== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

Maat: px
Weergave met pagina beginnen:

Download "== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u"

Transcriptie

1 == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke stap uit die je maakt Een (grafische) rekenmachine is toegestaan Een formuleblad niet Bedenk wel, dat eacte antwoorden worden gevraagd, tenzij anders vermeld staat! Dit tentamen bestaat uit vijf opgaven ) De functie f is gegeven door het voorschrift f() := { arctan( π ), voor >,, voor en + + (a) Toon aan, dat f continu is op R \ { } (b) Bepaal de horizontale, scheve en vertikale asymptoot van f (c) Bereken de afgeleide functie f en geef diens domein Is f differentieerbaar in? Beargumenteer het antwoord! (d) Laat zien, dat f conve is op (, ) (e) Laat g de beperking zijn van de functie f tot het interval (, ) Beargumenteer dat g inverteerbaar is, bepaal het domein van g en bereken een epliciete uitdrukking voor het functievoorschrift van g ) Beargumenteer of de volgende reeksen voorwaardelijk convergent, absoluut convergent of divergent zijn Geef duidelijk aan welke stellingen je daarbij gebruikt! (a) ln n n sin n, (b) ( ) n en n!, (c) ( ) n arctan ( n) n= n= n= 3) Bereken (a) / en de oneigenlijke integraal d, (b) ( 3)( + 4) d (c) ln d *** Zie ommezijde voor vervolg ***

2 4) De functie f : R R is gegeven door f() = 3 3 e sin6 t dt (a) Beargumenteer, dat f differentieerbaar is op R en bereken f (b) Bepaal de plaats en aard (lokaal/globaal minimum/maimum) van de etremen van f (NIET hun grootte!) (c) Gebruik de Middelwaardestelling om een schatting te geven van het verschil tussen de waarden van f in het lokale maimum en het lokale minimum 5) (a) Bepaal de convergentiestraal van de machtreeks n= ( ) n 3n + (n )! (n)! 3 n n (b) Gebruik standaard Taylorreeksen om te laten zien dat voor de machtreeks uit (a) convergeert naar cos( ) ln( + 3 ) (c) Bepaal cos( ) ln( + ) 3 Opgave Punten

3 ) (a) Op ieder van de intervallen (, ), (, ) en (, ) is f een samenstelling van continue functies en daarom continu In : en f() y π arctan y = π π = + f() + = Dus de linker en rechter iet van f in bestaan en zijn gelijk, dus f is ook continu in (b) Horizontale asymptoot: f() arctan y =, y π dus f heeft een horizontale asymptoot voor naar oneindig en deze is de lijn y = Scheve asymptoot: ( ) ( ) + ( )(a + b) f() (a + b) + + ( a) (a + b) + b + Deze iet is nul dan en slechts dan als a = en a + b =, ofwel a = en b = Dus de lijn y = is een scheve asymptoot van f voor naar Verticale asymptoot: + f() + = en + f() + =, dus de lijn = is een verticale asymptoot van f bij = verticale asymptoten (c) Op (, ) is f volgens de kettingregel differentieerbaar en f () = π + ( ) = π + Ook op (, ) en (, ) is f differentieerbaar en f () = ( + ) ( + ) ( + ) = + 4 ( + ) Voor de differentieerbaarheid in bekijken we f() f() arctan( ) π Verder zijn er geen

4 Met de keuze tan θ = zien we eenvoudig in een driehoek dat tan( π θ) = en dus Verder, f() f() θ π arctan tan( π θ) tan θ f() f() + + θ θ π tan θ = π = 4 De iet van (f() f())/ voor naar bestaat dus niet en dus is f niet differentieerbaar in Conclusie: het domein van f is R \ {, } en f () = { +4 π (+), (, ) (, ), (, ) +, (d) Uit (c) volgt voor > dat f () = π ( + ) = en dit is > Dus f is conve op (, ) π( + ) (e) Het bereik van arctan( ) op (, ) is (, ) en van + op (, ] is dat [, ) We π + lossen op: y = π arctan( ) met y (, ) Dan tan(πy) =, dus = en deze oplossing is uniek en in (, ) tan πy Voor y [, ) lossen we op: y = + + We krijgen y + y = Er is precies één oplossing met (, ], namelijk = y y 4( y) Dus g is inverteerbaar en g (y) = { tan πy y (, ), y y +8y 4, y [, ) ) (a) ln n n, dus ln n sin n n het vergelijkingscriterium is n= ln n n voor n en n= is convergent Wegens n 3/ sin n absoluut convergent en dus ook convergent n 3/ ( ) (b) n+ e n+ n! n (n+)! ( ) n e = e n n n+ is de reeks absoluut convergent en dus convergent = <, dus volgens het quotientencriterium (c) Dit is een alternerende reeks arctan( ) is voor alle n, arctan( ) is dalend in n n n (want arctan is een stijgende functie), n arctan( ) = (want arctan = en n

5 arctan is continu) Uit Leibniz criterium volgt dat de reeks convergent is Omdat de afgeleiden van arctan in gelijk is aan, is arctan / voor dicht bij nul en dus arctan( ) De reeks n n n= is niet convergent, dus n n= arctan( ) is niet convergent n vanwege het vergelijkingscriterium en dus is de alternerende reeks niet absoluut convergent Dus: voorwaardelijk convergent 3) (a) / d = substitueer = sin θ, d dθ = cos θ, sin θ = cos θ = cos θ, want voor θ [, π/6] is cos θ, (b) Met breuksplitsen: dus we moeten kiezen: ofwel Dus = = π/6 π/6 sin θ cos θ cos θ dθ = π/6 sin θ dθ ( cos θ) dθ = ( θ 4 = π sin π 3 = π sin θ) π/6 A 3 + B + C + 4 = (A + B) + (C 3B) + 4A 3C ( 3)( + 4) A + B = 3, C 3B = 7, 4A 3C = 7, C =, B =, A = d = d ( = ln 3 + ln arctan ) = ln 3 + ln 8 ln 4 π 4 = ln 3 π 8, (c) R R ln ln d d R R ( R ln ) d ( R ln R d + R R ln R d R R =,

6 waar we partiële integratie hebben gebruikt 4) (a) e sin6 t is een continue functie, want samenstelling van continue functies Volgens de hoofdstelling van de integraalrekening/analyse is dan y t dt een differentieerbare esin6 functie van y Samengesteld met de differentieerbare functie 3 3 volgt met de kettingregel dat f differentieerbaar is Ook volgt uit de hoofdstelling en de kettingregel dat f () = e sin6 ( 3 3 ) (6 6 ) (b) Omdat f overal differentieerbaar is kunnen de etremen van f alleen optreden in punten waar f () = Ofwel 6 6 =, dus = of = Uit een tekenschema van f is meteen te zien dat f een lokaal maimum heeft in = en een lokaal minimum in = Verder wordt f() willekeurig groot voor en willekeurig klein (negatief) voor, dus de etremen zijn lokaal, niet globaal (c) Uit de middelwaardestelling volgt dat er een c tussen en bestaat zo dat f() f( ) = f (c) Omdat 6 6 zijn nulpunten heeft in en, is deze maimaal in = / en daar is het maimum 3 Dus f (c) e 3 Daarom is f() f( ) 3 f (c) 8 e 5) (a) Er geldt 3 n+ + (n + )! (n)!3 n n (n + )!3 n+ 3 n + (n )! 3 n+ + (n + )! n 3 n + (n )! 3(n + )(n + ) n n dus de convergentiestraal is 3 3 n+ + (n + )n (n )! 3 n + 3(n + )(n + ) (n )! 3 n+ + ( + ) n (n )! n 3 n + 3( + )( + ) = 8 (n )! n n = /3,

7 (b) Met de standaard Taylorreeksen van cos en ln( + ) vinden we cos( ) ln( + 3 ) = n ( ) n (n)! + n+ (/3)n+ ( ) n + n= n= n = ( ) n (n)! + ( ) n (/3)n n n= n= ( = ( ) n n (n)! + ) 3 n n = n= n= ( ) n 3n + (n )! (n)!3 n n (c) Met behulp van (b) vinden we cos( ) ln( + ) 3 ( ) 3+( )! + O( ) ()!3 = 5 6 (Alternatief: met l Hôpital)

== Tentamen Analyse 1 == Maandag 12 januari 2009, u

== Tentamen Analyse 1 == Maandag 12 januari 2009, u == Tentamen Analyse == Maandag januari 009, 400-700u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille of O van Gaans) en je studierichting Elk antwoord dient gemotiveerd te

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

Tussentoets Analyse 1

Tussentoets Analyse 1 Tussentoets Analyse Maandag 0 oktober 008, 0.00 -.00u Schrijf op ieder vel je naam en studentnummer, de naam van de docent S. Hille, O. van Gaans en je studierichting. Geef niet alleen antwoorden, leg

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

e x x 2 cos 2 (sin t) cos(t) dt

e x x 2 cos 2 (sin t) cos(t) dt Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP3B 5 november, 8.3.3 Het gebruik van een rekenmachine, telefoon en boeken) is niet toegestaan. Geef precieze argumenten en antwoorden. Maak uw redenering

Nadere informatie

Tentamen Functies en Reeksen

Tentamen Functies en Reeksen Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0.

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0. OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE (COLLEGE NAJAAR 6).. Bepaal alle oplossingen van de vergelijking (z + i) 4 = 6 in het complee vlak. a. Schrijf het getal i in poolcoördinaten. b. Bereken de rechthoekige

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Algemeen deel. Bij het vermenigvuldigen met van de ongelijkheid moet u rekening houden met twee gevallen, te weten > 0 en < 0 en u moet

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013, Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00 TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een

Nadere informatie

== Modeluitwerking tentamen Analyse 1 == Maandag 14 januari 2008, u

== Modeluitwerking tentamen Analyse 1 == Maandag 14 januari 2008, u == Modeluitwerking tentmen Anlyse == Mndg 4 jnuri 8, 4.-7.u. Formuleer de Tussenwrdestelling. Als f :, b] R continu is en s R ligt tussen f en fb, dn bestt er een c, b] met fc = s. b Toon n, dt de vergelijking

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n. Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Asymptoten. Hoofdstuk Basis. 1.2 Verdieping. 1. Bepaal alle asymptoten van de volgende functies:

Asymptoten. Hoofdstuk Basis. 1.2 Verdieping. 1. Bepaal alle asymptoten van de volgende functies: Hoofdstuk 1 Asymptoten 1.1 Basis 1. Bepaal alle asymptoten van de volgende functies: a) f) 5 + 6 5 + 1 b) f) + 5 c) f) 5 + d) f) + + e) f) + + f) f) + 1 + + 4 g) f) 5 + h) f) + 1 i) f) cos 1 1. Verdieping

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

college 6: limieten en l Hôpital

college 6: limieten en l Hôpital 126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In

Nadere informatie

tentamen Analyse (deel 3) wi TH 21 juni 2006, uur

tentamen Analyse (deel 3) wi TH 21 juni 2006, uur Technische Universiteit Delft Technische Wiskunde Faculteit lektrotechniek, Wiskunde en Informatica Mekelweg 4, 68 CD DLFT tentamen Analyse (deel 3) wi 54 TH juni 6, 4. 7. uur Deelname aan dit tentamen

Nadere informatie

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0.

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0. Gegeven is de functie.0 Voorkennis Deze functie bestaat niet bij een van. Invullen van = geeft een deling door 0. De functie g() = heeft als domein R en is een ononderbroken kromme. Deze functie is continu

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (15126) op dinsdag 4 januari 211, 8.45 11.45 uur. De uitwerkingen van de opgaven

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013 Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2 Radboud Universiteit Nijmegen Tentamen Calculus NWI-NPB 8 januari 3, 8.3.3 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden. Maak uw redenering

Nadere informatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft

Nadere informatie

Calculus I, 23/11/2015

Calculus I, 23/11/2015 Calculus I, /11/015 1. Beschouw de functie met a, b R 0. f = a + b + lne a Benoem het domein van de functie f. b Bepaal a en b zodat de rechte y = 1 een schuine asymptoot is voor f. c Voor a = en b = 1,

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

Infi A oefententamen ψ

Infi A oefententamen ψ Infi A oefententamen ψ Aanwijzingen Motiveer alle antwoorden. Werk rustig, netjes en duidelijk. Zorg dat je uitwerking maar één interpretatie toelaat. Alle informatie op dit opgavenblad mag bij alle (deel)opgaven

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 2 oktober 200, 3.45 6.45 uur. De uitwerkingen van de opgaven

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

EERSTE AFGELEIDE TWEEDE AFGELEIDE

EERSTE AFGELEIDE TWEEDE AFGELEIDE Lesrief EERSTE AFGELEIDE etreme waarden raaklijn normaal TWEEDE AFGELEIDE uigpunten 6/7Np GGHM03 Inleiding Met ehulp van de grafische rekenmachine kun je snel zien of de grafiek daalt of stijgt. Het horizontaal

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan

Nadere informatie

Tentamen Gewone Differentiaal Vergelijkingen II

Tentamen Gewone Differentiaal Vergelijkingen II Tentamen Gewone Differentiaal Vergelijkingen II.0.007 Jullie mogen een willekeurige van de vier opgaven als bonusopgave bekijken. (Dus drie opgaven volledig en goed gedaan is al een 10.) Opgave 1 Bekijk

Nadere informatie

Paragraaf K.1 : Substitutiemethode

Paragraaf K.1 : Substitutiemethode Hoofdstuk K Voortgezette Integraalrekening (V5 Wis B) Pagina van 8 Paragraaf K. : Substitutiemethode Stappenplan voor de substitutiemethode : () Neem y = formule (bij kettingregel noem je deze formule

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 23 oktober 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8,

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8, UITWERKINGEN TENTAMEN DIFFERENTIËREN EN INTEGREREN 20 OKTOBER 2008. a) f(x) < is equivalt aan < f(x)

Nadere informatie

ANALYSEQUIZ Ga naar new.shakeq.com en log in met de code uvaanalyse2a

ANALYSEQUIZ Ga naar new.shakeq.com en log in met de code uvaanalyse2a ANALYSEQUIZ 2016 Ga naar new.shakeq.com en log in met de code uvaanalyse2a WAAR OF ONWAAR: EEN SOM CONVERGEERT ALS DE TERMEN NAAR NUL GAAN. A. Waar B. Onwaar De vraag gaat open zodra u een sessie en diavoorstelling

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 24 oktober 22, 3.45 6.45 uur De uitwerkingen van de opgaven

Nadere informatie

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Basiswiskunde, 2DL03, woensdag 1 oktober 2008, uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Basiswiskunde, 2DL03, woensdag 1 oktober 2008, uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Basiswiskunde, DL3, woensdag oktober 8, 9.. uur. Geef op het eerste vel met uitwerkingen aan welk programma (Schakelprogramma

Nadere informatie

Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x

Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x Calculus, 4//4. Gegeven de reële functie ft) met als voorschrift t arcsin x ft) = dx x a) Geef het domein van de functie ft). Op dit domein, bespreek waar de functie stijgt, daalt en bepaal de lokale extrema.

Nadere informatie

Paragraaf 13.1 : Berekeningen met de afgeleide

Paragraaf 13.1 : Berekeningen met de afgeleide Hoofdstuk 13 Toepassingen vd differentiaalrekening (V5 Wis A) Pagina 1 van 7 Paragraaf 13.1 : Berekeningen met de afgeleide Differentiëren van e-machten en logaritmen f() = e f () = e f() = ln() f () =

Nadere informatie

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur Tentamen Calculus 5 januari 00, 9:00 -:00 uur Je mag geen rekenapparaat gebruiken. De opgaven t.e.m. 6 tellen allemaal even zwaar. Vermeld op elk papier dat je inlevert je naam en je studentnummer. Geef

Nadere informatie

Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)!

Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)! Tentamen Analyse II. Najaar 6 (.1.7) Toelicting: Je mag Zoric deel I en II gebruiken, maar geen ander ulpmiddelen (zoals andere boeken, aantekeningen, rekenmacine etc.)! Als je bekende stellingen gebruikt

Nadere informatie

Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30)

Z.O.Z. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 2016, 12:30 15:30 (16:30) Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 16 juni 016, 1:30 15:30 (16:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van aantekeningen

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid

Nadere informatie

Het uitwendig product van twee vectoren

Het uitwendig product van twee vectoren Het uitwendig product van twee vectoren Als u, v R 3, u = u 1, u 2, u 3 en v = v 1, v 2, v 3 dan is het uitwendig product van u en v gelijk aan een vector in R 3 en wel u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3,

Nadere informatie

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen?

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen? Vraag Een vloeistoftank met onbeperkte capaciteit, bevat aanvankelijk V liter zuiver water. Tijdens de eerste faze stroomt water, dat zout bevat met een concentratie van k kilogram per liter, de tank binnen

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Hoofdstuk 3 - Transformaties

Hoofdstuk 3 - Transformaties Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 V-a f () = g () = sin h () = k () = log m () = n () = p () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen 0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein

Nadere informatie

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Inhoudsopgave 1 Definitie Betekenis van de afgeleide 1 2 Standaardafgeleiden

Nadere informatie

n 2 + 3n + 6 4n 3 3 n + 8n n + 3n + 16 n=1 Indien convergent, bepaal dan ook de waarde van de reeks.

n 2 + 3n + 6 4n 3 3 n + 8n n + 3n + 16 n=1 Indien convergent, bepaal dan ook de waarde van de reeks. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP004B januari 05,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Tussentoets Analyse 2. Natuur- en sterrenkunde.

Tussentoets Analyse 2. Natuur- en sterrenkunde. Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.

Nadere informatie

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 2 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 38 Outline 1 Rekenregels 2 K. P. Hart TW2040: Complexe

Nadere informatie

Toets 3 Calculus 1 voor MST, 4501CALC1Y donderdag 20 oktober 2016; 13:30-15:30 uur

Toets 3 Calculus 1 voor MST, 4501CALC1Y donderdag 20 oktober 2016; 13:30-15:30 uur Toets 3 Calculus voor MST, 450CALCY donderdag 20 oktober 206; 3:30-5:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Volgt de lessen bij: (Leids) studentnummer: A (Keijzer)

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

QuizAnalyseHoofdstuk3 - wv -Brackx

QuizAnalyseHoofdstuk3 - wv -Brackx QuizAnalyseHoofdstuk3 - wv -Brackx Als: dan is: Als f discontinu is in x 0 en dan zijn de linker- en rechterlimieten van f(x) in x 0 aan elkaar gelijk maar verschillend van L. Als voor alle x in ]a,b [

Nadere informatie

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1 Radboud Universiteit Nijmegen Tentamen Calculus 2 NWI-NP004B 6 april 205, 8.00 2.00 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op dinsdag 26 augustus 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, maandag K. P. Hart Faculteit EWI TU Delft Delft, 30 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 33 Outline 1 2 Algemeenheden Gedrag op de rand Machtreeksen

Nadere informatie

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten)

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten) 8.I.00 Wiskundige Analyse I, theorie 60% van de punten) Beantwoord elk van de vragen I,II,III en IV op één van de dubbele geruite bladen. Schrijf op elk van die dubbele geruite bladen, bovenaan de eerste

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

(2) Bepaal de absolute waarde van (1 + i) 10 + ( x x 1 = 1. (4) Bepaal lim

(2) Bepaal de absolute waarde van (1 + i) 10 + ( x x 1 = 1. (4) Bepaal lim Tentamen Calculus I, 4 februari 009, 9:00 :00. Schrijf op elk in te leveren blad je naam, en op het eerste blad het aantal ingeleverde bladen. Alle (negen) opgaven tellen even zwaar. Het gebruik van boek(en),

Nadere informatie

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer)

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op maandag 4 januari 2, 8.45.45 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.1, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 21 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 32 Outline 1 K. P. Hart TW2040: Complexe Functietheorie

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Donderdag 8 juli 4. Tijd: 14. 17. uur. Plaats: MA 1.44/1.46 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Convexe Analyse en Optimalisering

Convexe Analyse en Optimalisering Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,

Nadere informatie

2E HUISWERKOPDRACHT CONTINUE WISKUNDE

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2E HUISWERKOPDRACHT CONTINUE WISKUNDE Inleverdatum maandag 8 oktober 2017 voor het college Niet losse velletjes aan elkaar vast. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven.

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1 IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag

Nadere informatie

Complexe Analyse - Bespreking Examen Juni 2010

Complexe Analyse - Bespreking Examen Juni 2010 Complexe Analyse - Bespreking Examen Juni 2010 Hier volgt een bespreking van het examen van Complexe Analyse op 18 juni. De bedoeling is je de mogelijkheid te geven na te kijken wat je goed en wat je minder

Nadere informatie

Relevante vragen , eerste examenperiode

Relevante vragen , eerste examenperiode Relevante vragen 2006 2007, eerste examenperiode OEFENING y = x 2 2, y = x, z = x 2 + y 2, z = x + 6 omvatten, indien we ons tot het gedeelte binnen de parabolische cilinder beperken, twee verschillende

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 7 augustus 2015, 16:30 19:30 (20:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNICHE UNIVERITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functies van meer variabelen, deel A (2XE6) op maandag 2 mei 25, 9..3 uur. De uitwerkingen van de opgaven dienen duidelijk geformuleerd

Nadere informatie

Tentamen Wiskundige Technieken 1 Ma 6 nov 2017 Uitwerkingen

Tentamen Wiskundige Technieken 1 Ma 6 nov 2017 Uitwerkingen Tentamen Wiskundige Technieken Ma 6 nov 207 Uitwerkingen Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie week 4.8, maandag Faculteit EWI TU Delft Delft, 6 juni, 2016 1 / 33 Outline 1 Maximum-modulusprincipe Lemma van Schwarz 2 2 / 33 Maximum-modulusprincipe Lemma van Schwarz Maximum-modulusprincipe Stelling

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008 ste Bachelor Ingenieurswetenschappen Academiejaar 007-008 ste semester 0 januari 008 Analyse I. Bewijs de stelling van Bolzano-Weierstrass: elke oneindige begrensde deelverzameling van R heeft minstens

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Toegepaste Wiskunde. voor het hoger beroepsonderwijs. Correcties en aanvullingen (mei 2009) HBuitgevers, Baarn

Toegepaste Wiskunde. voor het hoger beroepsonderwijs. Correcties en aanvullingen (mei 2009) HBuitgevers, Baarn Drs. J.H. Blankespoor Drs. C. de Joode ir. A. Sluijter Toegepaste Wiskunde voor het hoger beroepsonderwijs Deel Correcties en aanvullingen (mei 009) HBuitgevers, Baarn TOEGEPASTE WISKUNDE DEEL Correcties

Nadere informatie

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries)

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries) Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017 Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer) / B

Nadere informatie