Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:"

Transcriptie

1 Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van Taylor Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: f(x) = f(0) + x f (0) + 1! x f (0) + 1 3! x3 f (0) +... Met de kortere notatie (voor het gemak om dit allemaal te typen én om te lezen!) schrijven we vaak: f x d f(x = 0) dx en de stelling ziet er dan zo uit: f(x) = f + x f x + 1! x f xx + 1 3! x3 f xxx +... Het argument van de functies aan de rechterkant is dan steeds x = 0; als je rond een ander punt wilt Taylor-en, bv. x = a geldt dezelfde formule maar dan door x, x,... te vervangen door x a, (x a),...: f(x) = f + (x a) f x + 1! (x a) f xx + 1 3! (x a)3 f xxx +... met nu de afspraak dat f x d f(x = a) dx Stelling van Taylor in meer dimensies Voor functies in één variabele is er nog niet zo n groot verschil, voor de stelling voor functies met méér variabelen is het bijna noodzakelijk om stelling van Taylor leesbaar te houden. In n variabelen ziet de stelling er dan zo uit: tot en met de tweede orde h(x 1, x,...) = h + x 1 h x1 + x h x x n h xn + 1 (x 1 h x1x 1 + x h xx x n h xnx n ) +x 1 x h x1x + x 1 x 3 h x1x x n 1 x n h xn 1x n +... en de... bevat alle producten van het volgend type x 3 1, x 1x, x 1 x x 3. Ach, onthouden van die formule is niet nodig, zolang je maar weet dat hij bestaat en dat hij soms nuttig is. Op een tentamen bij mij hoef je alleen de lineaire termen te kennen (als je een hogere orde nodig hebt krijg je die erbij). Voor nu: zie appendix van dit stuk, en zorg dat je dat altijd terug kunt vinden! Los met behulp van de appendix de volgende opgave op. a Opgave: Gegeven een functie in drie variabelen x, y, z. Bepaal c 1, c in de Taylorreeks: f(x, y, z) = f + xf x c 1 xyz f xyz c x z f xxzz... 1

2 3 Optimalisatie Het onderzoeken van een functie op maxima en minima is in natuurkunde en techniek zeer relevant. Als je wilt weten wat de beste oplossing is voor een bepaald probleem moet je allereerst definiëren wat je met het beste bedoelt. Als je dat kunt vertalen in termen van wiskundige termen (de goedkoopste is degene die de minste euros kost, de snelste is degene die het minste tijd kost, etc.). Als eenmaal deze definitie bekend is gaan we de beste zoeken: ofwel we gaan het minimum of maximum van die functie proberen te vinden). In dit verhaal gaan we er vanuit dat we optima (ofwel maxima of minima) zoeken waarbij de variabelen allemaal elke waarde mogen aannemen, m.a.w. we nemen aan dat de variabelen niet beperkt zijn tot een eindig interval. Dat wil niet zeggen dat we andere problemen dan deze niet zouden kunnen oplossen, integendeel. Ook nemen we aan dat de functie voldoende differentieerbaar is. Voor een functie in é en variabele is het antwoord relatief eenvoudig: de noodzakelijke voorwaarde is f (x) = 0 (1) Met andere woorden: de functie moet in een optimum een afgeleide nul hebben. b Opgave: Is de voorwaarde ook voldoende? Met andere woorden is een punt met (1) ook altijd een maximum of een minimum? Motiveer je antwoord. (In dit geval zou je of aannemelijk moeten maken dat het zo is OF je moet een tegenvoorbeeld geven). c Opgave: Hoe bepaal je of het een minimum of maximum is? 4 Optimalisatie voor functies in meer variabelen In meer dimensies zijn de kritieke punten gelijk aan de punten waar alle partiële vergelijkingen nul zijn. We beperken ons uitsluitend tot twee dimensies. Ook zullen we geen problemen op eindige delen van de R bekijken; dat is niet erg moeilijk maar het vertroebelt wat ik wil duidelijk maken. Dus een punt (x, y) is een kritiek punt van f(x, y) indien alle partiële afgeleiden nul zijn: f(x, y) = 0, x f(x, y) = 0 y De aard van het kritieke punt wordt bepaald door de eigenwaarden van de tweede-afgeleide-matrix: [ ] J = f xx f yx f xy f yy Voorbeeld: f = 1 (x y ). Er geldt J = [ ] zodat de eigenwaardes ±1 zijn: zadel. Voorbeeld: f = xy. Er geldt [ ]

3 en de eigenwaarden volgen uit: λ 1 1 λ = λ 1 = 0 λ = ±1 dus een zadel. Kunnen we dit op een andere manier inzien? Het aard van een punt (maximum, minimum, zadel), hangt natuurlijk niet af van hoe we ons assenkruis kiezen: een functie ziet er natuurlijk hetzelfde uit als we het assenkruis bv. draaien. Een draaiing over π/4 ziet er uit als x = 1 (s + t), y = 1 (s t). () We kiezen dus een s en een t-as die samenvallen met de lijnen x = y en x = y. d Opdracht: Bereken de inverse van de transformatie (), d.w.z wat zijn s, t als functie van x, y? Wat wordt de functie f = xy in de nieuwe variabelen s, t? e Opdracht: Bepaal van f(x, y) = x 3 + y 3(x + y) + 1 f Opdracht: Bepaal van f(x, y) = x + y + 3xy 3y 5x + 15 Bepaal van f(x, y) = x 3 15x 0y Laat zien dat f(x, y) = x + y x + y + 6 een maximum heeft in (x, y) = (, 1) en een minimum in (x, y) = (, 1) 17 Bepaal a, b zodanig dat de integraal minimaal is. π 0 ( sin x (ax + bx) ) dx NB. Hier bepaal je dus een curve van de vorm ax + bx die in zekere zin het dichtst bij de sin ligt (immers, zou die deze integraal nul, dan zou de curve gelijk zijn aan sin) 18 Vind de kritieke punten van en classificeer ze. f(x, y) = 1xy 3xy x 3 3

4 5 Optimalisatie met constraints We willen voor later gemak de stelling van Taylor gebruiken. f(x) = f(0) + xf x (0) + 1 x f xx (0) +... (3) Stel dat het punt x = 0 een maximum is (voor een minimum gaat het verhaal analoog). Als we de functie f(x) iets naar links van x = 0 kijken, d.w.z. x is iets kleiner dan 0 en dus x is klein negatief dan mag f x (0) niet negatief zijn; anders zou de functie f(x) groter zijn dan f(0) en dat kan niet want f(0) was een maximum hadden we aangenomen. Omgekeerd kunnen we kijken naar x net groter dan 0. Dan komen we tot de omgekeerde conclusie dat f x (0) niet positief mag zijn. De twee resultaten samenvattend: f x (0) mag niet negatief noch positief zijn. Dus f x (0) = 0 is de enige oplossing. Een lang verhaal voor zo n eenvoudig resultaat. Toch zal het later handig blijken. In vergelijking (3) hadden de hogere ordere termen (x en hoger) geen invloed op het resultaat: de constante en lineaire termen waren allesbepalend. Wiskundigen schrijven het zo: df = f(x) f(0) = f x dx (4) In woorden: de verandering in f, die we df noemen, is gelijk aan een getal (gelijk aan f x ) maal de verandering in x die we dx noemen. Als het punt x = 0 een maximum of minimum is én omdat dx willekeurig is, geldt dat f x (0) = 0. Hoe schrijven we Taylor van een functie in n variabelen, x 1,..., x n? df = f x1 dx 1 + f x dx f xn dx n Als we nu een optimaal punt willen hebben moeten we eisen dat f x1 = f x =... = f xn = 0. Immers we kunnen de dx 1,..., dx n willekeurig variëren. Het verhaal verandert als we optimalisatie met randcondities bekijken. Dit is een probleem dat in de praktijk veel vaker voorkomt. Bijvoorbeeld we willen de snelste formule 1 bouwen maar we hebben maar een budget van 1 miljoen euro. 19 Opgave: Bekijk het volgende probleem. f(x, y) = x + y, g(x, y) = x y 1 Bepaal minimum, maximum van de functie f(x, y) onder de voorwaarde dat g(x, y) = x y 1 = 0. Laat zien dat x, y = 1, 1 een minimum is. Doe het als volgt: a Los op: x als een functie van y uit g(x, y) = x y 1 = 0, b Vul dit antwood in in f waardoor f een functie van alleen y wordt, c Vind nu voor de functie f(y) de kritieke punten (dus die y-waarden waarvoor f (y) = 0). d Als je y gevonden hebt (kunnen er ook meer zijn) kun je uit deel a de waarde voor x vinden. 4

5 Een zwak punt is natuurlijk stap a: wat moet je doen als g(x, y) = 0 niet op te lossen is? Lagrange is weer zo n gigant uit de wiskunde. Over een paar jaar kunnen we zijn 00-jarige sterfdag vieren. Lagrange ging als volgt te werk. Bekijk eerst de verandering in f: df = f x1 dx 1 + f x dx f xn dx n (5) We hebben een voorwaarde op de punten die mee mogen in de strijd om het optimum, want g = 0 moet gelden. In feite betekent dat we naar variaties dx 1,..., dx n moeten kijken die consistent zijn met g = 0. Stel nu dat het punt (0, 0,..., 0) een minimum is van een bepaalde functie f, dus (5) geldt, maar ook dat g(0, 0,..., 0) = 0. Hoe verandert g als we variaties dx 1,..., dx n bekijken? dg = g x1 dx 1 + g x dx g xn dx n (6) Omdat per aanname een oplossing van het probleem vind een maximum of minimum van f onder voorwaarde g = 0 krijgen we: onder díe veranderingen dx 1,..., dx n waarvoor geldt dat dg = 0 moet ook df = 0 gelden; met andere wooorden: f x1 dx 1 + f x dx f xn dx n = 0, g x1 dx 1 + g x dx g xn dx n = 0 Als we deze vergelijking goed aankijken zien we dat de vectoren beide loodrecht staan op [ f x1, f x,..., f xn ], [ g x1, g x,..., g xn ] [ dx 1, dx,..., dx n ] Deze vector is volledig willekeurig; daarom kunnen we laten zien dat er maar één oplossing is, namelijk dat de beide vectoren in elkaars verlengde moeten liggen: [ f x1, f x,..., f xn ] = λ[ g x1, g x,..., g xn ] (7) g Opgave: Hoeveel vergelijkingen met hoeveel onbekenden zie je in vergelijking (7)? De waarde voor λ is nog onbekend. Deze parameter wordt de Lagrange multiplier genoemd ( de vermenigvuldigfactor van Lagrange ). Deze naam komt wellicht raar over. Lagrange bedacht de volgende truc: bekijk 1 L(x 1,..., x n, λ) = f(x 1,..., x n ) λg(x 1,..., x n ) Wat zijn de kritieke punten van L? Deze functie hangt van n+1 variabelen af, namelijk x 1,..., x n en λ. Dus f(x 1,..., x n ) = λ x 1 f(x 1,..., x n ) x 1 f(x 1,..., x n ) = λ f(x 1,..., x n ) x x. x n f(x 1,..., x n ) = λ x n f(x 1,..., x n ) g(x 1,..., x n ) = 0 1 Dat λ de vermenigvuldigfactor van Lagrange wordt genoemd zie je hier: λ wordt vemenigvuldigd met de constraintvoorwaarde g 5

6 De eerste n van deze vergelijkingen zijn precies de vergelijkingen in (7); de laatste is verkregen door L(x 1,..., x n, λ) te differentiëren naar λ wordt precies de constraintvergelijking. Bekijk het oude probleem: We maken eerst en differentiëren naar x, y, λ geeft f(x, y) = x + y, g(x, y) = x y 1 L = x + y λ(x y 1) x λ = 0 y + λ = 0 x y 1 = 0 hetgeen drie lineare vergelijkingen met drie onbekenden zijn. De oplossing is gegeven door x, y, λ = 1, 1, 1; natuurlijk hetzelfde antwoord als tevoren. 0 Opgave: De oppervlakte van een driehoek met zijden van lengte a, b, c wordt gegeven door A = s(s a)(s b)(s c), waarin s = (a + b + c)/ de halve omtrek is Wat is de vorm van de driehoek die maximaal is in oppervlakte bij gegeven omtrek a+b+c = 1? Als we meerdere constraints hebben moeten we meer Lagrange multipliers gebruken, voor elke constraint 1. 1 Opgave: Laat zien dat de kritieke punten van de functie { f(x, y, z) = x + y + z g 1 (x, y, z) = x + y z = 0 zdd g (x, y, z) = yz + zx xy 1 = 0 worden gegeven door 0 = x + λ 1 + λ (z y) 0 = y + λ 1 + λ (z x) 0 = z λ 1 + λ (y + x) 0 = x + y z 0 = yz + zx xy 1 Dit zijn geen lineaire vergelijkingen dit keer. Daarom kan het lastig worden om ze op te lossen. Daarom de hint: Tel vergelijking en 3 op en laat zien dat of y + z = 0 en/of λ =. Werk beide mogelijkheden uit. (Er zijn in totaal 4 oplossingen.) Opgave: We willen een rechthoekige doos zonder deksel maken, waar zoveel mogelijk in past, d.w.z. met een zo n groot mogelijk volume. Van het materiaal waarvan de doos is gemaakt hebben we maar in oppervlakte 1 dm. Wat is het volume van die grootst mogelijke doos? 6

7 Appendix Taylors stelling in detail: f(x, y) = f + x f x + y f y + 1 ( x f xx + xy f xy + y ) f yy! + 1 ( x3 f xxx + 3x y f xxy + 3xy f xyy + y 3 ) f yyy ! Structuur is volledig bepaalt als je volgende truc onthoudt: (x + y) 1 = x + y (x + y) = x + xy + y (x + y) 3 = x 3 + 3x y + 3xy + y 3 De truc geldt ook voor alle orde maar ook voor méér variabelen! 7

8 Antwoorden a Gegeven een functie in drie variabelen x, y, z. Bepaal c 1, c in de Taylorreeks: f(x, y, z) = f + xf x c 1 xyz f xyz c x z f xxzz... Antwoord: De grootheid en (x + y + z) 3 = xyz +..., dus c 1 = 6 3! = 1 (x + y + z) 4 = x z +..., dus c = 6 4! = 1 4 b Is de voorwaarde ook voldoende? Met andere woorden is een punt met (1) ook altijd een maximum of een minimum? Motiveer je antwoord. (In dit geval zou je of aannemelijk moeten maken dat het zo is OF je moet een tegenvoorbeeld geven). Antwoord: De functie f(x) = x 3 heeft de eigenschap dat f (0) = 0 maar dat is geen minimum of maximum. c Hoe bepaal je of het een minimum of maximum is? Antwoord: De tweede afgeleide moet in dat punt positief, resp. negatief zijn. d Bereken de inverse van de transformatie (), d.w.z wat zijn s, t als functie van x, y? Wat wordt de functie f = xy in de nieuwe variabelen s, t? Antwoord: Optellen levert: x + y = s, x y = t s = 1 (x + y), t = 1 (x y) We hebben de in () zo gekozen dat de inverse transformatie er hetzelfde uit ziet: de transformatie is een draaiing over 45 graden. Zie ook WCopgaven week 7. xy = 1 (s t) 1 (s + t) = 1 (s t ) dus een zadel. e Bepaal van f(x, y) = x 3 + y 3(x + y) + 1 Antwoord: Kritiek: f x = f y = 0: 3x 3 = 0, y 3 = 0 ( 1, 3 ) en ( 1, 3 ) J = [ f xx f yx f xy f yy ] = [ 6x 0 0 ] Eigenwaarden zijn 6, voor ( 1, 3 ) en 6, voor ( 1, 3 ) ; het eerste punt is dus minimum, het tweede een zadel f Bepaal van f(x, y) = x + y + 3xy 3y 5x + Antwoord: Kritiek als f x = f y = 0: 4x + 3y 5 = 0 x 1 = 0 x = 1, y = 3 3x + y 3 = 0 3 8

9 dus alleen ( 1, 3). De aard van de punten volgt uit [ ] [ ] f xx f xy 4 3 J = = 3 Dus een zadel! f yx f yy 4 λ 3 3 λ = (4 λ)( λ) 9 = 0 λ = 3 ± 10 g Hoeveel vergelijkingen met hoeveel onbekenden zie je in vergelijking (7)? Antwoord: n vergelijkingen (er staat zowel links als rechts een vector ter lengte n) met n + 1 onbekenden (x i, i = 1,..., n en λ). 9

3.2 Kritieke punten van functies van meerdere variabelen

3.2 Kritieke punten van functies van meerdere variabelen Wiskunde voor kunstmatige intelligentie, 007/008 Als in een kritiek punt x 0 ook de tweede afgeleide f (x 0 ) = 0 is, kunnen we nog steeds niet beslissen of de functie een minimum, maximum of een zadelpunt

Nadere informatie

WI1708TH Analyse 3. College 2 12 februari Challenge the future

WI1708TH Analyse 3. College 2 12 februari Challenge the future WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2 Inleverdatum 30 maart 207, uiterlijk :5 uur Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je mag de theorie gebruiken die op het college

Nadere informatie

Minima en maxima van functies

Minima en maxima van functies Les 3 Minima en maxima van functies Een reden waarom we de afgeleide van een functie bekijken is dat we iets over het stijgen of dalen van de functie willen weten. Als we met een differentieerbare functie

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Hints en uitwerkingen huiswerk 2013 Analyse 1 H18

Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Rocco van Vreumingen 29 augustus 2014 1 Inhoudsopgave 1 Hints 1 3 2 Hints 2 4 3 Hints 3 5 4 Hints 4 5 5 Hints 5 6 6 Hints 6 6 7 Hints 7 6 8 Antwoorden

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

Uitwerkingen tentamen Wiskunde B 16 januari 2015

Uitwerkingen tentamen Wiskunde B 16 januari 2015 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Uitwerkingen tentamen Wiskunde B 6 januari 5 Vraag a f(x) = (x ) f (x) = (x ) = 6 (x ) Dit geeft f () = 6 = 6. y = ax + b met y =, a = 6 en x = geeft = 6 + b b

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

(x x 1 ) + y 1. x x 1 x k x x x k 1

(x x 1 ) + y 1. x x 1 x k x x x k 1 Les Taylor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

More points, lines, and planes

More points, lines, and planes More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)

Nadere informatie

Beoordelingscriteria tentamen G&O, 5 juli 2006

Beoordelingscriteria tentamen G&O, 5 juli 2006 Beoordelingscriteria tentamen G&O, 5 juli 006 Opgave 1 a. 5 pt y 1 f x v t ; D y 1, t, v ^ D y 1, x, True y g x v t ; D y, t, v ^ D y, x, True Gewoon invullen in de golfvergelijking. Je moet dus weten

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a.

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a. 98 Algebra 3.3 Variabelen 3.3.1 Inleiding F= 9 5 15+32= 27+32=59 15 C= 59 F In de inleidende tekst aan het begin van dit hoofdstuk staat een afkorting waarmee de temperatuur in graden Celsius in graden

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008 Wiskunde 007- //008 Vraag Veronderstel dat de concentraties in het bloed van stof A en van stof B omgekeerd evenredig zijn en positief. Als de concentratie van stof A met p % toeneemt, dan zal de concentratie

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Differentiaalrekening. Elementaire techniek van het differentieren.

Differentiaalrekening. Elementaire techniek van het differentieren. Differentiaalrekening Elementaire techniek van het differentieren. Saxion Hogescholen Oktober 2008 Differentiaalrekening Een van de belangrijkste technieken in de wiskunde is differentiaalrekening. Deze

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Machten en differentiëren

Uitwerkingen bij 1_0 Voorkennis: Machten en differentiëren Uitwerkingen bij _0 Voorkennis: Machten en differentiëren 3(x ) 6 3 6 (x ) 6 6-3 x 3 5 x - 6 43 x 6 x 3x 4 3 x 4 x 6 " $% & ' " $% & (& &( & ' " $% &( &&(& ' ) * '*, *-, *-, *-,, - VWO B deel 3 Analyse_

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op dinsdag 26 augustus 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal? Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de

Nadere informatie

Oplossen van lineaire differentiaalvergelijkingen met behulp van de methode van Leibniz-MacLaurin

Oplossen van lineaire differentiaalvergelijkingen met behulp van de methode van Leibniz-MacLaurin Oplossen van lineaire differentiaalvergelijingen met behulp van de methode van Leibniz-MacLaurin Calculus II voor S, F, MNW 7 november 2005 1 De n-de afgeleide van het product van twee functies Voor we

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Convexe Analyse en Optimalisering

Convexe Analyse en Optimalisering Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,

Nadere informatie

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1.

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1. Tentamen-wiskunde?. De basiswiskunde. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + ) =. Oplossing : ln(x + 2) = + ln(x + ) x + 2 = ln + x + 3 = ln dus x =

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Korte handleiding Maple bij de cursus Meetkunde voor B

Korte handleiding Maple bij de cursus Meetkunde voor B Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn

Nadere informatie

III.3 Supremum en infimum

III.3 Supremum en infimum III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk

Nadere informatie

Uit een handschrift gedateerd 26 Oktober 1675

Uit een handschrift gedateerd 26 Oktober 1675 Hoe een genie dacht. Van Leibniz zijn een groot aantal wiskundige handschriften bewaard. Leibniz deed wiskunde met de pen in zijn hand, en schreef al zijn gedachten direct op. Daardoor kunnen we zien hoe

Nadere informatie

college 2: partiële integratie

college 2: partiële integratie 39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde 3 voor B. Functies van twee variabelen.. Een functie fx, y) van twee variabelen kan analoog aan een functie van één variabele in Maple

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

Afdeling Kwantitatieve Economie

Afdeling Kwantitatieve Economie Afdeling Kwantitatieve Economie Wiskunde AEO V Uitwerking tentamen 1 november 2005 1. De tekenschema s in opgave 1a 1e zijn de voortekens van vermenigvuldigers en de laatste leidende hoofdminoren in een

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Uitwerkingen toets 9 juni 2012

Uitwerkingen toets 9 juni 2012 Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Donderdag 8 juli 4. Tijd: 14. 17. uur. Plaats: MA 1.44/1.46 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

Rekenvaardigheden voor klas 3 en 4 VWO

Rekenvaardigheden voor klas 3 en 4 VWO Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)

Nadere informatie

VIDEO 4 4. MODULUSVERGELIJKINGEN

VIDEO 4 4. MODULUSVERGELIJKINGEN VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie.

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie. 2 Domein en bereik Verkennen grafieken Domein en bereik Inleiding Verkennen Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Paragraaf 2.1 : Snelheden (en helling)

Paragraaf 2.1 : Snelheden (en helling) Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }

Nadere informatie

Producten, machten en ontbinden in factoren

Producten, machten en ontbinden in factoren Joke Smit College Producten, machten en ontbinden in factoren Voor cursisten uit de volgende klassen: alle Havo en VWO klassen (wiskunde, wiskunde A en wiskunde B) Wat kun je oefenen? 1. Het uitrekenen

Nadere informatie

1. Vectoren in R n. y-as

1. Vectoren in R n. y-as 1. Vectoren in R n Vectoren en hun meetkundige voorstelling. Een vector in R n is een rijtje (a 1, a 2,..., a n ) van reële getallen. De getallen a i heten de coördinaten van de vector. In het speciale

Nadere informatie

Driehoeksongelijkheid en Ravi (groep 1)

Driehoeksongelijkheid en Ravi (groep 1) Driehoeksongelijkheid en Ravi (groep 1) Trainingsdag 3, april 009 Driehoeksongelijkheid Driehoeksongelijkheid Voor drie punten in het vlak A, B en C geldt altijd dat AC + CB AB. Gelijkheid geldt precies

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

Tentamen WISN102 Wiskundige Technieken 2 Ma 26 jan :30 16:30

Tentamen WISN102 Wiskundige Technieken 2 Ma 26 jan :30 16:30 Tentamen WISN1 Wiskundige Technieken Ma 6 jan 14 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in de weken 37-42 in zaal S 209, in de weken 44-49 in

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen 0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

11. Eenvoudige programma s schrijven in Maxima

11. Eenvoudige programma s schrijven in Maxima 11. Eenvoudige programma s schrijven in Maxima We zullen in dit hoofdstuk een aantal eenvoudige Maxima programma s laten zien. 11.1. Aantal wortels van een vierkantsvergelijking Het onderstaande programma

Nadere informatie

12. Uitwerkingen van de opgaven

12. Uitwerkingen van de opgaven 12. Uitwerkingen van de opgaven 12.1. Uitwerkingen opgaven van hoofdstuk 3 Opgave 3.1 3,87 0,152 641, 2 Bereken met behulp van Maxima: 2,13 7,29 78 0,62 45 (%i1) 3.87*0.152*641.2/(2.13*7.29*78*0.62*45);

Nadere informatie

(6 2 )( 6 ). 10 2x. ) h( ) ( 1) 1. schrijf als functie van p: K(p)= 12 p. b) substitueer zodat H een functie is van alleen q. 2.

(6 2 )( 6 ). 10 2x. ) h( ) ( 1) 1. schrijf als functie van p: K(p)= 12 p. b) substitueer zodat H een functie is van alleen q. 2. RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO NG/NT KLAS 1 Periode Diff/Int. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Antwoorden moeten altijd zijn voorzien van een berekening,

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Convexe Analyse en Optimalisering Opleiding: Bacheloropleiding Econometrie Vakcode: 64200 Datum:

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

college 6: limieten en l Hôpital

college 6: limieten en l Hôpital 126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie