Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:"

Transcriptie

1 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden

2 College Lineaire Algebra met toepassingen uit de Beeldverwerking voorjaar 2013 Docent: Dr. D.P. (Nies) Huijsmans kamer 152 tel 7052 De docent geeft zowel het hoorcollege als het werkcollege (geïntegreerd) Hoor- en/werkcollege: di 11:15-15:30 in Babylon en Paleistuin. In paleistuin bij gebruik MATLAB (soms s ochtends soms s middags afhankelijk van werkcollege Datastructuren in Paleistuin) Verplicht boek: Linear Algebra and its Applications van David C. Lay uitgever Addison Wesley prijs ~ 70 Euro (paperback) van dit boek is de 4 e, 3e druk of 3e updated druk nodig! Het werkcollege steunt zwaar op dit boek met z'n vele oefeningen en input data files voor gebruik met o.a. MATLAB Het werkcollege heeft als doel zowel met pen en papier en ter kontrole m.b.v. MATLAB de LA oefeningen te kunnen uitwerken, zodanig dat bij later gebruik van Lineaire Algebra teruggevallen kan worden op effectieve technieken en hulpmiddelen. Goed uitgevoerde Matlab opdrachten (ter beoordeling van de assistent) tellen voor maximaal 2 punten mee voor het schriftelijk examen Eindcijfer = min[(<=2+tentamencijfer), 10] Het Tentamen na afloop zal bestaan uit 10 opgaven uit het boek. Bij het tentamen mag alleen pen en papier gebruikt worden (geen rekenmachines, schootcomputers etc). Toetsing vindt alleen plaats m.b.v. het afsluitend schriftelijk tentamen. Tentamendatum di 4 juni uur. Een week hieraan vooraf, woe 29 mei 2013 zal het proeftentamen worden uitgewerkt. Op de volgende bladzijden worden de te beheersen vaardigheden voor het tentamen en de bijbehorende hoofdstukken uit het boek aangegeven. Ook is er een overzicht van de sommen uit het boek die op het werkcollege zullen worden behandeld. Op dit overzicht staan ook de MATLAB cases vermeld.

3 Vaardigheden Dit vak geeft voorrang boven vaardigheden qua toepassen LA boven leveren van bewijzen. De volgende vaardigheden moet je beheersen voor het tentamen Lineaire Algebra met toepassingen uit de Beeldverwerking Boek: 4 e /3e editie van Linear Algebra and its applications van D.Lay De beste volgorde van doorwerken boek is H1,2,3,4,6,5,7 We beperken de behandeling tot die met Reële getallen, gedeelten van het boek met toepassingen op Complexe getallen kunnen worden overgeslagen. H1:(geheel) Stelsels lineaire vergelijkingen 1) Omzetten van een systeem van lineaire vergelijkingen Ax=b naar toegevoegde matrix en deze door schoonvegen omzetten naar de eenheidsmatrix aangevuld met de oplossing. Of er een oplossing bestaat en hoe deze oplossing er uit ziet (uniek, vrijheidsgraden) kan al beslist worden na reductie tot boven-driehoeksmatrix. 2) voor de reductie onder 1 benodigde elementaire rij operaties beheersen. 3) Geometrische interpretatie van R2 en R3 problemen 4) Berekening resultaat element(i,j) uit inprodukt rij i met kolom j 5) Evenwicht situaties in reacties en netwerken kunnen opzetten en oplossen. 6) Standaard matrix van een lineaire transformatie 7) Geometrische transformaties in R2: schaling,schuiven,roteren,reflectie,projectie 8) Lineaire differentiaal vergelijkingen opzetten en oplossen H2:(geheel) Matrix berekeningen 9) rekenregels voor matrices en vectoren 10) Getransponeerde van een matrix: rekenregels 11) Inverse van een matrix: rekenregels 12) bepalen inverse door reductie van matrix aangevuld met eenheidsmatrix 13) LU-ontbinding van R2 en R3 matrices 14) Homogene coordinaten bij R2 en R3 geometrische transformaties: toevoegen van translaties en perspectivische vertekening 15) Samennemen (Concatenatie) van opeenvolgende matrix transformaties 16) matrix: lineaire (on)afhankelijkheid kolommen, dimensie, rang, nulruimte H3:(geheel) Determinant 17) Determinant van R2 en R3 matrices kunnen uitwerken. 18) Regel van Cramer in R2 en R3 kunnen toepassen H4:(4.1 t/m 4.7 wel, 4.8 en 4.9 niet)vector ruimtes 19) vectoren: rekenregels 20) Basis van vectoren voor Nul A en Col A: dim Col A + dim Nul A = n

4 H6: (geheel) Orthogonaliteit en Kleinste kwadraten 21) Inprodukt en norm van een vector 22) Orthogonaliteit: onderling loodrecht; inprodukt. 23) Gram-Schmidt: kunnen construeren van een orthogonale (of orthonormale) basis voor 3D basis 24) Kleinste Kwadraten oplossing in R2 en R3 problemen: ATAx=ATb opzetten en oplossen via reductie van bijpassende toegevoegde matrix H5: (5.1 t/m 5.4 wel; 5.5 t/m 5.8 niet) eigenwaardes en eigenvectoren 25) bepaling eigenwaardes uit reductie A-lambda.I=0 26) bepaling eigenwaardes uit det(a-lambda.i)=0: karakteristieke vergelijking, karakteristiek polynoom, ontbinding in factoren 27) bepaling eigenvector(en) bij een bepaalde eigenwaarde 28) eigenvector basis: diagonalisatie van Anxn=P*D*Pinv H7: (geheel) Symmetrische matrices, kwadratische vormen, SVD 29) diagonaliseren van een symmetrische Anxn=P*D*PT=P*D*Pinv 30) spectrale decompositie in R2 en R3 gevallen 31) verandering van variabele bij kwadratische vorm 32) Klassificatie kwadratische vormen en eigenwaardes 33) Optimalisatie onder randvoorwaarden in R2 en R3 34) Singuliere waardes van een Amxn via eigenwaardes AT*A: A=U*S*VT deze ontbinding moet je kunnen uitwerken gegeven een willekeurige Amxn Proeftentamen: De volgende 10 exercises uit Lay kun je zien als een voorbeeld van wat bij het schriftelijk tentamen van je verwacht wordt: 1)exercises )exercises )exercises )exercises )exercises )exercises )exercises )exercises )exercises )exercises De uitwerking hiervan zal woensdag 29 mei 2013 voorgemaakt worden (ong een week voor het echte tentamen). Succes met de voorbereiding!

5 Planning van hoor- en werkcolleges Lineaire Algebra en Beeldbewerking Op hoorcollege behandeld: 1: H 1.1 wc1: ophaalstof en sommen 1.1 2: H 1.2 en 1.3 wc2: matlab 1: elementaire rij ops + sommen 1.2 en 1.3 3: H 1.4 t/m 1.6 wc3: sommen 1.4 t/m 1.6 4: Computer grafiek stof uit Hill H 4.2 en 4.6 en Lay H 1.7 t/m 1.9 wc4: matlab 2: geld- en verkeersstromen + sommen 1.7 t/m 1.9 5: H 1.10, 2.2 en 2.7 wc 5: sommen 2.1 t/m 2.3 en 2.7 6: Beeldbewerkingen en H 3.1 wc 6: matlab 3: Beeldbewerkingen + sommen 3.1 7: H 3.2 en 3.3 H 2.5 en H 4.1 wc 7: sommen 3.2, 3.3, 2.5 en 4.1 8: Computer grafiek stof uit Hill H 4.2 en 4.6 wc 8: matlab 4: Computer Graphics case 9: H 4 af (niet 4.6) wc 9: sommen 4.2 t/m : H 6 t/m 6.6 wc 10: 5: least Squares cases + sommen 6.1 t/m : H 5.1 t/m 5.3 wc 11: sommen 5.1 t/m : H 7.1 t/m 7.4 wc 12: matlab 6: SVD cases + sommen 7.1 t/m 7.4 Overzicht sommen werkcollege Overzicht geplande sommen uit David C. Lay Linear Algebra and its Applications 4e,3e druk of updated 3e druk Addison Wesley. Oneven exercises staan uitgewerkt in het boek achterin: hoeven dus niet op werkcollege gedaan te worden (goed voor thuis oefenen). 1e werkcollege (nog zonder MATLAB): Aantal sommen om middelbare schoolstof op te halen (apart vel). Opzetten stelsel vergs en omzetten naar toegevoegde matrix. Oefenen elementaire rij operaties en schoonvegen->ref->rref Wanneer kun je stoppen bij REF?

6 1.1: 4, 8, 12, 16, 24, 28, 33 en : 4, 8, 16, 20, 24, : 4, 8, 10, : 2, 8, 16, : 4, 8, 14, : 2, 6, : : 2, 4, 14, : 2, 8, 14, 20, : 2, 8, 12, : 4, 6, : 6, 8, : 4, 10, : examples 2, 3, 4, 5, 6 en 2, 4, 6, 8, : 6, 8, : 6, 8, 12, : 4, 8, : 4, 6, 10, : 2, 6, : 6, 10, : 4, 8, 14, : 4, 8, : 4, 8, 12, : 2, 10, : 2, 6, 10, 14, 18, : 2, 8, 10, 11, 12, : 2, 4, 6, 12, 16, : 10, 14, : 6, 10, : 4, 10, : 4, 6, : 4, 10, : 4, 8, 18, : 4, 8 7.3: 2, 4, 8 7.4: 4, 8,12 Te maken Sommen uit boek:

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

Lineaire Algebra (2DD12) Laatste nieuws in 2012

Lineaire Algebra (2DD12) Laatste nieuws in 2012 Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( ) Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie

Nadere informatie

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus 2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus Kwartiel 2, week 7.b Op het college op donderdagochtend 7 januari is behandeld: - hoek tussen vectoren en cosinus regel - driehoeksongelijkheid

Nadere informatie

Lineaire algebra en vectorcalculus

Lineaire algebra en vectorcalculus Lineaire algebra en vectorcalculus dr. G.R. Pellikaan Studiewijzer voor het studiejaar 2013/2014 College 2DN60 Contents 1 Algemeen 2 2 Inhoud van het vak 2 3 Leerdoelen 3 4 Berekening tijdsplanning 3 5

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

Studiewijzer Lineaire Algebra voor ST (2DS06), blok D, januari 2009

Studiewijzer Lineaire Algebra voor ST (2DS06), blok D, januari 2009 Studiewijzer Lineaire Algebra voor ST (2DS06), blok D, januari 2009 1 Algemeen 1.1 Docenten De cursus wordt gegeven door Judith Keijsper (Dr. J.C.M. Keijsper, HG 9.31, tel 5583, email J.C.M.Keijsper(AT)tue(DOT)nl).

Nadere informatie

Eigenwaarden en eigenvectoren in R n

Eigenwaarden en eigenvectoren in R n Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante

Nadere informatie

Lineaire Algebra voor E (VKO)

Lineaire Algebra voor E (VKO) Lineaire Algebra voor E (VKO) dr. G.R. Pellikaan Studiewijzer voor het studiejaar 2006/2007 College 2DE01 Faculteit Wiskunde en Informatica, Capaciteitsgroep Wiskunde, Leerstoelgebied Coderingstheorie

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op dinsdag 9 april 8, 9.. uur. Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord

Nadere informatie

Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria

Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria Onderwerpskeuzes Lineaire Algebra en kwaliteitscriteria Deliverable 3.5 J. Brandts, F. Beukers, H. Cuypers, H. de Graaf Inleiding In deze deliverable zullen we voor het domein van de lineaire algebra de

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A. TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Studiewijzer Lineaire Algebra voor ST (2DS06), kwartiel 3, februari-maart 2012

Studiewijzer Lineaire Algebra voor ST (2DS06), kwartiel 3, februari-maart 2012 Studiewijzer Lineaire Algebra voor ST (2DS06), kwartiel 3, februari-maart 2012 1 Algemeen 1.1 Inhoud Bij het vak lineaire algebra worden stelsels lineaire vergelijkingen, matrices, lineaire afbeeldingen

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Voorwaardelijke optimalisatie

Voorwaardelijke optimalisatie Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert. Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS deel 2 LOTHAR PAPULA 2e druk > ACADEMIC 5 E R V I C Inhoud 1 Lineaire algebra 1 1.1 Vectoren I 1.2 Matrices 4 1.2.1 Een inleidend voorbeeld 4 1.2.2 Definitie

Nadere informatie

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer Samenvatting Lineaire Algebra 1 - Collegejaar 2013-2014 Dictaat met verwijzing naar het boek Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst

Nadere informatie

1 Lineaire Algebra 2015 - organisatie van het vak

1 Lineaire Algebra 2015 - organisatie van het vak 1 Lineaire Algebra 2015 - organisatie van het vak Het vak Lineaire Algebra uit het eerste semester van de Bachelor Wiskunde van de Universiteit van Amsterdam telt 6 EC, en dat staat voor 168 uur studie.

Nadere informatie

Studiehandleiding. Lineaire Algebra 1. voor. Maritieme Techniek. wi1313mt. Dr. R. Koekoek. gebouw ITS, kamer HB tel (tst.

Studiehandleiding. Lineaire Algebra 1. voor. Maritieme Techniek. wi1313mt. Dr. R. Koekoek. gebouw ITS, kamer HB tel (tst. Studiehandleiding Lineaire Algebra 1 voor Maritieme Techniek wi1313mt Dr. R. Koekoek gebouw ITS, kamer HB 04.300 tel. 015-2787218 (tst. 87218) e-mail : R.Koekoek@ITS.TUDelft.NL website : http://aw.twi.tudelft.nl/

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Voorbeeld theorie examen

Voorbeeld theorie examen Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Geadjungeerde en normaliteit

Geadjungeerde en normaliteit Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of

Nadere informatie

Overzicht. Lineaire vergelijkingen. Onderwerpen & Planning. Doel. VU Numeriek Programmeren 2.5

Overzicht. Lineaire vergelijkingen. Onderwerpen & Planning. Doel. VU Numeriek Programmeren 2.5 VU Numeriek Programmeren 25 Charles Bos Vrije Universiteit Amsterdam Tinbergen Institute csbos@vunl, A40 Onderwerpen & Planning Practicum Literatuur Taal Terugblik & Huiswerk 2 april 202 /26 2/26 Onderwerpen

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode Examenvragen Meetkunde en lineaire algebra Tweede examenperiode 2008-2009 Een rechte conoïde met als richtrechte de X-as, en als richtoppervlak de sfeer met middelpunt in (0, 16, 0) en straal 9. (1) Stel

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

Lineaire vergelijkingen

Lineaire vergelijkingen 1/24 VU Numeriek Programmeren 2.5 Charles Bos Vrije Universiteit Amsterdam c.s.bos@vu.nl, 1A40 8 april 2013 2/24 Overzicht Overzicht Onderwerpen & Planning Practicum Literatuur Taal Terugblik & Huiswerk

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte

Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte Lineaire algebra en kegelsneden Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk Reële vectorruimten. De reële vectorruimte van de reële n-tallen Definitie Een reëel

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

Supplement Wiskunde 2017/2018. Inhoudsopgave

Supplement Wiskunde 2017/2018. Inhoudsopgave Inhoudsopgave Hoofdstuk 1: Missende stof in de verslagen... 2 Hoofdstuk 2: Overbodige stof in de verslagen... 7 Hoofdstuk 3: Fouten in de verslagen... 8 Tentamen halen? www.rekenmaarverslagen.nl 1 Hoofdstuk

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Wiskunde curriculum voor Bachelor fase N

Wiskunde curriculum voor Bachelor fase N Wiskunde curriculum voor Bachelor fase N 1. Inleiding wiskunde (5 sp, kwartiel 1.1) - Rekenvaardigheden: algebraïsche rekenvaardigheden, differentiëren, integreren, goniometrie, functie onderzoek etc (herhaling

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix Hoofdstuk 3 Matrices en stelsels 3.1 Matrices Een matrix is in DERIVE gedefinieerd als een vector van vectoren. De rijen van de matrix zijn de elementen van de vector. Op de volgende manier kan je een

Nadere informatie

Frobenius lage rang benaderingen

Frobenius lage rang benaderingen Falcuteit Wetenschappen en Bio-Ingenieurswetenschappen Departement Wiskunde Frobenius lage rang benaderingen Proefschrift ingediend met het oog op het behalen van de graad Bachelor in de Wiskunde Dina

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Wiskunde in de curricula van de K.U.Leuven en campus Kortrijk

Wiskunde in de curricula van de K.U.Leuven en campus Kortrijk Wiskunde in de curricula van de K.U.Leuven en campus Kortrijk Waarom, wat en hoe? K.U.Leuven Dag van Wiskunde, 20 november 2010 Overzicht 1 Rol van wiskunde in de universitaire curricula 2 3 4 Waarom wiskunde?

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Matrices en Grafen (wi1110ee)

Matrices en Grafen (wi1110ee) Matrices en Grafen (wi1110ee) Electrical Engineering TUDelft September 1, 2010 September 1, 2010 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http:

Nadere informatie

1 Stelsels lineaire vergelijkingen.

1 Stelsels lineaire vergelijkingen. Stelsels lineaire vergelijkingen Ter herinnering: in de tweede klas Havo/Atheneum leer je twee vergelijkingen met twee onbekenden oplossen Voorbeeld: { x + y = 5 x + y = 0 Twee keer de eerste vergelijking

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie.

(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie. Vraag op 5 punten de sfeer met middelpunt in,, 4 en straal 6; de omwentelingscilinder met straal 6 en als as de rechte door,, met richtingsvector,, Bepaal een affiene transformatie of een coördinatentransformatie,

Nadere informatie

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen

Nadere informatie

Lineaire algebra. v + w. s x (v) s x (λv) = λs x (v) s x (w) s x (v + w) = s x (v) + s x (w) Paul Igodt & Wim Veys

Lineaire algebra. v + w. s x (v) s x (λv) = λs x (v) s x (w) s x (v + w) = s x (v) + s x (w) Paul Igodt & Wim Veys Lineaire algebra auteursrechtelijk beschermd materiaal y v + w w v λv Paul Igodt & Wim Veys s x (v) x s x (λv) = λs x (v) s x (w) s x (v + w) = s x (v) + s x (w) Voorwoord Met dit handboek kunnen studenten

Nadere informatie

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen. Overzicht bestaande content. Deliverable 3.6. Hans Cuypers. ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen. Overzicht bestaande content. Deliverable 3.6. Hans Cuypers. ONBETWIST Deliverable 3. Overzicht bestaande content Deliverable 3.6 Hans Cuypers Inleiding Binnen het ONBETWIST project worden toetsen en items voor verschillende deelgebieden van de wiskunde gemaakt. In voorgaande projecten,

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Het orthogonaliseringsproces van Gram-Schmidt

Het orthogonaliseringsproces van Gram-Schmidt Het orthogonaliseringsproces an Gram-Schmidt Voor het berekenen an een orthogonale projectie an een ector y op een deelruimte W an R n is een orthogonale basis {u,, u p } zeer gewenst De orthogonale projectie

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1.

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1. Blokmatrices Soms kan het handig zijn een matrix in zogenaamde blokken op te delen, vooral als sommige van deze blokken uit louter nullen bestaan Berekeningen kunnen hierdoor soms aanzienlijk worden vereenvoudigd

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

Opgaven Matlab - Week 2, sessie 2: De Singulierewaardendecompositie

Opgaven Matlab - Week 2, sessie 2: De Singulierewaardendecompositie Opgaven Matla - Week 2, sessie 2: De Singulierewaardendecompositie Laat A R n k. Dan etaan er unitaire matrices V R k k en U R n n zodanig, dat AV = UΣ, (1) waarij Σ R n k een niet-negatieve diagonaalmatrix

Nadere informatie

Matrix- en vectorrekening

Matrix- en vectorrekening Hogeschool Rotterdam / CMI Matrix- en vectorrekening (matrices, vergelijkingen, determinanten, vectoren en transformaties) TIRLIN01 Aantal studiepunten: 2 ects Modulebeheerder: P.J. den Brok (tijdelijk)

Nadere informatie

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in de weken 37-42 in zaal S 209, in de weken 44-49 in

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie