereenvoudigingen (en soms een enkele eenvoudige veegstap kunnen we hieruit de eigenvectoren bepalen Kijk hiervoor naar de eerste en de laatste rij : ix + x 2 + x 3 x 2 + i, x 3, ix x 2 + x 3 i x x 2 + ( + ix 3 Zo vinden we dus vrij eenvoudig : E +2i Span{ + i } en dus E 2i Span{ i } } Voor complexe getallen z x + iy met x, y R kennen we ook de schrijfwijze z re iϕ met r z x 2 + y 2 en ϕ arg z In matrixnotatie kunnen we dit schrijven als : ( ( ( ( x y x/r y/r r cos ϕ sin ϕ C r y x y/r x/r r sin ϕ cos ϕ De eigenwaarden van de matrix C zijn λ x ± iy Ga na! 3

4 ( cos ϕ sin ϕ De matrix heeft de volgende eigenschap Als we een vector x R sin ϕ cos ϕ 2 vermenigvuldigen met deze matrix, dan levert dit de vector in R 2 die uit x wordt verkregen door deze te draaien om de oorsprong O over de hoek ϕ in positieve richting (tegen de wijzers ( van de klok in Zie : Lay, pag 333 Omdat een vermenigvuldiging met de matrix r eenvoudig een scalaire vermenigvuldiging is met het getal r λ geldt dus dat de r lineaire afbeelding C : R 2 R 2 met C(x Cx een rotatie (draaiing over de hoek ϕ (in positieve richting voorstelt, gevolgd door een scalaire vermenigvuldiging (schaling met het getal r λ Iets algemener geldt : Stelling Als A een (2 2-matrix is met een (complexe eigenwaarde λ x iy met x, y R en y, dan geldt : ( A P CP x y met C en P Re v Im v, y x waarbij v C 2 een eigenvector is van A behorende bij de eigenwaarde λ x iy Het bewijs van deze stelling laten we achterwege In plaats daarvan een voorbeeld : ( 5 2 Voorbeeld 4 In voorbeeld 2 hebben we gezien dat de eigenwaarden van A 3 gelijk zijn aan λ 4 ± i Ook( hebben we gezien ( dat een ( bij λ 4 i behorende eigenvector i bijvoorbeeld gelijk is aan v + i Dus : ( ( ( ( Re v en Im v P en P Nu geldt inderdaad (ga na! : ( P CP ( 4 4 ( ( A Toepassingen op stelsels lineaire differentiaalvergelijkingen We beschouwen stelsels lineaire differentiaalvergelijkingen van de vorm x (t a x (t + + a n x n (t x 2 (t a 2x (t + + a 2n x n (t x n(t a n x (t + + a nn x n (t Hierbij zijn x (t,, x n (t functies van één variabele t en zijn de coëfficiënten a,, a nn reële constanten 4

5 Een dergelijk stelsel van eerste orde lineaire differentiaalvergelijkingen kan geschreven worden in de vorm x (t x x 2 (t a a n (t Ax(t met x(t en A a x n (t n a nn Aan zo n stelsel kan eventueel nog een beginvoorwaarde in de vorm van x( x R n worden toegevoegd In dat geval spreekt men over een beginwaardeprobleem : x (t Ax(t met x( x R n Als A een diagonaalmatrix is, dan spreken we van een niet-gekoppeld stelsel differentiaalvergelijkingen (of een stelsel niet-gekoppelde differentiaalvergelijkingen : λ x x λ 2 (t λ x (t (t x(t x 2 (t λ 2x 2 (t λ n x n(t λ n x n (t De oplossing hiervan is wel erg eenvoudig : x i (t c i e λit voor i, 2,, n Hierbij zijn de constanten c i R met i, 2,, n willekeurig In vectorvorm kan de oplossing geschreven worden als : x(t c e λt + c 2 e λ2t + + c n e λnt Als A geen diagonaalmatrix is, dan spreekt men van een gekoppeld stelsel differentiaalvergelijkingen (of een stelsel gekopppelde differentiaalvergelijkingen We zouden nu ook een oplossing van de vorm x(t ve λt van zo n gekoppeld stelsel x (t Ax(t kunnen zoeken We vinden dan : x (t λve λt en Ax(t Ave λt Ave λt λve λt en dus : Av λv Dus : als x(t ve λt een niet-triviale oplossing (v o is van x (t Ax(t, dan is λ een eigenwaarde van A en v een eigenvector van A behorende bij die eigenwaarde λ Men kan aantonen (in de theorie van differentiaalvergelijkingen dat elk stelsel differentiaalvergelijkingen van de vorm x (t Ax(t met A een (n n-matrix n lineair onafhankelijke oplossingen x (t,, x n (t heeft De algemene oplossing kan dan geschreven worden in de vorm x(t c x (t + + c n x n (t met c,, c n R willekeurig Deze coëfficiënten kunnen vervolgens vastgelegd worden door een beginvoorwaarde van de vorm x( x R n, zodat de oplossing van zo n beginwaardeprobleem x (t Ax(t met x( x uniek is 5

6 Voor een stelsel van de vorm x (t Ax(t met A een (n n-matrix dient men dus n lineair onafhankelijke oplossingen te vinden Aangezien er oplossingen bestaan van de vorm x(t ve λt met v een eigenvector van A, lukt dit steeds als A diagonaliseerbaar is Dan bestaat er immers een basis van R n geheel bestaande uit eigenvectoren van A We hebben dan dus n lineair onafhankelijke oplossingen van de vorm x(t ve λt Als A niet diagonaliseerbaar is, dan lukt dit niet Er zullen dan ook nog andere oplossingen gevonden moeten worden Die gevallen laten we hier buiten beschouwing Dit probleem zal later opgelost worden bij het vak Differentiaalvergelijkingen Voorbeeld 5 Beschouw x (t Ax(t met A Verder volgt : en ( Dan volgt : A λi 2 λ 5 4 λ λ2 2λ 3 (λ 3(λ + λ 3 : λ 2 : De oplossing is dus : ( 5 5 ( 5 5 ( ( 5 x(t c v e λ t + c 2 v 2 e λ 2t c ( Uitgeschreven betekent dit dus : x (t 2x (t 5x 2 (t x 2 (t x (t + 4x 2 (t v v 2 e 3t + c 2 ( 5 ( ( 5 e t x (t c e 3t + 5c 2 e t x 2 (t c e 3t c 2 e t Hierbij zijn c en c 2 willekeurig Met bijvoorbeeld de beginvoorwaarde x( we : c ( + c 2 ( 5 ( 7 : ( 5 7 Dus : de (unieke oplossing van het beginwaardeprobleem x (t ( ( 7 x(t met x( ( ( vinden is ( x(t 3 ( e 3t ( e t 3e 3t + e t 3e 3t 2e t 6

7 Voor een diagonaliseerbare matrix A geldt : A P DP voor zekere inverteerbare matrix P en een diagonaalmatrix D Bovendien geldt dan : P v v n en D diag(λ,, λ n met Av i λ i v i, i, 2,, n Stel nu x(t P y(t dan volgt : x (t Ax(t P y (t AP y(t (P DP P y(t P Dy(t, want P hangt niet van t af Omdat P inverteerbaar is, volgt hieruit dat y (t Dy(t (een niet-gekoppeld stelsel Dit noemt men het ontkoppelen van het stelsel differentiaalvergelijkingen We vinden vervolgens dat : y(t c e λ t c n e λnt x(t P y(t c v e λ t + + c n v n e λnt Als A nu complexe eigenwaarden λ a ± ib met a, b R heeft, dan geldt : e λt e (a±ibt e at e ±ibt e at (cos bt ± i sin bt De bijbehorende eigenvectoren zijn dan elkaars complex geconjugeerden Dus : Av λv en Av λv We kunnen dan lineaire combinaties van de vorm c ve λt + c 2 ve λt met c, c 2 C kiezen die reëel zijn zodat we twee lineair onafhankelijke (reële oplossingen vinden bij de eigenwaarden λ a ± ib Hiervoor kunnen we dan het reële en het imaginaire deel van ve λt kiezen Voorbeeld 6 Beschouw x (t Ax(t met A ( λ 4 + i is een eigenwaarde met bijbehorende eigenvector v ve λt ( + i ( e 4t cos t sin t (cos t + i sin t cos t, dan geldt (zie voorbeeld 2 : ( + i Dan volgt : ( e 4t cos t + sin t + i sin t e 4t Hieruit volgt dat : x(t c ( cos t sin t cos t e 4t + c 2 ( cos t + sin t sin t e 4t Als A een (2 2-matrix is, dan kunnen we de oplossingen van x (t Ax(t tekenen in het platte vlak R 2 De grafiek van zo n oplossing {x(t t } noemt men een baan van het dynamische systeem x (t Ax(t De baan hangt daarbij steeds af van het startpunt x( x R 2 7

8 Als de eigenwaarden λ en λ 2 van A beide negatief zijn, dan gaan alle oplossingen x(t c v e λ t + c 2 v 2 e λ 2t voor t naar de oorsprong O Men zegt dan dat de oorsprong O een aantrekker (attractor of put is van het dynamische systeem x (t Ax(t Als de eigenwaarden λ en λ 2 van A beide positief zijn, dan gaan alle oplossingen x(t c v e λ t + c 2 v 2 e λ 2t voor t naar het oneindige (weg van de oorsprong O Men zegt dan dat de oorsprong O een afstoter of bron is van het dynamische systeem x (t Ax(t Als A zowel een positieve als een negatieve eigenwaarde heeft, dan noemt men de oorsprong wel een zadelpunt van het dynamische systeem x (t Ax(t In het geval van niet-reële eigenwaarden noemt men de oorsprong O wel een spiraalpunt van het dynamische systeem x (t Ax(t In dat geval zijn de banen van x (t Ax(t spiralen rond de oorsprong O Deze spiralen worden naar de oorsprong toe getrokken als het reële deel van de (twee complex geconjugeerde eigenwaarden negatief is (dan is O een put Als het reële deel van de eigenwaarden positief is, dan is de oorsprong een bron of afstoter In voorbeeld 5 is de oorsprong O een zadelpunt, want : λ 3 > en λ 2 < In voorbeeld 6 is de oorsprong O een spiraalpunt en tevens een afstoter of bron, omdat Re λ 4 > Voorbeeld 7 Beschouw x (t Ax(t met A In voorbeeld 3 hebben we gezien dat A de eigenwaarden λ en λ ± 2i heeft De bijbehorende eigenruimten zijn (zie voorbeeld 3 : E Span{ }, E +2i Span{ Nu volgt met e (+2it e t (cos 2t + i sin 2t : + i e t (cos 2t + i sin 2t + i cos 2t cos 2t sin 2t cos 2t De algemene oplossing van x (t Ax(t is dus : x(t c e t + c 2 cos 2t cos 2t sin 2t cos 2t } en E 2i Span{ e t + i e t + c 3 sin 2t cos 2t + sin 2t sin 2t sin 2t cos 2t + sin 2t sin 2t i e t e t } 8

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

Voorwaardelijke optimalisatie

Voorwaardelijke optimalisatie Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg

Nadere informatie

1 Stelsels lineaire vergelijkingen.

1 Stelsels lineaire vergelijkingen. Stelsels lineaire vergelijkingen Ter herinnering: in de tweede klas Havo/Atheneum leer je twee vergelijkingen met twee onbekenden oplossen Voorbeeld: { x + y = 5 x + y = 0 Twee keer de eerste vergelijking

Nadere informatie

d τ (t) dt = 1 voor alle τ 0.

d τ (t) dt = 1 voor alle τ 0. 65 Impulfunctie In deze paragraaf kijken we naar verchijnelen waarbij in zeer korte tijd een (grote kracht op een yteem wordt uitgeoefend Zo n plotelinge kracht kunnen we bechrijven met behulp van een

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen De inhoud van hoofdstuk 3 zou grotendeels bekende stof moeten zijn. Deze stof is terug te vinden in Stewart, hoofdstuk 17. Daar staat alles

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

6. Lineaire operatoren

6. Lineaire operatoren 6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi2030wbmt 1 / 14 Niet-lineaire diff. vgl. en stabiliteit Niet-lineaire

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Lineaire Algebra (2DD12) Laatste nieuws in 2012

Lineaire Algebra (2DD12) Laatste nieuws in 2012 Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Hoofdstuk 4 Eigenwaarden en eigenvectoren 4.1 Inleiding Tot nu toe zijn al onze vectoren en matrices reëel geweest d.w.z. de theorie voor stelsels lineaire vergelijkingen en de theorie der matrices en

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

Het vinden van een particuliere oplossing

Het vinden van een particuliere oplossing Het vind van e particuliere oplossing Voor e lineaire differtiaalvergelijking met constante (reële) coëfficiënt a 0 y (n) (t) + a 1 y (n 1) (t) +... + a n 1 y (t) + a n y(t) = g(t), a 0 0 (1) geldt, dat

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

More points, lines, and planes

More points, lines, and planes More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

De n-dimensionale ruimte Arjen Stolk

De n-dimensionale ruimte Arjen Stolk De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Complexe getallen. 5.1 Constructie van de complexe getallen

Complexe getallen. 5.1 Constructie van de complexe getallen Les 5 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 +1 steeds positief is en in het bijzonder

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

Lineaire Algebra SUPPLEMENT II

Lineaire Algebra SUPPLEMENT II Lineaire Algebra SUPPLEMENT II FBeukers 2012 Departement Wiskunde UU Inhoudsopgave 13 Eigenwaarden en eigenvectoren 3 131 Inleiding 3 132 Berekening van eigenwaarden en eigenvectoren 5 133 Basiseigenschappen

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB1002 deel 1 - Lineaire algebra 1 College 6 27 februari 2014 1 Opbouw college Vandaag behandelen we de rest van hoofdstuk 1.8 en 1.9 Voor de pauze: hoofdstuk 1.8 Na de pauze: hoofdstuk 1.9 2 Transformatie

Nadere informatie

Complexe getallen: oefeningen

Complexe getallen: oefeningen Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( ) Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

Voortgezette Lineaire Algebra. Prof. dr. J. van Mill Dr. F. van Schagen

Voortgezette Lineaire Algebra. Prof. dr. J. van Mill Dr. F. van Schagen Voortgezette Lineaire Algebra Prof. dr. J. van Mill Dr. F. van Schagen Inhoud Hoofdstuk I. Complexe vectorruimten en inwendige producten 5 I.1. Vectorruimten 5 I.2. Hermitische producten 8 I.3. Inwendig-productruimten

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

2. Transformaties en matrices

2. Transformaties en matrices Transformaties en matrices Lineaire afbeelding Onder een lineaire afbeelding van R n naar R m verstaan we een functie A die aan iedere vector uit R n een vector uit R m toevoegt en van het volgende type

Nadere informatie

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen.

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen. college 4 collegejaar college build slides Vandaag : : : : 16-17 4 29 maart 217 38 1 2 3.16-17[4] 1 vandaag Vectoren De notatie (x 1, x 2,..., x n ) wordt gebruikt voor het punt P met coördinaten (x 1,

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Lineaire algebra 1 najaar Complexe getallen

Lineaire algebra 1 najaar Complexe getallen Lineaire algebra 1 najaar 2008 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 + 1 steeds

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

Lineaire differentiaalvergelijkingen met constante coëfficienten

Lineaire differentiaalvergelijkingen met constante coëfficienten Lineaire differentiaalvergelijkingen met constante coëfficienten 1 Differentiaalvergelijkingen Als we een functie y : t y(t) expliciet, in formulevorm, kennen, dan is het niet zo moeilijk hiervan de afgeleide

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Inleiding Wiskundige Systeemtheorie

Inleiding Wiskundige Systeemtheorie Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/28 Elektrotechniek, Wiskunde en Informatica EWI x.k C 1/ D Ax.k/ C Bu.k/; y.k/ D Cx.k/ C Du.k/ We

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

Radboud Universiteit Nijmegen

Radboud Universiteit Nijmegen Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica Kubische grafen met integraal spectrum Naam: Studentnummer: Studie: Begeleider: Tweede lezer: Daan van Rozendaal

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS deel 2 LOTHAR PAPULA 2e druk > ACADEMIC 5 E R V I C Inhoud 1 Lineaire algebra 1 1.1 Vectoren I 1.2 Matrices 4 1.2.1 Een inleidend voorbeeld 4 1.2.2 Definitie

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie