Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008

Maat: px
Weergave met pagina beginnen:

Download "Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008"

Transcriptie

1 ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 0 januari 008 Analyse I. Bewijs de stelling van Bolzano-Weierstrass: elke oneindige begrensde deelverzameling van R heeft minstens verdichtingspunt.. We beschouwen een functie F : R n R m gedefinieerd op een omgeving van a R n. Toon aan dat lim F ( x) = b = (b,, b m ) lim f i ( x) = b i, x a x a voor elke i =,,, m. Hierbij is f i de i-de component van de functie F. 3. Formuleer en bewijs de stelling van de impliciete functie voor het oplossen van de vergelijking f(x, y) = 0. Leid ook een formule af voor y (x) en y (x), en schrijf de Taylorveelterm voor y op tot op orde. 4. Geef de definitie van differentieerbaarheid van een functie f : R n R in het punt a = (a,, a n ). Bewijs dat differentieerbaarheid in a het bestaan van alle richtingsafgeleiden in a impliceert. Bewijs ook dat differentieerbaarheid in a continuïteit in a impliceert. Tijd: 00 minuten; alle vragen worden gekwoteerd op 0 punten.

2 ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 0 januari 008 Oefeningen Analyse I. Ga na of de limiet bestaat; bereken hem indien hij bestaat. (x + y) 3 8 lim (x,y) (,) (x + y) 4. Bereken de tweede differentiaal d f van de functie in het punt (,, ). 3. De vergelijking f(x, y, z) = ln(x yz ) ln z + x y = 0 bepaalt z als impliciete functie van x en y op een omgeving van (, ), waarbij z(, ) = e. Bepaal de vergelijking van het raakvlak aan de grafiek van z in het punt (,, e). Bereken ook z (, ). x 4. Een fabrikant wil een zo goedkoop mogelijk cilindervomig vat produceren met een volume van 756 l. Het materiaal waaruit de bodem gemaakt is is driemaal zo duur, en het materiaal waaruit het deksel gemaakt is half zo duur als het materiaal waaruit de rest van het vat, de mantel, gemaakt is. Welke straal en hoogte moet het vat hebben opdat de prijs van het vat minimaal is. 5. Bereken de integraal x + x x + + x dx. Tijd: 80 minuten; alle vragen worden gekwoteerd op 0 punten.

3 Oplossingen. (x + y) 3 8 lim (x,y) (,) (x + y) 4 = lim (x + y )((x + y) + (x + y) + 4) (x,y) (,) (x + y )(x + y + ) ((x + y) + (x + y) + 4) = lim = = 3. (x,y) (,) (x + y + ) 4. Merk eerst op dat f(x, y, z) = y z ln x We berekenen dan achtereenvolgens alle partiële afgeleiden tot op orde : f x = yz x ; f y = zyz ln x ; f z = yz ln y ln x We besluiten dat f x = yz x ; f (,, ) = x f y = z(z )yz ln x ; f z = yz (ln y) ln x ; f y x = z x yz ; f z x = ln y x yz ; f y z = (z ln y + )yz ln x ; f (,, ) = 0 y f (,, ) = 0 z f (,, ) = y x f (,, ) = 0 z x d f(,, ) = dx + dxdy. 3. f(x, y) = ln z + x y = 0. We berekenen eerst f (,, ) = 0 y z f z x = x f z = yxy z = yzx y ; f z y = y f z = xy ln x z = zx y ln x Omdat z(, ) = e volgt hieruit onmiddellijk dat z z (, ) = e en (, ) = 0 x y de vergelijking van het raakvlak in (,, e) aan de grafiek van z is dus z e = e(x ) of ex + z = e.

4 We berekenen nu de partiële afgeleide naar x van z x : z z = y x x xy y(y )zx y Als we x =, y =, z = e, z (, ) = e invullen, dan vinden we dat x z (, ) = e x 4. Stel R de straal van de bodem, en h de hoogte van het vat, in decimeter. Als ρ de prijs van het materiaal van de mantel van het vat is, per vierkante decimeter, dan is de totale prijs van het vat πρ(rh + 7 R ). We minimaliseren f(r, h) = Rh + 7 R met nevenvoorwaarde ) Methode van de multiplicatoren van Lagrange R h = 756/π. f (R, h, λ) = Rh + 7 R + λ(r h 756/π). De stationaire punten zijn oplossingen van de volgend stelsel vergelijkingen: { f = R + h λr = 0 f R = h + 7R + λrh = 0 Uit de eerste vergelijking volgt dat λr =. Als we dit substitueren in de tweede vergelijking, dan volgt dat 7R h = 0 of h = 7R. Dit stoppen we in de nevenvoorwaarde. We vinden of 7 R3 = 756 π R = 6 3 π en h = 3 π. We gaan na dat voor deze waarden een minimum bereikt wordt. We bepalen d f in het stationair punt. In het stationair punt hebben we f h = 0 ; f h h f R = ( + λr) = ; = 7 + λh = 7 + 7λR = 7

5 zodat d f = 4dRdh 7dR Als we de nevenvoorwaarde differentiëren vinden we RhdR + R dh = 0 of, in het stationair punt, dh = h dr = 7dR R zodat d f = 8dR 7dR = dr > 0 ) Directe methode We lossen de nevenvoorwaarde op naar h, en substitueren in f. We vinden h = 756 πr, zodat we volgende functie moeten minimaliseren: We bepalen eerst de stationaire punten: als en alleen als als en alleen als g(r) = 756 πr + 7 R. g (R) = 756 πr + 7R = 0 R 3 = 756 7π = 6 π R = 6 3 π en h = 756 πr = 3 π. Om te bepalen of we te doen hebben met een maximum berekenen we g ( 6 3 π ). en zodat g een minimum bereikt in R = 6/ 3 π. g (R) = πr g ( 6 3 π ) = π = = > 0 3

6 5. We mogen onderstellen dat x. x + x ( x + x ) I = dx = dx x + + x x + (x ) = (x + x x + x )dx = xdx dx Om de tweede integraal uit te rekenen passen we volgende substitutie toe: t = argch(x) = ln(x + x ), x = ch(t), dx = sh(t)dt. I = x = x 4 sh (t)dt = x (e t e t )dt 4 (e t + e t )dt = x (ch(t) )dt = x sh(t) + t 4 + c = x sh(t)ch(t) + t + c = (x x x ln(x + x ) + c. 4

7 ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 6 juni 008 Oefeningen Analyse II. Bereken de lijnintegraal Γ + xy(dx + dy) op twee verschillende manieren, gebruik makend van de stelling van Green-Riemann. Hierbij is Γ de rand van het gebied G = {(x, y) R x y } {(x, y) R 0 x 0}.. Bereken de oppervlakte van het gedeelte van de sfeer x + y + z = 4 in R 3, gelegen in het deel van R 3 met vergelijking x + y. 3. Beschouw de volgende reeks van functies (x R + ): s(x) = n= x + (n + x)(n + x + ) Onderzoek de uniforme convergentie op het open interval (a, b), waarbij 0 a < b R. Bereken voor x R + de reekssom s(x). 4. Bepaal het convergentiegedrag van de numerieke reeks: ln(n) cos( 5n + n ) n= 5. In het volgende differentiaalstelsel zijn y en z zijn functies van de veranderlijke x: { y + y + z = sin(x) z 5y z = cos(x) Bepaal y met behulp van de methode van afleiding en eliminatie. 6. Integreer de volgende differentiaalvergelijking (met 0 < x < π R): ln(cos(x))y tg(x)y + x sin(ln(x)) = 0 Tijd: 3 uur en 45 minuten; vraag : 5 punten, vraag 4: 5 punten, vragen,3,5,6: 0 punten; totaal: 60 punten.

8 Oplossingen. Formule van Green-Riemann: xydx + xydy = Γ + G (y x)dxdy We berekenen eerst het linkerlid. De kromme Γ is de aaneenschakeling van de krommen C en C, waarbij C het deel is van de hyperbool met vergelijking { x = ch t y = sh t waarbij t loopt van t = ln( 0 + 3) tot t = ln( 0 3). We merken hierbij op dat ch t = ch t = 0 en sh t = sh t = 3. C is het verticale lijnstuk met vergelijking x = 0, waarbij y loopt van 3 tot 3. We berekenen nu: t xy(dx + dy) = sh tch t(sh t + ch t)dt C Hieruit volgt dat = t t t sh (t)dsh t + t t ch (t)dch t = 3 (ch 3 (t ) ch 3 (t ) + sh 3 (t ) sh 3 (t )) = 54/3 = 8; C xy(dx + dy) = 3 3 0ydy = 0. Γ + xydx + xydy = = 8. Nu berekenen we het rechterlid. 3 0 xdxdy = dy xdx G 3 +y G = ydxdy = (0 ( + y ))dy = (9 y )dy 3 = [ 9y y 3 /3 ] 3 = 8; 3 0 x dx ydy = 0, x zodat G (y x)dxdy = = 8.

9 . We berekenen /8 van de oppervlakte, namelijk van dat gedeelte van het oppervlak dat gelegen is in het eerste octant. De vergelijking van de sfeer is, in cilindercoördinaten: z = 4 ρ of z = 4 ρ. Een stel parametervergelijkingen van het oppervlak is dus x = ρ cos θ y = ρ sin θ z = 4 ρ waarbij 0 θ π/ en ρ. We berekenen nu en zodat en r ρ r θ = u u u 3 cos θ sin θ ρ 4 ρ ρ sin θ ρ cos θ 0 = ρ cos θ u + 4 ρ S 8 = r ρ r θ = π/ 0 ρ 4 4 ρ + ρ = ρ 4 ρ. ρdρ dθ = π [ ] 4 ρ 4 ρ = π 3 S = 8π 3 3. a) Voor elke x (a, b) geldt dat x + (n + x)(n + x + ) b + n. ρ 4 ρ sin θ u + ρ u 3 Omdat n= convergent is, volgt nu uit het criterium van Weierstrass dat de reeks s uniform n convergent is over (a, b). b) Splitsing in partiële breuken levert (n + x)(n + x + ) = n + x n + x + Hiermee berekenen we gemakkelijk de partiële sommen van s(x): en n ( ) s n (x) = (x + ) i + x i + x + i= ( n ) n+ = (x + ) i + x ( ) = (x + ) j + x x n + + x i= j= s(x) = lim n s n (x) = x + x = + x.

10 4. De reeks is divergent aangezien 5. Afleiden van de eerste vergelijking geeft: lim cos ln n n 5n + n = 0. y + y + z = cos x Uit de tweede vergelijking volgt dat z = 5y + z + cos x. Dan volgt y + y + 5y + z = 0 Uit de eerste vergelijking volgt dat z = y y + sin x. Dan volgt en y + y + 5y y 4y + sin x = 0 y + y = sin x De algemene integraal van de geassocieerde homogene vergelijking is y h = A cos x + B sin x Als particulier integraal van de volledige vergelijking stellen we voor y p = Cx cos x + Dx sin x Als we dit substitueren in de differentiaalvergelijking vinden we y p + y p = C sin x + D cos x = sin x Hieraan is voldaan als C = en D = 0, en we hebben dus een particuliere integraal y p = x cos x We besluiten dat y = (x + A) cos x + B sin x 3

11 6. We integreren eerst de geassocieerde homogene vergelijking of dy y = ln(cos x) dy dx = ytg x tg x ln(cos x) = d ln(cos x) ln(cos x) ln y = ln(ln(cos x)) + ln c c y h = ln(cos x) We zoeken nu een particuliere integraal met de methode van de variatie van de constante: We vinden en Substitutie: u = ln x, du = dx/x: c(x) = y p = c(x) ln(cos x) c sin(ln x) (x) = x sin(ln x) c(x) = dx x sin udu = cos u = cos(ln x) We vinden en y p = y = y h + y p = cos(ln x) ln(cos x) c + cos(ln x) ln(cos x) 4

12 ste Bachelor Ingenieurswetenschappen Academiejaar de zittijd 9 augustus 008 Oefeningen Analyse I en II. Bereken, zo hij bestaat, de volgende limiet:. De betrekking lim x 0 e sin(x) e x x cos(x) sin(x). yx + ln(xy) =. bepaalt y als impliciete functie van x op een omgeving van x =, waarbij y() =. Bepaal de vergelijking van de raaklijn in het punt (, ) aan de kromme met vergelijking y = y(x). 3. Bereken de onbepaalde integraal: e x x 3 dx. 4. Wat is het maximale volume van een kegel ingeschreven in een boloppervlak met straal R? (Het volume van een kegel is de oppervlakte van de basis maal de hoogte gedeeld door 3). 5. S is het deel van het vlak met vergelijking 5x + 0y + 6z = 30 dat gelegen is in het eerste octant. Bereken I = S ydo. 6. Ga na of de reeks convergeert of divergeert. n=0 + n + 3 n + n n + n 3 n

13 7. Voor welke x R is de machtreeks n=0 (n + ) 5 (n + ) xn convergent? 8. Los het volgende stelsel differentiaalvergelijkingen op met behulp van de methode van eigenwaarden en eigenvectoren (x,y en z stellen functies in een veranderlijke t voor): x = x y + 3z y = 3y z z = y + z Tijd: vier uur ; vragen, 3, 6 en 7: 0 punten; vragen, 4, 5 en 8: 5 punten; totaal: 00 punten. Syllabus en oefeningenboek mogen gebruikt worden; zakrekenmachine en opgeloste oefeningen mogen niet gebruikt worden.

14 Oplossingen. We berekenen de limiet met behulp van de stelling van Taylor. met We krijgen dan e x = + x + x + x3 6 + α (x)x 3 e sin x = + x + x + α (x)x 3 x cos x = x x3 + α 3(x)x 3 sin x = x x3 6 + α 4(x)x 3 lim α i(x) = 0. x 0. lim x 0 e sin(x) e x x cos(x) sin(x) = lim x3 + (α 6 (x) α (x))x 3 x 0 x3 + (α 3 3(x) α 4 (x))x = lim + (α 6 (x) α (x)) 3 x 0 + (α 3 3(x) α 4 (x)) =. Vergelijking van de raaklijn: f dy dx = x f y xy + /x = x + /y ; dy dx () = 3. y = 3 (x ), of 3x + y 5 = x 3 e/x dx = x de/x = x e/x x e/x dx = x e/x + e /x + c = ( x )e/x + c 4. Neem de as van de kegel verticaal. De top van de kegel ligt dan op de noordpool van de bol. We stellen de hoogte h van de kegel gelijk aan h = R + z. z is dan de afstand van het middelpunt van de bol tot het grondvlak van de kegel. De straal van het grondvlak is dan en het volume V van de kegel is r = R z, V = π 3 (R z )h = π 3 (R z )(R + z) = π 3 (R3 + zr z R z 3 ).

15 Dan is dv dz = π 3 (R zr 3z ). De nulpunten hiervan zijn z = R en z = R/3. Voor z = R is h = 0 zodat de kegel herleid wordt tot een punt op het boloppervlak, met volume nul. Aangezien d V dz = π 3 (R + 3z) en dus d V dz (R/3) < 0 wordt een maximum bereikt voor z = R/3 en h = 4h/3. Het maximale volume is dus V max = π 3 5. De vergelijking van het vlak herschrijven we als 8 9 R 4 3 R = 3πR3 8. z = 5 5 x 5 3 y. Hierbij loopt (x, y) over het gebied g in het xy-vlak begrensd door de rechten met vergelijking x = 0, y = 0 en x/ + y/3 =. We berekenen nu p = 5, q = 5 3 en + p + q = 9 6, en I = ydo = y + p + q dxdy = 9 3 (6 y)/3 ydy dx 6 = 9 8 S 3 0 g (6y y )dy = We vergelijken met de convergente reeks /n : lim n n [ 3y y 3 /3 ] 3 0 = 9 9 (7 8) = n + 3 n + n n + n 3 = lim + n + 3 n 3 n n n + n + = n 3 n n3 n zodat we kunnen besluiten dat onze reeks convergent is. 7. De convergentiestraal van de machtreeks is R = lim n a n (n + ) 5 = lim a n+ n n + n + 3 (n + ) 5 = In de randpunten x = ± is de machtreeks divergent: voor x = ± wordt de machtreeks n=0 (n + ) 5 (n + ) ( )n, 0

16 en de limiet van de algemene term van deze reeks is niet nul. De machtreeks convergeert dus voor x (, ). 8. We moeten de eigenwaarden en eigenvectoren bepalen van de matrix A = Het is duidelijk dat λ = een eigenwaarde is, met bijhorende eigenvector V = 0. 0 De overige eigenwaarden zijn de wortels van de vergelijking 3 λ λ 0. of λ 5λ + 4 = 0. De nulpunten zijn λ = en λ 3 = 4. De bijhorende eigenvectoren zijn V = en V 3 = 7 4. De algemene integraal van het differentiaalstelsel is dus X = A 0 e t + B e t + C e 4t of x = Ae t Be t + 7Ce 4t y = Be t 4Ce 4t z = Be t + Ce 4t 3

Analyse I. f(x)dx + f(x)dx =

Analyse I. f(x)dx + f(x)dx = 1ste Bachelor Ingenieurswetenschappen/ Wiskunde/Natuurkunde Academiejaar 1-11 1ste semester, 18 januari 11 Analyse I 1. f en g zijn numerieke functies, f is differentieerbaar in a en g is differentieerbaar

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

Analyse I. 3. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 3. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. ste Bachelor Ingenieurswetenschappen Academiejaar 8-9 ste semester januari 9 Analyse I. Formuleer en bewijs de formule van Leibniz voor de n-de afgeleide van het product van twee functies f en g.. Onderstel

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I ste Bachelor Wiskunde Academiejaar 4- ste semester 3 oktober 4 Tussentijdse evaluatie Analyse I. Toon aan dat een niet-stijgende begrensde rij convergent is.. Geef de definitie van een verdichtingspunt.

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 12 januari 2010

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 12 januari 2010 ste Bachelor Ingenieurswetenschappen Academiejaar 9- ste semester januari Analyse I. Formuleer en bewijs de formule van Leibniz voor de n-de afgeleide van het product van twee functies f en g.. Onderstel

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I ste Bachelor Wiskunde Academiejaar 6-7 ste semester november 6 Tussentijdse evaluatie Analyse I. Toon aan dat een niet-stijgende begrensde rij convergent is.. Onderstel dat f : [a, b] R continu is over

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I 1ste Bachelor Wiskunde Academiejaar 1-1 1ste semester, november 1 Tussentijdse evaluatie Analyse I 1. Onderstel dat f : [a, b] R een continue functie is. (i) Bewijs dat er een x 1 en x in [a, b] bestaan

Nadere informatie

Wiskunde: Voortgezette Analyse

Wiskunde: Voortgezette Analyse de Bach. IR Wet.: Architectuur Academiejaar 0-04 ste zittijd, januari 04 Wiskunde: Voortgezette Analyse. Gegeven is de reeks n x (x + ) n+ Toon aan dat de reeks puntsgewijs convergeert over R. Toon aan

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I ste Bachelor Wiskunde Academiejaar 5-6 ste semester 9 oktober 5 Tussentijdse evaluatie Analyse I. Geef de definitie van een Cauchy rij. Toon aan dat elke Cauchy rij begrensd is. Toon aan dat een numerieke

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde 3de Bachelor EIT - de Bachelor Fysica Academiejaar 014-015 1ste semester 7 januari 015 Aanvullingen van de Wiskunde 1. Gegeven is een lineaire partiële differentiaalvergelijking van orde 1: a 1 (x 1,,

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n. Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I 1ste Bachelor Wiskunde Academiejaar 1-14 1ste semester, 1 oktober 1 Tussentijdse evaluatie Analyse I 1. (a) Toon aan dat elke begrensde numerieke rij een convergente deelrij heeft (b) Geef de definitie

Nadere informatie

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2 Radboud Universiteit Nijmegen Tentamen Calculus NWI-NPB 8 januari 3, 8.3.3 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden. Maak uw redenering

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

Tentamen Functies en Reeksen

Tentamen Functies en Reeksen Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy

Nadere informatie

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen de Bachelor EIT 2de en de Bachelor Wiskunde Academiejaar 215-216 1ste semester 26 januari 216 Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen 1. Gegeven een homogene lineaire partiële

Nadere informatie

Analyse I. 1. Toon aan dat een niet-dalende begrensde rij convergent is.

Analyse I. 1. Toon aan dat een niet-dalende begrensde rij convergent is. ste Bacelor Ingenieurswetenscappen/ Wiskunde/Natuurkunde Academiejaar - ste semester, 7 januari Analyse I. Toon aan dat een niet-dalende begrensde rij convergent is.. Bescouw twee numerieke functies f

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

== Tentamen Analyse 1 == Maandag 12 januari 2009, u

== Tentamen Analyse 1 == Maandag 12 januari 2009, u == Tentamen Analyse == Maandag januari 009, 400-700u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille of O van Gaans) en je studierichting Elk antwoord dient gemotiveerd te

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe

Nadere informatie

WI1708TH Analyse 3. College 5 23 februari Challenge the future

WI1708TH Analyse 3. College 5 23 februari Challenge the future WI1708TH Analyse 3 College 5 23 februari 2015 1 Programma Vandaag Richtingsafgeleide (14.6) Gradiënt (14.6) Maximalisatie richtingsafgeleide (14.6) Raakvlak voor niveauoppervlakken (14.6) 2 Richtingsafgeleide

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen 1ste Bachelor Fysica en Sterrenkunde Academiejaar 014-015 1ste semester 1 oktober 014 Wiskundige Technieken 1. Beschouw een scalaire functie f : R R en een vectorveld

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30

Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30 Hertentamen WIN12 Wiskundige Technieken 2 Di 17 april 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde 1ste semester 23 januari 2007 Aanvullingen van de Wiskunde 1. Gegeven zijn twee normen 1 en 2 op een vectorruimte V. Wanneer zegt men dat de 1 fijner is dan 2? Wat is dan het verband tussen convergentie

Nadere informatie

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari 9. Opgave: Bereken dt ( q) als p = (, ), q = (, ) en p u+v x = e t dt T : (u, v) (x, y) : u y = u sin(vt) dt Oplossing:

Nadere informatie

Topologie in R n 10.1

Topologie in R n 10.1 Topologie in R n 10.1 Lengte x = (x 1,..., x n ) = x 2 1 + x2 2 + + x2 n Bol B(x 0, r) = {x : x x 0 < r} x 0 r p 1 p 3 p 1 p 2 S p 1 heet uitwendig punt p 2 heet inwendig punt p 3 heet randpunt p 1 p 3

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013, Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten)

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten) 8.I.00 Wiskundige Analyse I, theorie 60% van de punten) Beantwoord elk van de vragen I,II,III en IV op één van de dubbele geruite bladen. Schrijf op elk van die dubbele geruite bladen, bovenaan de eerste

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op maandag 4 januari 2, 8.45.45 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 12 collegejaar college build slides Vandaag : : : : 17-18 12 4 september 217 3 ail Training Vessel 263 tad Amsterdam 1 2 3 4 stelling van Gauss stelling van Green Conservatieve vectorvelden 1 VA

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Oefenexamen Wiskunde Semester

Oefenexamen Wiskunde Semester Oefenexamen Wiskunde Semester 1 2017-2018 De cursusdienst van de faculteit Toegepaste Economische Wetenschappen aan de Universiteit Antwerpen. Op het Weduc forum vind je een groot aanbod van samenvattingen,

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

x a k of.x 1 a 1 / 2 + ::+.x n a n / 2 k 2 bol om a, straal k

x a k of.x 1 a 1 / 2 + ::+.x n a n / 2 k 2 bol om a, straal k Punten, Vectoren in de R n Punten: a =.a 1 ; a 2 ; : : : ; a n / ; b =.b 1 ; b 2 ; : : : ; b n / Vectoren: a = a 1 ; a 2 ; : : : ; a n ; b = b 1 ; b 2 ; : : : ; b n lengte van a : a = a 2 1 + : : : + a2

Nadere informatie

tentamen Analyse (deel 3) wi TH 21 juni 2006, uur

tentamen Analyse (deel 3) wi TH 21 juni 2006, uur Technische Universiteit Delft Technische Wiskunde Faculteit lektrotechniek, Wiskunde en Informatica Mekelweg 4, 68 CD DLFT tentamen Analyse (deel 3) wi 54 TH juni 6, 4. 7. uur Deelname aan dit tentamen

Nadere informatie

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur Examen GO7D Wiskunde II (6sp maandag juni 3, 8:3-:3 uur Bachelor Biochemie & Biotechnologie Bachelor hemie, Bachelor Geologie Schakelprogramma Master Biochemie & Biotechnologie en Schakelprogramma Master

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening 307 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http:users.telenet.betoelating) . Inleiding Dit oefeningenoverzicht

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 6 collegejaar : 8-9 college : 6 build : 2 oktober 28 slides : 38 Vandaag Minecraft globe van remi993 2 erhaalde 3 4 intro VA Drievoudige integralen Section 5.5 Definitie Een rechthoekig blok is

Nadere informatie

WI1708TH Analyse 3. College 2 12 februari Challenge the future

WI1708TH Analyse 3. College 2 12 februari Challenge the future WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen

Nadere informatie

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1 Radboud Universiteit Nijmegen Tentamen Calculus 2 NWI-NP004B 6 april 205, 8.00 2.00 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten

Nadere informatie

n 2 + 3n + 6 4n 3 3 n + 8n n + 3n + 16 n=1 Indien convergent, bepaal dan ook de waarde van de reeks.

n 2 + 3n + 6 4n 3 3 n + 8n n + 3n + 16 n=1 Indien convergent, bepaal dan ook de waarde van de reeks. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP004B januari 05,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

1 WAAM - Differentiaalvergelijkingen

1 WAAM - Differentiaalvergelijkingen 1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie

Nadere informatie

Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)!

Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)! Tentamen Analyse II. Najaar 6 (.1.7) Toelicting: Je mag Zoric deel I en II gebruiken, maar geen ander ulpmiddelen (zoals andere boeken, aantekeningen, rekenmacine etc.)! Als je bekende stellingen gebruikt

Nadere informatie

Het uitwendig product van twee vectoren

Het uitwendig product van twee vectoren Het uitwendig product van twee vectoren Als u, v R 3, u = u 1, u 2, u 3 en v = v 1, v 2, v 3 dan is het uitwendig product van u en v gelijk aan een vector in R 3 en wel u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3,

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNICHE UNIVERITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functies van meer variabelen (DE6) op maandag augustus 5, 4. 7. uur. De uitwerkingen van de opgaven dienen duidelijk geformuleerd

Nadere informatie

Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x

Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x Calculus, 4//4. Gegeven de reële functie ft) met als voorschrift t arcsin x ft) = dx x a) Geef het domein van de functie ft). Op dit domein, bespreek waar de functie stijgt, daalt en bepaal de lokale extrema.

Nadere informatie

Imaginary - singulariteiten

Imaginary - singulariteiten Imaginary - singulariteiten Gommaar Maes en Tania Van Damme SLO Wiskunde - Universiteit Gent en Atheneum Mariakerke Inleiding Een regulier punt van een vlakke kromme is een punt waar de kromme vloeiend

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie

Nadere informatie

15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x))

15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x)) 5.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( x) a f '( x) 0 n f ( x) ax f '( x) nax n f ( x) c g( x) f '( x) c g'( x) f ( x) g( x) h( x) f '( x) g'( x) h'( x) p( x) f ( x) g( x) p'( x)

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 23 oktober 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #2 Uitwerking

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #2 Uitwerking Math D Gauss Wiskunde leerlijn TOM Deelnemende Modules: 14-144/FMHT/14161/14144-1A Oefententamen # Uitwerking Vraagstuk 1. tel de doorsnijding van de oppervlakken x + y + z 4 en z 1. Van bovenaf bekijkt

Nadere informatie

== Modeluitwerking tentamen Analyse 1 == Maandag 14 januari 2008, u

== Modeluitwerking tentamen Analyse 1 == Maandag 14 januari 2008, u == Modeluitwerking tentmen Anlyse == Mndg 4 jnuri 8, 4.-7.u. Formuleer de Tussenwrdestelling. Als f :, b] R continu is en s R ligt tussen f en fb, dn bestt er een c, b] met fc = s. b Toon n, dt de vergelijking

Nadere informatie

Complexe Analyse - Bespreking Examen Juni 2010

Complexe Analyse - Bespreking Examen Juni 2010 Complexe Analyse - Bespreking Examen Juni 2010 Hier volgt een bespreking van het examen van Complexe Analyse op 18 juni. De bedoeling is je de mogelijkheid te geven na te kijken wat je goed en wat je minder

Nadere informatie

Relevante examenvragen , eerste examenperiode

Relevante examenvragen , eerste examenperiode Relevante examenvragen 2007 2008, eerste examenperiode WAAR/VALS Zijn de volgende uitspraken waar of vals? Geef een korte argumentatie (bewijs) of een tegenvoorbeeld, eventueel aangevuld met een figuur.

Nadere informatie

Examenvragen Wiskundige Analyse I, 1ste examenperiode

Examenvragen Wiskundige Analyse I, 1ste examenperiode Examenvragen Wiskundige Analyse I, ste examenperiode 24-25 Vraag (op 6pt) Vraag.. Waar of vals (.5pt) De Wronskiaanse determinant van twee LOF oplossingen y en y 2 van de differentiaalvergelijking cosh(x)y

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, maandag K. P. Hart Faculteit EWI TU Delft Delft, 30 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 33 Outline 1 2 Algemeenheden Gedrag op de rand Machtreeksen

Nadere informatie

Examen Complexe Analyse (September 2008)

Examen Complexe Analyse (September 2008) Examen Complexe Analyse (September 2008) De examenvragen vind je op het einde van dit documentje. Omdat het hier over weinig studenten gaat, heb ik geen puntenverdeling meegegeven. Vraag. Je had eerst

Nadere informatie

1 Oppervlakteberekeningen

1 Oppervlakteberekeningen Oppervlakteberekeningen. Oppervlakte ellips of een deel ervan.. Zonder gebruik te maken van parametervergelijkingen We berekenen de oppervlakte in het eerste kwadrant, achteraf vermenigvuldigen we het

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 2 oktober 200, 3.45 6.45 uur. De uitwerkingen van de opgaven

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013 Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNICHE UNIVERITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functies van meer variabelen, deel B (YE6) op vrijdag juli 5, 9..3 uur. De uitwerkingen van de opgaven dienen duidelijk geformuleerd

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.10, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 23 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 46 Outline 1 2 3 K. P. Hart TW2040: Complexe Functietheorie

Nadere informatie

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal? Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de

Nadere informatie

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 Inleverdatum 30 maart 207, uiterlijk :5 uur Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je mag de theorie gebruiken die op het college

Nadere informatie

Analyse 1 November 2011 Januari 2011 November 2010

Analyse 1 November 2011 Januari 2011 November 2010 WI1330CT/CT1135-1/CTB1001-1 Januari 2013 November 2012 Januari 2012 Analyse 1 November 2011 Januari 2011 November 2010 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" TU DELFT, 2010

Nadere informatie

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm 5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm x y + xy + (x ν )y = met ν R (1) heet een Bessel (differentiaal)vergelijking. De waarde van ν noemt men ook wel de orde

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINHOVEN Faculteit Wiskunde en Informatica. Het gebied is een ringvormig gebied met als rand de twee cirkels met vergelijking x + y 9 respectievelijk x + y 5. Laat A lnx + y dxdy.

Nadere informatie

(x x 1 ) + y 1. x x 1 x k x x x k 1

(x x 1 ) + y 1. x x 1 x k x x x k 1 Les Taylor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Functietheorie (2Y480) op 25 november 1998, uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Functietheorie (2Y480) op 25 november 1998, uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Functietheorie (2Y480) op 25 november 1998, 9.00-12.00 uur. Dit tentamen bestaat uit 5 opgaven. De uitwerkingen van deze opgaven dienen

Nadere informatie

(x x 1 ) + y 1. x x k+1 x k x k+1

(x x 1 ) + y 1. x x k+1 x k x k+1 Les Talor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking van het tentamen Functietheorie (2Y480) op ,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking van het tentamen Functietheorie (2Y480) op , 1 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking van het tentamen Functietheorie (2Y480) op 25-11-1998, 9.00-12.00 uur Opgave 1 1. Formuleer de Cauchy-Riemann-vergelijkingen.

Nadere informatie

Tentamen Gewone Differentiaal Vergelijkingen II

Tentamen Gewone Differentiaal Vergelijkingen II Tentamen Gewone Differentiaal Vergelijkingen II.0.007 Jullie mogen een willekeurige van de vier opgaven als bonusopgave bekijken. (Dus drie opgaven volledig en goed gedaan is al een 10.) Opgave 1 Bekijk

Nadere informatie

ANALYSEQUIZ Ga naar new.shakeq.com en log in met de code uvaanalyse2a

ANALYSEQUIZ Ga naar new.shakeq.com en log in met de code uvaanalyse2a ANALYSEQUIZ 2016 Ga naar new.shakeq.com en log in met de code uvaanalyse2a WAAR OF ONWAAR: EEN SOM CONVERGEERT ALS DE TERMEN NAAR NUL GAAN. A. Waar B. Onwaar De vraag gaat open zodra u een sessie en diavoorstelling

Nadere informatie

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur Tentamen Calculus 5 januari 00, 9:00 -:00 uur Je mag geen rekenapparaat gebruiken. De opgaven t.e.m. 6 tellen allemaal even zwaar. Vermeld op elk papier dat je inlevert je naam en je studentnummer. Geef

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Types differentiaal vergelijkingen

Types differentiaal vergelijkingen 1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking

Nadere informatie

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0.

OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE 1 (COLLEGE NAJAAR 2006). (z + 2i) 4 = 16. y 4y + 5y = 0 y(0) = 1, y (0) = 2. { 1 + xc 1 voor x > 0. OEFENOPGAVEN BIJ HET TENTAMEN ANALYSE (COLLEGE NAJAAR 6).. Bepaal alle oplossingen van de vergelijking (z + i) 4 = 6 in het complee vlak. a. Schrijf het getal i in poolcoördinaten. b. Bereken de rechthoekige

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen 0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8,

20 OKTOBER y 2 xy 2 = 0. x y = x 2 ± 1 2. x2 + 8, UITWERKINGEN TENTAMEN DIFFERENTIËREN EN INTEGREREN 20 OKTOBER 2008. a) f(x) < is equivalt aan < f(x)

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 11 collegejaar college build slides Vandaag : : : : 17-18 11 23 oktober 2017 35 De sterrennacht Vincent van Gogh, 1889 1 2 3 4 5 Verband met de stelling van n 1 VA intro ection 16.7 Definitie Equation

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

Relevante vragen , eerste examenperiode

Relevante vragen , eerste examenperiode Relevante vragen 2006 2007, eerste examenperiode OEFENING y = x 2 2, y = x, z = x 2 + y 2, z = x + 6 omvatten, indien we ons tot het gedeelte binnen de parabolische cilinder beperken, twee verschillende

Nadere informatie