Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:

Maat: px
Weergave met pagina beginnen:

Download "Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:"

Transcriptie

1 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden

2 College Lineaire Algebra met toepassingen uit de Beeldverwerking voorjaar 2013 Docent: Dr. D.P. (Nies) Huijsmans kamer 152 tel 7052 De docent geeft zowel het hoorcollege als het werkcollege (geïntegreerd) Hoor- en/werkcollege: di 11:15-15:30 in Babylon en Paleistuin. In paleistuin bij gebruik MATLAB (soms s ochtends soms s middags afhankelijk van werkcollege Datastructuren in Paleistuin) Verplicht boek: Linear Algebra and its Applications van David C. Lay uitgever Addison Wesley prijs ~ 70 Euro (paperback) van dit boek is de 4 e, 3e druk of 3e updated druk nodig! Het werkcollege steunt zwaar op dit boek met z'n vele oefeningen en input data files voor gebruik met o.a. MATLAB Het werkcollege heeft als doel zowel met pen en papier en ter kontrole m.b.v. MATLAB de LA oefeningen te kunnen uitwerken, zodanig dat bij later gebruik van Lineaire Algebra teruggevallen kan worden op effectieve technieken en hulpmiddelen. Goed uitgevoerde Matlab opdrachten (ter beoordeling van de assistent) tellen voor maximaal 2 punten mee voor het schriftelijk examen Eindcijfer = min[(<=2+tentamencijfer), 10] Het Tentamen na afloop zal bestaan uit 10 opgaven uit het boek. Bij het tentamen mag alleen pen en papier gebruikt worden (geen rekenmachines, schootcomputers etc). Toetsing vindt alleen plaats m.b.v. het afsluitend schriftelijk tentamen. Tentamendatum di 4 juni uur. Een week hieraan vooraf, woe 29 mei 2013 zal het proeftentamen worden uitgewerkt. Op de volgende bladzijden worden de te beheersen vaardigheden voor het tentamen en de bijbehorende hoofdstukken uit het boek aangegeven. Ook is er een overzicht van de sommen uit het boek die op het werkcollege zullen worden behandeld. Op dit overzicht staan ook de MATLAB cases vermeld.

3 Vaardigheden Dit vak geeft voorrang boven vaardigheden qua toepassen LA boven leveren van bewijzen. De volgende vaardigheden moet je beheersen voor het tentamen Lineaire Algebra met toepassingen uit de Beeldverwerking Boek: 4 e /3e editie van Linear Algebra and its applications van D.Lay De beste volgorde van doorwerken boek is H1,2,3,4,6,5,7 We beperken de behandeling tot die met Reële getallen, gedeelten van het boek met toepassingen op Complexe getallen kunnen worden overgeslagen. H1:(geheel) Stelsels lineaire vergelijkingen 1) Omzetten van een systeem van lineaire vergelijkingen Ax=b naar toegevoegde matrix en deze door schoonvegen omzetten naar de eenheidsmatrix aangevuld met de oplossing. Of er een oplossing bestaat en hoe deze oplossing er uit ziet (uniek, vrijheidsgraden) kan al beslist worden na reductie tot boven-driehoeksmatrix. 2) voor de reductie onder 1 benodigde elementaire rij operaties beheersen. 3) Geometrische interpretatie van R2 en R3 problemen 4) Berekening resultaat element(i,j) uit inprodukt rij i met kolom j 5) Evenwicht situaties in reacties en netwerken kunnen opzetten en oplossen. 6) Standaard matrix van een lineaire transformatie 7) Geometrische transformaties in R2: schaling,schuiven,roteren,reflectie,projectie 8) Lineaire differentiaal vergelijkingen opzetten en oplossen H2:(geheel) Matrix berekeningen 9) rekenregels voor matrices en vectoren 10) Getransponeerde van een matrix: rekenregels 11) Inverse van een matrix: rekenregels 12) bepalen inverse door reductie van matrix aangevuld met eenheidsmatrix 13) LU-ontbinding van R2 en R3 matrices 14) Homogene coordinaten bij R2 en R3 geometrische transformaties: toevoegen van translaties en perspectivische vertekening 15) Samennemen (Concatenatie) van opeenvolgende matrix transformaties 16) matrix: lineaire (on)afhankelijkheid kolommen, dimensie, rang, nulruimte H3:(geheel) Determinant 17) Determinant van R2 en R3 matrices kunnen uitwerken. 18) Regel van Cramer in R2 en R3 kunnen toepassen H4:(4.1 t/m 4.7 wel, 4.8 en 4.9 niet)vector ruimtes 19) vectoren: rekenregels 20) Basis van vectoren voor Nul A en Col A: dim Col A + dim Nul A = n

4 H6: (geheel) Orthogonaliteit en Kleinste kwadraten 21) Inprodukt en norm van een vector 22) Orthogonaliteit: onderling loodrecht; inprodukt. 23) Gram-Schmidt: kunnen construeren van een orthogonale (of orthonormale) basis voor 3D basis 24) Kleinste Kwadraten oplossing in R2 en R3 problemen: ATAx=ATb opzetten en oplossen via reductie van bijpassende toegevoegde matrix H5: (5.1 t/m 5.4 wel; 5.5 t/m 5.8 niet) eigenwaardes en eigenvectoren 25) bepaling eigenwaardes uit reductie A-lambda.I=0 26) bepaling eigenwaardes uit det(a-lambda.i)=0: karakteristieke vergelijking, karakteristiek polynoom, ontbinding in factoren 27) bepaling eigenvector(en) bij een bepaalde eigenwaarde 28) eigenvector basis: diagonalisatie van Anxn=P*D*Pinv H7: (geheel) Symmetrische matrices, kwadratische vormen, SVD 29) diagonaliseren van een symmetrische Anxn=P*D*PT=P*D*Pinv 30) spectrale decompositie in R2 en R3 gevallen 31) verandering van variabele bij kwadratische vorm 32) Klassificatie kwadratische vormen en eigenwaardes 33) Optimalisatie onder randvoorwaarden in R2 en R3 34) Singuliere waardes van een Amxn via eigenwaardes AT*A: A=U*S*VT deze ontbinding moet je kunnen uitwerken gegeven een willekeurige Amxn Proeftentamen: De volgende 10 exercises uit Lay kun je zien als een voorbeeld van wat bij het schriftelijk tentamen van je verwacht wordt: 1)exercises )exercises )exercises )exercises )exercises )exercises )exercises )exercises )exercises )exercises De uitwerking hiervan zal woensdag 29 mei 2013 voorgemaakt worden (ong een week voor het echte tentamen). Succes met de voorbereiding!

5 Planning van hoor- en werkcolleges Lineaire Algebra en Beeldbewerking Op hoorcollege behandeld: 1: H 1.1 wc1: ophaalstof en sommen 1.1 2: H 1.2 en 1.3 wc2: matlab 1: elementaire rij ops + sommen 1.2 en 1.3 3: H 1.4 t/m 1.6 wc3: sommen 1.4 t/m 1.6 4: Computer grafiek stof uit Hill H 4.2 en 4.6 en Lay H 1.7 t/m 1.9 wc4: matlab 2: geld- en verkeersstromen + sommen 1.7 t/m 1.9 5: H 1.10, 2.2 en 2.7 wc 5: sommen 2.1 t/m 2.3 en 2.7 6: Beeldbewerkingen en H 3.1 wc 6: matlab 3: Beeldbewerkingen + sommen 3.1 7: H 3.2 en 3.3 H 2.5 en H 4.1 wc 7: sommen 3.2, 3.3, 2.5 en 4.1 8: Computer grafiek stof uit Hill H 4.2 en 4.6 wc 8: matlab 4: Computer Graphics case 9: H 4 af (niet 4.6) wc 9: sommen 4.2 t/m : H 6 t/m 6.6 wc 10: 5: least Squares cases + sommen 6.1 t/m : H 5.1 t/m 5.3 wc 11: sommen 5.1 t/m : H 7.1 t/m 7.4 wc 12: matlab 6: SVD cases + sommen 7.1 t/m 7.4 Overzicht sommen werkcollege Overzicht geplande sommen uit David C. Lay Linear Algebra and its Applications 4e,3e druk of updated 3e druk Addison Wesley. Oneven exercises staan uitgewerkt in het boek achterin: hoeven dus niet op werkcollege gedaan te worden (goed voor thuis oefenen). 1e werkcollege (nog zonder MATLAB): Aantal sommen om middelbare schoolstof op te halen (apart vel). Opzetten stelsel vergs en omzetten naar toegevoegde matrix. Oefenen elementaire rij operaties en schoonvegen->ref->rref Wanneer kun je stoppen bij REF?

6 1.1: 4, 8, 12, 16, 24, 28, 33 en : 4, 8, 16, 20, 24, : 4, 8, 10, : 2, 8, 16, : 4, 8, 14, : 2, 6, : : 2, 4, 14, : 2, 8, 14, 20, : 2, 8, 12, : 4, 6, : 6, 8, : 4, 10, : examples 2, 3, 4, 5, 6 en 2, 4, 6, 8, : 6, 8, : 6, 8, 12, : 4, 8, : 4, 6, 10, : 2, 6, : 6, 10, : 4, 8, 14, : 4, 8, : 4, 8, 12, : 2, 10, : 2, 6, 10, 14, 18, : 2, 8, 10, 11, 12, : 2, 4, 6, 12, 16, : 10, 14, : 6, 10, : 4, 10, : 4, 6, : 4, 10, : 4, 8, 18, : 4, 8 7.3: 2, 4, 8 7.4: 4, 8,12 Te maken Sommen uit boek:

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Lineaire Algebra (2DD12) Laatste nieuws in 2012

Lineaire Algebra (2DD12) Laatste nieuws in 2012 Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Lineaire algebra en vectorcalculus

Lineaire algebra en vectorcalculus Lineaire algebra en vectorcalculus dr. G.R. Pellikaan Studiewijzer voor het studiejaar 2013/2014 College 2DN60 Contents 1 Algemeen 2 2 Inhoud van het vak 2 3 Leerdoelen 3 4 Berekening tijdsplanning 3 5

Nadere informatie

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus

2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus 2015-2016 Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus Kwartiel 2, week 7.b Op het college op donderdagochtend 7 januari is behandeld: - hoek tussen vectoren en cosinus regel - driehoeksongelijkheid

Nadere informatie

Lineaire Algebra voor E (VKO)

Lineaire Algebra voor E (VKO) Lineaire Algebra voor E (VKO) dr. G.R. Pellikaan Studiewijzer voor het studiejaar 2006/2007 College 2DE01 Faculteit Wiskunde en Informatica, Capaciteitsgroep Wiskunde, Leerstoelgebied Coderingstheorie

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert. Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer

Nadere informatie

1 Lineaire Algebra 2015 - organisatie van het vak

1 Lineaire Algebra 2015 - organisatie van het vak 1 Lineaire Algebra 2015 - organisatie van het vak Het vak Lineaire Algebra uit het eerste semester van de Bachelor Wiskunde van de Universiteit van Amsterdam telt 6 EC, en dat staat voor 168 uur studie.

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Voorbeeld theorie examen

Voorbeeld theorie examen Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Matrix- en vectorrekening

Matrix- en vectorrekening Hogeschool Rotterdam / CMI Matrix- en vectorrekening (matrices, vergelijkingen, determinanten, vectoren en transformaties) TIRLIN01 Aantal studiepunten: 2 ects Modulebeheerder: P.J. den Brok (tijdelijk)

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in de weken 37-42 in zaal S 209, in de weken 44-49 in

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen. Overzicht bestaande content. Deliverable 3.6. Hans Cuypers. ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen. Overzicht bestaande content. Deliverable 3.6. Hans Cuypers. ONBETWIST Deliverable 3. Overzicht bestaande content Deliverable 3.6 Hans Cuypers Inleiding Binnen het ONBETWIST project worden toetsen en items voor verschillende deelgebieden van de wiskunde gemaakt. In voorgaande projecten,

Nadere informatie

In deze notitie gaan we nader in op de redenen om deze tool te ontwikkelen en we laten een voorbeeld van het ontwikkelde systeem zien.

In deze notitie gaan we nader in op de redenen om deze tool te ontwikkelen en we laten een voorbeeld van het ontwikkelde systeem zien. E-learning tool voor Lineaire Algebra W. Pasman, F.W. Jansen, EWI-TU Delft 1. Introductie We beschrijven een E-learning tool waarmee studenten zelfstandig opgaven Lineaire Algebra kunnen oefenen. De tool

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Schoolagenda klas 5d GWi8-WWi8

Schoolagenda klas 5d GWi8-WWi8 Schoolagenda klas 5d GWi8-WWi8 Koen De Naeghel Onze-Lieve-Vrouwecollege Assebroek schooljaar 2014-2015 Eerste trimester Toetsen 6 repetities en enkele kleine, aangekondigde testen (75% TTE) dag en datum

Nadere informatie

Statistiek: Centrummaten 12/6/2013. dr. Brenda Casteleyn

Statistiek: Centrummaten 12/6/2013. dr. Brenda Casteleyn Statistiek: Centrummaten 12/6/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie 1) Nominaal niveau: Gebruik de Modus, dit is de meest frequente waarneming 2) Ordinaal niveau:

Nadere informatie

Inhoudsopgave. I Theorie 1

Inhoudsopgave. I Theorie 1 Inhoudsopgave I Theorie 1 1 Verzamelingen 3 1.1 Inleiding........................................ 3 1.2 Bewerkingen met verzamelingen........................... 6 1.2.1 Vereniging (unie) van twee verzamelingen.................

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Breuksplitsen WISNET-HBO NHL. update juli 20014

Breuksplitsen WISNET-HBO NHL. update juli 20014 Breuksplitsen WISNET-HBO NHL update juli 20014 1 Inleiding Bij sommige opleidingen is het belangrijk dat er enige vaardigheid ontwikkeld wordt om grote breuken te manipuleren en om te zetten in een aantal

Nadere informatie

Domein A: Vaardigheden

Domein A: Vaardigheden Examenprogramma Wiskunde A havo Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein B Algebra en tellen

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Studentnaam: Studentnummer: Voorblad bij tentamen (in te vullen door de examinator) Vaknaam:Biostatistiek en Lineaire Algebra Vakcode: 2DM81 Datum: Begintijd:13.30 Eindtijd: 16.30 Aantal pagina s:2 voor

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Stelsels lineaire vergelijkingen Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven In het vak Meetkunde voor Bouwkunde kom je stelsels lineaire vergelijkingen tegen en matrices tegen.

Nadere informatie

Basiswiskunde (2DM00) in collegejaar 2011-2012

Basiswiskunde (2DM00) in collegejaar 2011-2012 Basiswiskunde (2DM00) in collegejaar 2011-2012 INLEIDING Het werkcollege Basiswiskunde is bedoeld om de kennis van de VWO-wiskunde paraat te krijgen en om vaardigheid te ontwikkelen om vlot, handig en

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

Lineaire Algebra A en B. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven

Lineaire Algebra A en B. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Lineaire Algebra A en B Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven 2010 2011 ii Syllabus bij Lineaire Algebra A (2WF07) en Lineaire Algebra B (2WF08) Inhoudsopgave 0 Vectorrekening

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger

Nadere informatie

Tentamen QCB 3. 12 juli 2005, 9:00-12:00 uur, A. van der Avoird

Tentamen QCB 3. 12 juli 2005, 9:00-12:00 uur, A. van der Avoird Aantal pagina s: 5 1 Tentamen QCB 3 12 juli 2005, 9:00-12:00 uur, A. van der Avoird Vraagstuk 1 Het molecuul NH heeft een triplet grondtoestand. N heeft atoomnummer 7, en we nemen aan dat de 1s en 2s electronen

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Programma. - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen. hfst 9 rekenen2.

Programma. - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen. hfst 9 rekenen2. Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen 1 priemfactoren Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na

Nadere informatie

Modulewijzer InfPbs00DT

Modulewijzer InfPbs00DT Modulewijzer InfPbs00DT W. Oele 0 juli 008 Inhoudsopgave Inleiding 3 Waarom wiskunde? 3. Efficiëntie van computerprogramma s............... 3. 3D-engines en vectoranalyse................... 3.3 Bewijsvoering

Nadere informatie

b + b c + c d + d a + a

b + b c + c d + d a + a Voorwoord De wiskundige vorming die in de wiskundig sterke richtingen van het Vlaamse secundair onderwijs wordt aangeboden, vormt een zeer degelijke basis voor hogere studies in wetenschappelijke, technologische

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS deel 1 LOTHAR PAPULA 2e druk > ACADEMIC SERVICE inhoud 1 Algemene grondbegrippen 1 1.1 Enkele basisbegrippen in de verzamelingenleer 1 1.1.1 Definitieenbeschrijvingvaneenverzameling

Nadere informatie

Studiehandleiding. Differentiëren en Integreren 3. voor. Wiskunde, Natuurkunde en Medische Natuurwetenschappen

Studiehandleiding. Differentiëren en Integreren 3. voor. Wiskunde, Natuurkunde en Medische Natuurwetenschappen Studiehandleiding Differentiëren en Integreren 3 voor Wiskunde, Natuurkunde en Medische Natuurwetenschappen februari en maart 2013 Docent: F. Pasquotto kamer: R 5.46 f.pasquotto@vu.nl tel: 020 598 7689

Nadere informatie

Introductie Lineaire Algebra Voor Computer Graphics

Introductie Lineaire Algebra Voor Computer Graphics Introductie Lineaire Algebra Voor Computer Graphics John Val th October Inleiding In deze cursus staat tekenen op het computerscherm en animaties van die tekeningen centraal. We willen bereiken dat je

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Havo A deel 1 begint met het niet-examenonderwerp Statistiek (was hoofdstuk 4). Al snel wordt de grafische rekenmachine ingezet en ook bij de andere

Nadere informatie

Instructies voor Lineaire Algebra 2 - Matlabsessies in week 9-12

Instructies voor Lineaire Algebra 2 - Matlabsessies in week 9-12 Instructies voor Lineaire Algebra 2 - Matlabsessies in week 9-12 De laatste vier weken bij Lineaire Algebra 2 zijn van dubbele instensiteit. Er zijn zes contacturen, verdeeld over een hoor-/instructie-college

Nadere informatie

totale studielast: 320 uur Dit vak heeft ook een Centraal Examen, dat voor 50% het eindcijfer bepaalt.

totale studielast: 320 uur Dit vak heeft ook een Centraal Examen, dat voor 50% het eindcijfer bepaalt. PTA wiskunde A HAVO cohort 2014-2016 ST=SE-toets SP=SE-praktische opdracht VT=voortgangstoets VP=voortgangs-praktische opdracht HD=handelingsdeel Weeknummers zijn een indicatie: er kunnen geen rechten

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie

Enkele voorbeelden volstaan. Zie verder de Help-file van Matlab.

Enkele voorbeelden volstaan. Zie verder de Help-file van Matlab. 1 Inleiding Bij Stochastische Operations Research (2DD21 + SOR-deel van 2DD18) wordt software gebruikt: routines en procedures uit het pakket Matlab en uit een toolbox met Matlab-m-files die hoort bij

Nadere informatie

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1 Inhoud Aan de student V Studiewijzer Aan de docent VII IX Over de auteurs XI Hoofdstuk 0 Basiswiskunde 1 Leereenheid 0.1 Elementaire algebra 3 0.1.1 Verzameling van getallen en het symbool 4 0.1.2 Merkwaardige

Nadere informatie

5 Totale kleinste kwadraten

5 Totale kleinste kwadraten 5 TOTALE KLEINSTE KWADRATEN 49 5 Totale kleinste kwadraten 5a Beste benadering in IR Als we de verzameling punten V := {, 2,, m } in IR hebben gegeven en we vragen welk punt z het dichtst bij al deze punten

Nadere informatie

Aansluiting VWO WO en Wiskunde D

Aansluiting VWO WO en Wiskunde D Aansluiting VWO WO en Wiskunde D Steven Wepster Departement Wiskunde Universiteit Utrecht D-dag 2013 Wie ben ik? lang geleden: een jaartje wi aan onderbouw nu: UD (geschiedenis van de) wiskunde, Utrecht

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Beknopte handleiding voor Derive 5.0 for Windows

Beknopte handleiding voor Derive 5.0 for Windows - Lesbrief Beknopte handleiding voor Derive 5.0 for Voorspelbaarheid en Populaties in de tijd Doelgroep Klas 5 t/m 6 havo en vwo Vakken en domeinen Algemene natuurwetenschappen VWO Wiskunde VWO: A domein

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Een korte beschrijving van de inhoud

Een korte beschrijving van de inhoud Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige toepassingen op

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN Voorwoord Dit vak is een voortzetting van het tweedejaarscollege Besliskunde. Een aantal andere mathematische beslissingsproblemen komt aan de orde en

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Gebruik van een grafisch rekenmachine in de 3de graad ASO

Gebruik van een grafisch rekenmachine in de 3de graad ASO in de 3de Dr Didier Deses Koninklijk Atheneum Koekelberg Vrije Universiteit Brussel T 3 -Vlaanderen wiskak@yahoo.com Overzicht 1 2 ::een grafiek maken Dmv y= en zoom [zdecimal]: ::een grafiek maken Dmv

Nadere informatie

De Dirac vergelijking

De Dirac vergelijking De Dirac vergelijking Alexander Sevrin 1 Inleiding Deze nota s geven een korte inleiding tot de Dirac vergelijking en haar eigenschappen. Kennis van de Dirac vergelijking is onontbeerlijk bij de studie

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Hoofdstuk 4 Eigenwaarden en eigenvectoren 4.1 Inleiding Tot nu toe zijn al onze vectoren en matrices reëel geweest d.w.z. de theorie voor stelsels lineaire vergelijkingen en de theorie der matrices en

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Differentiëren. Training met de rekenregels en de standaard afgeleiden

Differentiëren. Training met de rekenregels en de standaard afgeleiden Differentiëren Training met de rekenregels en de standaard afgeleiden Wisnet-HBO update maart 2011 Voorkennis Repeteer de standaardafgeleiden en de rekenregels voor differentiëren. Draai eventueel het

Nadere informatie

10e editie Inhoudsopgave leerjaar 5

10e editie Inhoudsopgave leerjaar 5 10e editie Inhoudsopgave leerjaar 5 2 Inhoud 5 havo A Blok 1 Analyse Hoofdstuk 1 Allerlei formules 10 Voorkennis 12 1-1 Recht evenredig en omgekeerd evenredig 14 1-2 Formules met breuken 16 1-3 Formules

Nadere informatie

Beeldcompressie. VWO Masterclass 08. 21 oktober 2008

Beeldcompressie. VWO Masterclass 08. 21 oktober 2008 Beeldcompressie VWO Masterclass 08 21 oktober 2008 1 Voorbereiding In dit practicum doen we hetzelfde als in het hoorcollege (Fourier-transformatie op geluid), maar dan voor plaatjes. Jullie werken in

Nadere informatie

Programmeren en Wetenschappelijk Rekenen in Python. Wi1205AE I.A.M. Goddijn, Faculteit EWI 22 april 2014

Programmeren en Wetenschappelijk Rekenen in Python. Wi1205AE I.A.M. Goddijn, Faculteit EWI 22 april 2014 Programmeren en Wetenschappelijk Rekenen in Python Wi1205AE, 22 april 2014 Inleiding Cursus coördinator e-mail Docent e-mail : Jacco Hoekstra : J.M.Hoekstra@TUDelft.nl : Ingeborg Goddijn : I.A.M.Goddijn@TUDelft.nl

Nadere informatie

Principale Componenten

Principale Componenten Principale componenten E. Omey HI AJ 2006 2007 1 Principale Componenten 1. Inleiding In econometrische studies is het bij de selectie van verklarende variabelen van groot belang om QMC te vermijden. We

Nadere informatie

Monitoraatssessie Wiskunde

Monitoraatssessie Wiskunde Monitoraatssessie Wiskunde 1 Overzicht van de cursus Er zijn drie grote blokken, telkens voorafgegaan door de rekentechnieken die voor dat deel nodig zullen zijn. Exponentiële en logaritmische functies;

Nadere informatie

11 e editie. Inhoudsopgaven VWO 5

11 e editie. Inhoudsopgaven VWO 5 11 e editie Inhoudsopgaven VWO 5 Inhoudsopgave 5 vwo A 1 Formules herleiden 1-1 Lineaire formules 1-2 Gebroken formules 1-3 Wortelformules 1-4 Machtsformules 1-5 Gemengde opdrachten 2 Statistiek (op computer)

Nadere informatie

Lineaire Algebra 3 en 4. Wieb Bosma

Lineaire Algebra 3 en 4. Wieb Bosma Lineaire Algebra 3 en 4 Wieb Bosma juni 2000/juni 2001 Inhoudsopgave 1 Vectorruimten 3 1.1 Inleiding........................................ 3 1.2 Lichamen....................................... 3 1.2.1

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

1 Inleidende begrippen 5 1.1 Velden... 6 1.2 Veeltermen... 13 1.3 Matrices... 17 1.4 Stelsels van lineaire vergelijkingen... 22

1 Inleidende begrippen 5 1.1 Velden... 6 1.2 Veeltermen... 13 1.3 Matrices... 17 1.4 Stelsels van lineaire vergelijkingen... 22 Inhoudsopgave Inhoudsopgave iii 0 Inleiding: De vectorruimte R n 1 1 Inleidende begrippen 5 1.1 Velden............................... 6 1.2 Veeltermen............................ 13 1.3 Matrices..............................

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

Premaster Marketing Vrije Universiteit Amsterdam - Fac. der Economische Wet. en Bedrijfsk. - P Marketing - 2010-2011

Premaster Marketing Vrije Universiteit Amsterdam - Fac. der Economische Wet. en Bedrijfsk. - P Marketing - 2010-2011 Premaster Marketing Vrije Universiteit Amsterdam - - P Marketing - 2010-2011 Vrije Universiteit Amsterdam - - P Marketing - 2010-2011 I De premasteropleiding duurt maximaal één jaar en is bestemd voor

Nadere informatie

Studiewijzer. Bachelor Informatica. Inleiding Programmeren Studiejaar en semester: jaar 1, semester 1 (blok 1)

Studiewijzer. Bachelor Informatica. Inleiding Programmeren Studiejaar en semester: jaar 1, semester 1 (blok 1) Studiewijzer Bachelor Informatica Vak: Inleiding Programmeren Studiejaar en semester: jaar 1, semester 1 (blok 1) Coördinator: J. Lagerberg Docenten: R. Poss en J. Lagerberg Studielast: 6 EC Studiegidsnummer:

Nadere informatie

WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

Efficiente benadering van Google s PageRank (Engelse titel: Efficient approximation of Google s PageRank)

Efficiente benadering van Google s PageRank (Engelse titel: Efficient approximation of Google s PageRank) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Efficiente benadering van Google s PageRank (Engelse titel: Efficient approximation

Nadere informatie

Algebra Determinanten en stelsels. Cursus voor de vrije ruimte

Algebra Determinanten en stelsels. Cursus voor de vrije ruimte Algebra Determinanten en stelsels Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Determinanten 1.1 Determinant van de orde twee We gaan na wat de voorwaarde is waaraan

Nadere informatie

Systeemtheorie en Regeltechniek

Systeemtheorie en Regeltechniek Systeemtheorie en Regeltehnie Oefenzitting Lineaire Tijds-invariante (LTI) Disrete tijdssystemen: Oplossen van de differentievergelijing wouter.biesmans@esat.uleuven.be Hoe unnen we een system voorstellen?

Nadere informatie

Premaster Marketing Vrije Universiteit Amsterdam - Fac. der Economische Wet. en Bedrijfsk. - P Marketing - 2011-2012

Premaster Marketing Vrije Universiteit Amsterdam - Fac. der Economische Wet. en Bedrijfsk. - P Marketing - 2011-2012 Premaster Marketing Vrije Universiteit Amsterdam - - P Marketing - 2011-2012 Vrije Universiteit Amsterdam - - P Marketing - 2011-2012 I De premasteropleiding duurt maximaal één jaar en is bestemd voor

Nadere informatie

Onderwerpen en kwaliteitscriteria VWO-WISKUNDE. Deliverable 3.2. Hans Cuypers en Henk van der Kooij

Onderwerpen en kwaliteitscriteria VWO-WISKUNDE. Deliverable 3.2. Hans Cuypers en Henk van der Kooij Onderwerpen en kwaliteitscriteria VWO-WISKUNDE Deliverable 3.2 Hans Cuypers en Henk van der Kooij Inleiding In deze deliverable zullen we voor het domein van de VWO-WISKUNDE de onderwerpen vaststellen

Nadere informatie

Instructies zijn niet alleen visueel, maar ook auditief, met hoogkwalitatief ingesproken geluid (geen computerstem).

Instructies zijn niet alleen visueel, maar ook auditief, met hoogkwalitatief ingesproken geluid (geen computerstem). Getallen 3 Doelgroep Getallen 3 is bedoeld voor leerlingen in klas 3-5 van de havo, klas 3-6 van het vwo en in mbo 3&4. Het programma is bijzonder geschikt voor groepen waarin niveauverschillen bestaan.

Nadere informatie

Planning onderwijs testfase 3 1 september 2012 1 januari 2013

Planning onderwijs testfase 3 1 september 2012 1 januari 2013 Deliverable 4.11 Planning onderwijs testfase 3 Aan het einde van de tweede testfase is een planning gemaakt voor de activiteiten van de onderwijs implementatieprojecten in testfase 3. Voor het maken van

Nadere informatie

BUSINESS MATHEMATICS COURSE MANUAL BSC BEDRIJFSKUNDE. Vrije Universiteit Amsterdam Faculteit der Economische Wetenschappen en Bedrijfskunde

BUSINESS MATHEMATICS COURSE MANUAL BSC BEDRIJFSKUNDE. Vrije Universiteit Amsterdam Faculteit der Economische Wetenschappen en Bedrijfskunde BUSINESS MATHEMATICS Vrije Universiteit Amsterdam Faculteit der Economische Wetenschappen en Bedrijfskunde BSC BEDRIJFSKUNDE COURSE MANUAL Academisch jaar 2014-2015 Period 1.1 INHOUD BSc Bedrijfskunde...

Nadere informatie

2. Een eerste kennismaking met Maxima

2. Een eerste kennismaking met Maxima . Een eerste kennismaking met Maxima Als u nog niet eerder kennis heeft gemaakt met CAS (Computer Algebra System) software, dan lijkt Maxima misschien erg gecompliceerd en moeilijk, zelfs voor het oplossen

Nadere informatie

Het opstellen van een lineaire formule.

Het opstellen van een lineaire formule. Het opstellen van een lineaire formule. Gegeven is onderstaande lineaire grafiek (lijn b). Van deze grafiek willen wij de lineaire formule weten. Met deze formule kunnen we gaan rekenen. Je kan geen lineaire

Nadere informatie

Vectorrekening voor Wiskundige Technieken I & II 2015-16. dr. S. A. Wepster Mathematisch Instituut Universiteit Utrecht

Vectorrekening voor Wiskundige Technieken I & II 2015-16. dr. S. A. Wepster Mathematisch Instituut Universiteit Utrecht Vectorrekening voor Wiskundige Technieken I & II 2015-16 dr. S. A. Wepster Mathematisch Instituut Universiteit Utrecht Inhoudsopgave Voorwoord 2 1 Vectoren en scalairen 3 1.1 Notatie.....................................

Nadere informatie

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en):

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en): Wiskunde, LTP leerjaar 1 Onderwerp: In de Ruimte H1 26 De leerling leert te werken met platte en ruimtelijke vormen en structuren, leert daarvan afbeeldingen te maken en deze te interpreteren, en leert

Nadere informatie

Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)!

Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)! Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)! Inhoudsopgave! Wiskunde en psychologie! Doelstelling van de module! Opzet van de module! Algebra: reken regels!

Nadere informatie

In havo 4&5 kun je kiezen uit wiskunde A, B of D. Wiskunde C wordt alleen op het VWO aangeboden.

In havo 4&5 kun je kiezen uit wiskunde A, B of D. Wiskunde C wordt alleen op het VWO aangeboden. In havo 4&5 kun je kiezen uit wiskunde A, B of D. Wiskunde C wordt alleen op het VWO aangeboden. Wiskunde is een verplicht vak bij de profielen EM, NG en NT. Als je CM kiest hoef je wiskunde niet verplicht

Nadere informatie