Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Maat: px
Weergave met pagina beginnen:

Download "Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:"

Transcriptie

1 Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van Taylor Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: f(x) = f(0) + x f (0) + 1! x f (0) + 1 3! x3 f (0) +... Met de kortere notatie (voor het gemak om dit allemaal te typen én om te lezen!) schrijven we vaak: f x d f(x = 0) dx en de stelling ziet er dan zo uit: f(x) = f + x f x + 1! x f xx + 1 3! x3 f xxx +... Het argument van de functies aan de rechterkant is dan steeds x = 0; als je rond een ander punt wilt Taylor-en, bv. x = a geldt dezelfde formule maar dan door x, x,... te vervangen door x a, (x a),...: f(x) = f + (x a) f x + 1! (x a) f xx + 1 3! (x a)3 f xxx +... met nu de afspraak dat f x d f(x = a) dx Stelling van Taylor in meer dimensies Voor functies in één variabele is er nog niet zo n groot verschil, voor de stelling voor functies met méér variabelen is het bijna noodzakelijk om stelling van Taylor leesbaar te houden. In n variabelen ziet de stelling er dan zo uit: tot en met de tweede orde h(x 1, x,...) = h + x 1 h x1 + x h x x n h xn + 1 (x 1 h x1x 1 + x h xx x n h xnx n ) +x 1 x h x1x + x 1 x 3 h x1x x n 1 x n h xn 1x n +... en de... bevat alle producten van het volgend type x 3 1, x 1x, x 1 x x 3. Ach, onthouden van die formule is niet nodig, zolang je maar weet dat hij bestaat en dat hij soms nuttig is. Op een tentamen bij mij hoef je alleen de lineaire termen te kennen (als je een hogere orde nodig hebt krijg je die erbij). Voor nu: zie appendix van dit stuk, en zorg dat je dat altijd terug kunt vinden! Los met behulp van de appendix de volgende opgave op. a Opgave: Gegeven een functie in drie variabelen x, y, z. Bepaal c 1, c in de Taylorreeks: f(x, y, z) = f + xf x c 1 xyz f xyz c x z f xxzz... 1

2 3 Optimalisatie Het onderzoeken van een functie op maxima en minima is in natuurkunde en techniek zeer relevant. Als je wilt weten wat de beste oplossing is voor een bepaald probleem moet je allereerst definiëren wat je met het beste bedoelt. Als je dat kunt vertalen in termen van wiskundige termen (de goedkoopste is degene die de minste euros kost, de snelste is degene die het minste tijd kost, etc.). Als eenmaal deze definitie bekend is gaan we de beste zoeken: ofwel we gaan het minimum of maximum van die functie proberen te vinden). In dit verhaal gaan we er vanuit dat we optima (ofwel maxima of minima) zoeken waarbij de variabelen allemaal elke waarde mogen aannemen, m.a.w. we nemen aan dat de variabelen niet beperkt zijn tot een eindig interval. Dat wil niet zeggen dat we andere problemen dan deze niet zouden kunnen oplossen, integendeel. Ook nemen we aan dat de functie voldoende differentieerbaar is. Voor een functie in é en variabele is het antwoord relatief eenvoudig: de noodzakelijke voorwaarde is f (x) = 0 (1) Met andere woorden: de functie moet in een optimum een afgeleide nul hebben. b Opgave: Is de voorwaarde ook voldoende? Met andere woorden is een punt met (1) ook altijd een maximum of een minimum? Motiveer je antwoord. (In dit geval zou je of aannemelijk moeten maken dat het zo is OF je moet een tegenvoorbeeld geven). c Opgave: Hoe bepaal je of het een minimum of maximum is? 4 Optimalisatie voor functies in meer variabelen In meer dimensies zijn de kritieke punten gelijk aan de punten waar alle partiële vergelijkingen nul zijn. We beperken ons uitsluitend tot twee dimensies. Ook zullen we geen problemen op eindige delen van de R bekijken; dat is niet erg moeilijk maar het vertroebelt wat ik wil duidelijk maken. Dus een punt (x, y) is een kritiek punt van f(x, y) indien alle partiële afgeleiden nul zijn: f(x, y) = 0, x f(x, y) = 0 y De aard van het kritieke punt wordt bepaald door de eigenwaarden van de tweede-afgeleide-matrix: [ ] J = f xx f yx f xy f yy Voorbeeld: f = 1 (x y ). Er geldt J = [ ] zodat de eigenwaardes ±1 zijn: zadel. Voorbeeld: f = xy. Er geldt [ ]

3 en de eigenwaarden volgen uit: λ 1 1 λ = λ 1 = 0 λ = ±1 dus een zadel. Kunnen we dit op een andere manier inzien? Het aard van een punt (maximum, minimum, zadel), hangt natuurlijk niet af van hoe we ons assenkruis kiezen: een functie ziet er natuurlijk hetzelfde uit als we het assenkruis bv. draaien. Een draaiing over π/4 ziet er uit als x = 1 (s + t), y = 1 (s t). () We kiezen dus een s en een t-as die samenvallen met de lijnen x = y en x = y. d Opdracht: Bereken de inverse van de transformatie (), d.w.z wat zijn s, t als functie van x, y? Wat wordt de functie f = xy in de nieuwe variabelen s, t? e Opdracht: Bepaal van f(x, y) = x 3 + y 3(x + y) + 1 f Opdracht: Bepaal van f(x, y) = x + y + 3xy 3y 5x + 15 Bepaal van f(x, y) = x 3 15x 0y Laat zien dat f(x, y) = x + y x + y + 6 een maximum heeft in (x, y) = (, 1) en een minimum in (x, y) = (, 1) 17 Bepaal a, b zodanig dat de integraal minimaal is. π 0 ( sin x (ax + bx) ) dx NB. Hier bepaal je dus een curve van de vorm ax + bx die in zekere zin het dichtst bij de sin ligt (immers, zou die deze integraal nul, dan zou de curve gelijk zijn aan sin) 18 Vind de kritieke punten van en classificeer ze. f(x, y) = 1xy 3xy x 3 3

4 5 Optimalisatie met constraints We willen voor later gemak de stelling van Taylor gebruiken. f(x) = f(0) + xf x (0) + 1 x f xx (0) +... (3) Stel dat het punt x = 0 een maximum is (voor een minimum gaat het verhaal analoog). Als we de functie f(x) iets naar links van x = 0 kijken, d.w.z. x is iets kleiner dan 0 en dus x is klein negatief dan mag f x (0) niet negatief zijn; anders zou de functie f(x) groter zijn dan f(0) en dat kan niet want f(0) was een maximum hadden we aangenomen. Omgekeerd kunnen we kijken naar x net groter dan 0. Dan komen we tot de omgekeerde conclusie dat f x (0) niet positief mag zijn. De twee resultaten samenvattend: f x (0) mag niet negatief noch positief zijn. Dus f x (0) = 0 is de enige oplossing. Een lang verhaal voor zo n eenvoudig resultaat. Toch zal het later handig blijken. In vergelijking (3) hadden de hogere ordere termen (x en hoger) geen invloed op het resultaat: de constante en lineaire termen waren allesbepalend. Wiskundigen schrijven het zo: df = f(x) f(0) = f x dx (4) In woorden: de verandering in f, die we df noemen, is gelijk aan een getal (gelijk aan f x ) maal de verandering in x die we dx noemen. Als het punt x = 0 een maximum of minimum is én omdat dx willekeurig is, geldt dat f x (0) = 0. Hoe schrijven we Taylor van een functie in n variabelen, x 1,..., x n? df = f x1 dx 1 + f x dx f xn dx n Als we nu een optimaal punt willen hebben moeten we eisen dat f x1 = f x =... = f xn = 0. Immers we kunnen de dx 1,..., dx n willekeurig variëren. Het verhaal verandert als we optimalisatie met randcondities bekijken. Dit is een probleem dat in de praktijk veel vaker voorkomt. Bijvoorbeeld we willen de snelste formule 1 bouwen maar we hebben maar een budget van 1 miljoen euro. 19 Opgave: Bekijk het volgende probleem. f(x, y) = x + y, g(x, y) = x y 1 Bepaal minimum, maximum van de functie f(x, y) onder de voorwaarde dat g(x, y) = x y 1 = 0. Laat zien dat x, y = 1, 1 een minimum is. Doe het als volgt: a Los op: x als een functie van y uit g(x, y) = x y 1 = 0, b Vul dit antwood in in f waardoor f een functie van alleen y wordt, c Vind nu voor de functie f(y) de kritieke punten (dus die y-waarden waarvoor f (y) = 0). d Als je y gevonden hebt (kunnen er ook meer zijn) kun je uit deel a de waarde voor x vinden. 4

5 Een zwak punt is natuurlijk stap a: wat moet je doen als g(x, y) = 0 niet op te lossen is? Lagrange is weer zo n gigant uit de wiskunde. Over een paar jaar kunnen we zijn 00-jarige sterfdag vieren. Lagrange ging als volgt te werk. Bekijk eerst de verandering in f: df = f x1 dx 1 + f x dx f xn dx n (5) We hebben een voorwaarde op de punten die mee mogen in de strijd om het optimum, want g = 0 moet gelden. In feite betekent dat we naar variaties dx 1,..., dx n moeten kijken die consistent zijn met g = 0. Stel nu dat het punt (0, 0,..., 0) een minimum is van een bepaalde functie f, dus (5) geldt, maar ook dat g(0, 0,..., 0) = 0. Hoe verandert g als we variaties dx 1,..., dx n bekijken? dg = g x1 dx 1 + g x dx g xn dx n (6) Omdat per aanname een oplossing van het probleem vind een maximum of minimum van f onder voorwaarde g = 0 krijgen we: onder díe veranderingen dx 1,..., dx n waarvoor geldt dat dg = 0 moet ook df = 0 gelden; met andere wooorden: f x1 dx 1 + f x dx f xn dx n = 0, g x1 dx 1 + g x dx g xn dx n = 0 Als we deze vergelijking goed aankijken zien we dat de vectoren beide loodrecht staan op [ f x1, f x,..., f xn ], [ g x1, g x,..., g xn ] [ dx 1, dx,..., dx n ] Deze vector is volledig willekeurig; daarom kunnen we laten zien dat er maar één oplossing is, namelijk dat de beide vectoren in elkaars verlengde moeten liggen: [ f x1, f x,..., f xn ] = λ[ g x1, g x,..., g xn ] (7) g Opgave: Hoeveel vergelijkingen met hoeveel onbekenden zie je in vergelijking (7)? De waarde voor λ is nog onbekend. Deze parameter wordt de Lagrange multiplier genoemd ( de vermenigvuldigfactor van Lagrange ). Deze naam komt wellicht raar over. Lagrange bedacht de volgende truc: bekijk 1 L(x 1,..., x n, λ) = f(x 1,..., x n ) λg(x 1,..., x n ) Wat zijn de kritieke punten van L? Deze functie hangt van n+1 variabelen af, namelijk x 1,..., x n en λ. Dus f(x 1,..., x n ) = λ x 1 f(x 1,..., x n ) x 1 f(x 1,..., x n ) = λ f(x 1,..., x n ) x x. x n f(x 1,..., x n ) = λ x n f(x 1,..., x n ) g(x 1,..., x n ) = 0 1 Dat λ de vermenigvuldigfactor van Lagrange wordt genoemd zie je hier: λ wordt vemenigvuldigd met de constraintvoorwaarde g 5

6 De eerste n van deze vergelijkingen zijn precies de vergelijkingen in (7); de laatste is verkregen door L(x 1,..., x n, λ) te differentiëren naar λ wordt precies de constraintvergelijking. Bekijk het oude probleem: We maken eerst en differentiëren naar x, y, λ geeft f(x, y) = x + y, g(x, y) = x y 1 L = x + y λ(x y 1) x λ = 0 y + λ = 0 x y 1 = 0 hetgeen drie lineare vergelijkingen met drie onbekenden zijn. De oplossing is gegeven door x, y, λ = 1, 1, 1; natuurlijk hetzelfde antwoord als tevoren. 0 Opgave: De oppervlakte van een driehoek met zijden van lengte a, b, c wordt gegeven door A = s(s a)(s b)(s c), waarin s = (a + b + c)/ de halve omtrek is Wat is de vorm van de driehoek die maximaal is in oppervlakte bij gegeven omtrek a+b+c = 1? Als we meerdere constraints hebben moeten we meer Lagrange multipliers gebruken, voor elke constraint 1. 1 Opgave: Laat zien dat de kritieke punten van de functie { f(x, y, z) = x + y + z g 1 (x, y, z) = x + y z = 0 zdd g (x, y, z) = yz + zx xy 1 = 0 worden gegeven door 0 = x + λ 1 + λ (z y) 0 = y + λ 1 + λ (z x) 0 = z λ 1 + λ (y + x) 0 = x + y z 0 = yz + zx xy 1 Dit zijn geen lineaire vergelijkingen dit keer. Daarom kan het lastig worden om ze op te lossen. Daarom de hint: Tel vergelijking en 3 op en laat zien dat of y + z = 0 en/of λ =. Werk beide mogelijkheden uit. (Er zijn in totaal 4 oplossingen.) Opgave: We willen een rechthoekige doos zonder deksel maken, waar zoveel mogelijk in past, d.w.z. met een zo n groot mogelijk volume. Van het materiaal waarvan de doos is gemaakt hebben we maar in oppervlakte 1 dm. Wat is het volume van die grootst mogelijke doos? 6

7 Appendix Taylors stelling in detail: f(x, y) = f + x f x + y f y + 1 ( x f xx + xy f xy + y ) f yy! + 1 ( x3 f xxx + 3x y f xxy + 3xy f xyy + y 3 ) f yyy ! Structuur is volledig bepaalt als je volgende truc onthoudt: (x + y) 1 = x + y (x + y) = x + xy + y (x + y) 3 = x 3 + 3x y + 3xy + y 3 De truc geldt ook voor alle orde maar ook voor méér variabelen! 7

8 Antwoorden a Gegeven een functie in drie variabelen x, y, z. Bepaal c 1, c in de Taylorreeks: f(x, y, z) = f + xf x c 1 xyz f xyz c x z f xxzz... Antwoord: De grootheid en (x + y + z) 3 = xyz +..., dus c 1 = 6 3! = 1 (x + y + z) 4 = x z +..., dus c = 6 4! = 1 4 b Is de voorwaarde ook voldoende? Met andere woorden is een punt met (1) ook altijd een maximum of een minimum? Motiveer je antwoord. (In dit geval zou je of aannemelijk moeten maken dat het zo is OF je moet een tegenvoorbeeld geven). Antwoord: De functie f(x) = x 3 heeft de eigenschap dat f (0) = 0 maar dat is geen minimum of maximum. c Hoe bepaal je of het een minimum of maximum is? Antwoord: De tweede afgeleide moet in dat punt positief, resp. negatief zijn. d Bereken de inverse van de transformatie (), d.w.z wat zijn s, t als functie van x, y? Wat wordt de functie f = xy in de nieuwe variabelen s, t? Antwoord: Optellen levert: x + y = s, x y = t s = 1 (x + y), t = 1 (x y) We hebben de in () zo gekozen dat de inverse transformatie er hetzelfde uit ziet: de transformatie is een draaiing over 45 graden. Zie ook WCopgaven week 7. xy = 1 (s t) 1 (s + t) = 1 (s t ) dus een zadel. e Bepaal van f(x, y) = x 3 + y 3(x + y) + 1 Antwoord: Kritiek: f x = f y = 0: 3x 3 = 0, y 3 = 0 ( 1, 3 ) en ( 1, 3 ) J = [ f xx f yx f xy f yy ] = [ 6x 0 0 ] Eigenwaarden zijn 6, voor ( 1, 3 ) en 6, voor ( 1, 3 ) ; het eerste punt is dus minimum, het tweede een zadel f Bepaal van f(x, y) = x + y + 3xy 3y 5x + Antwoord: Kritiek als f x = f y = 0: 4x + 3y 5 = 0 x 1 = 0 x = 1, y = 3 3x + y 3 = 0 3 8

9 dus alleen ( 1, 3). De aard van de punten volgt uit [ ] [ ] f xx f xy 4 3 J = = 3 Dus een zadel! f yx f yy 4 λ 3 3 λ = (4 λ)( λ) 9 = 0 λ = 3 ± 10 g Hoeveel vergelijkingen met hoeveel onbekenden zie je in vergelijking (7)? Antwoord: n vergelijkingen (er staat zowel links als rechts een vector ter lengte n) met n + 1 onbekenden (x i, i = 1,..., n en λ). 9

3.2 Kritieke punten van functies van meerdere variabelen

3.2 Kritieke punten van functies van meerdere variabelen Wiskunde voor kunstmatige intelligentie, 007/008 Als in een kritiek punt x 0 ook de tweede afgeleide f (x 0 ) = 0 is, kunnen we nog steeds niet beslissen of de functie een minimum, maximum of een zadelpunt

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

Beoordelingscriteria tentamen G&O, 5 juli 2006

Beoordelingscriteria tentamen G&O, 5 juli 2006 Beoordelingscriteria tentamen G&O, 5 juli 006 Opgave 1 a. 5 pt y 1 f x v t ; D y 1, t, v ^ D y 1, x, True y g x v t ; D y, t, v ^ D y, x, True Gewoon invullen in de golfvergelijking. Je moet dus weten

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a.

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a. 98 Algebra 3.3 Variabelen 3.3.1 Inleiding F= 9 5 15+32= 27+32=59 15 C= 59 F In de inleidende tekst aan het begin van dit hoofdstuk staat een afkorting waarmee de temperatuur in graden Celsius in graden

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

Korte handleiding Maple bij de cursus Meetkunde voor B

Korte handleiding Maple bij de cursus Meetkunde voor B Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Uit een handschrift gedateerd 26 Oktober 1675

Uit een handschrift gedateerd 26 Oktober 1675 Hoe een genie dacht. Van Leibniz zijn een groot aantal wiskundige handschriften bewaard. Leibniz deed wiskunde met de pen in zijn hand, en schreef al zijn gedachten direct op. Daardoor kunnen we zien hoe

Nadere informatie

Convexe Analyse en Optimalisering

Convexe Analyse en Optimalisering Convexe Analyse en Optimalisering Bernd Heidergott Vrije Universiteit Amsterdam and Tinbergen Institute WEB: http://staff.feweb.vu.nl/bheidergott.htm Overzicht Boek: Optimization: Insights and Applications,

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Rekenvaardigheden voor klas 3 en 4 VWO

Rekenvaardigheden voor klas 3 en 4 VWO Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)

Nadere informatie

Uitwerkingen toets 9 juni 2012

Uitwerkingen toets 9 juni 2012 Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is

Nadere informatie

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1.

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1. Tentamen-wiskunde?. De basiswiskunde. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + ) =. Oplossing : ln(x + 2) = + ln(x + ) x + 2 = ln + x + 3 = ln dus x =

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

VIDEO 4 4. MODULUSVERGELIJKINGEN

VIDEO 4 4. MODULUSVERGELIJKINGEN VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook

Nadere informatie

college 2: partiële integratie

college 2: partiële integratie 39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in de weken 37-42 in zaal S 209, in de weken 44-49 in

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

1. Vectoren in R n. y-as

1. Vectoren in R n. y-as 1. Vectoren in R n Vectoren en hun meetkundige voorstelling. Een vector in R n is een rijtje (a 1, a 2,..., a n ) van reële getallen. De getallen a i heten de coördinaten van de vector. In het speciale

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN IGNACE VAN DE WOESTNE. Inleiding In diverse wetenschappelijke disciplines maakt men gebruik van functies om fenomenen of processen te beschrijven. Hiervoor biedt

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie.

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie. 2 Domein en bereik Verkennen grafieken Domein en bereik Inleiding Verkennen Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van

Nadere informatie

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert. Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong Hoofdstuk 4 Verloop van functies Met DERIVE is het mogelijk om tal van eigenschappen van functies experimenteel te ontdekken. In een eerste paragraaf onderzoeken we het verband tussen de grafieken van

Nadere informatie

Monitoraatssessie Wiskunde

Monitoraatssessie Wiskunde Monitoraatssessie Wiskunde 1 Overzicht van de cursus Er zijn drie grote blokken, telkens voorafgegaan door de rekentechnieken die voor dat deel nodig zullen zijn. Exponentiële en logaritmische functies;

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1.0 16.0 uur 20 02 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

Producten, machten en ontbinden in factoren

Producten, machten en ontbinden in factoren Joke Smit College Producten, machten en ontbinden in factoren Voor cursisten uit de volgende klassen: alle Havo en VWO klassen (wiskunde, wiskunde A en wiskunde B) Wat kun je oefenen? 1. Het uitrekenen

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie

Voorbeeldopgaven Meetkunde voor B

Voorbeeldopgaven Meetkunde voor B Voorbeeldopgaven Meetkunde voor B Hoofdstuk 2: Opgave 2 1 Gegeven zijn de vlakken U : x + y + z = 0 en V : x y + az = 0 waarbij a een parameter is. a) Bereken de cosinus van de hoek tussen de twee vlakken

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Controle: Bekijk nu of aan het evenwicht wordt voldaan voor het deel BC, daarvoor zijn immers alle scharnierkracten bekend

Controle: Bekijk nu of aan het evenwicht wordt voldaan voor het deel BC, daarvoor zijn immers alle scharnierkracten bekend Hints/procedures voor het examen 4Q130 dd 25-11-99 ( Aan het einde van dit document staan antwoorden) Opgave 1 Beschouwing vooraf: De constructie bestaat uit twee delen; elk deel afzonderlijk vrijgemaakt

Nadere informatie

Niveau 1. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan. 1p. x + 6. 4x + 3. 4x 2 + 3. x 2 + 3x + 3. x 2 + 27

Niveau 1. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan. 1p. x + 6. 4x + 3. 4x 2 + 3. x 2 + 3x + 3. x 2 + 27 1p. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan x + 6 4x + 3 4x 2 + 3 x 2 + 3x + 3 Niveau 1 1p. 1p. 1p. x 2 + 27 Opgave 2. Als a log b = 64, dan is a2 log (b 3 ) gelijk aan 6 48 28/3 96 512 Opgave

Nadere informatie

Biljarten op een ellips. Lab kist voor 3-4 vwo

Biljarten op een ellips. Lab kist voor 3-4 vwo Biljarten op een ellips Lab kist voor 3-4 vwo Dit lespakket behoort bij het ellipsvormige biljart van de ITS Academy. Ontwerp: Pauline Vos, in opdracht van Its Academy Juni 2011 Leerdoelen: - kennismaken

Nadere informatie

Types differentiaal vergelijkingen

Types differentiaal vergelijkingen 1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 1 juli 2015 Oplossingen

IJkingstoets Wiskunde-Informatica-Fysica 1 juli 2015 Oplossingen IJkingstoets Wiskunde-Informatica-Fysica 1 juli 15 Oplossingen IJkingstoets wiskunde-informatica-fysica 1 juli 15 - p. 1/1 Oefening 1 Welke studierichting wil je graag volgen? (vraag zonder score, wel

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Differentiaalvergelijkingen Hoorcollege 11

Differentiaalvergelijkingen Hoorcollege 11 Differentiaalvergelijkingen Hoorcollege 11 Partiële differentiaalvergelijkingen: De Eendimensionale Golfvergelijking; De Tweedimensionale Laplacevergelijking A. van der Meer DV HC11 p. 1/17 De eendimensionale

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie

Nadere informatie

2012 I Onafhankelijk van a

2012 I Onafhankelijk van a 0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as

Nadere informatie

De Cirkel van Apollonius en Isodynamische Punten

De Cirkel van Apollonius en Isodynamische Punten januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Eerstegraads functies en rechte lijnen. Introductie 45. Leerkern 46

Eerstegraads functies en rechte lijnen. Introductie 45. Leerkern 46 Open Inhoud Universiteit leereenheid Wiskunde voor milieuwetenschappen Eerstegraads functies en rechte lijnen Introductie 5 Leerkern 6 De grafiek van een eerstegraads functie 6 Van grafiek naar functievoorschrift

Nadere informatie

Eindexamen wiskunde b 1-2 havo 2002 - II

Eindexamen wiskunde b 1-2 havo 2002 - II Pompen of... Een cilindervormig vat met een hoogte van 32 dm heeft een inhoud van 8000 liter (1 liter = 1 dm 3 ). figuur 1 4p 1 Bereken de diameter van het vat. Geef je antwoord in gehele centimeters nauwkeurig.

Nadere informatie

Introductie in R. http://www.math.montana.edu/stat/tutorials/r-intro.pdf http://www.math.montana.edu/stat/docs/splus_notes.ps

Introductie in R. http://www.math.montana.edu/stat/tutorials/r-intro.pdf http://www.math.montana.edu/stat/docs/splus_notes.ps Introductie in R R is een programmeer taal met een groot aantal voorgeprogrammeerde statistische functies. Het is de open source versie van S-plus. Wij gebruiken R dan ook omdat het gratis is. Documentatie

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening juli 05 dr. Brenda Castelen Met dank aan: Atheneum van Veurne (http:www.natuurdigitaal.begeneeskundefsicawiskundewiskunde.htm),

Nadere informatie

1. De afstand van onweer in kilometer bereken je door de tijd tussen bliksemflits en donder te delen door 3.

1. De afstand van onweer in kilometer bereken je door de tijd tussen bliksemflits en donder te delen door 3. Uitwerkingen practicum ontluikende algebra Vuistregels Geef de vuistregels weer met wiskundige symbolen.. De afstand van onweer in kilometer bereken je door de tijd tussen bliksemflits en donder te delen

Nadere informatie

Rekenvaardigheden voor het vak natuurkunde

Rekenvaardigheden voor het vak natuurkunde Inhoud Formules uitrekenen... 2 Balansmethode... 2 Categorie eenvoudig... 3 Categorie moeilijker... 4 Categorie moeilijkst... 5 Uitgebreidere formules... 8 Balansmethode en abc-formule... 8 1/11 Formules

Nadere informatie

Eenvoud bij tekenen en rekenen

Eenvoud bij tekenen en rekenen Eenvoud bij tekenen en rekenen Jan van de Craats In het decembernummer 2005 van Euclides doen Paul Drijvers, Swier Garst, Peter Kop en Jenneke Krüger verslag van een experimenteel project in vwo-5 wiskunde-b

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (Raoul Grasman)!

Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (Raoul Grasman)! Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (Raoul Grasman)! We behandelen voornamelijk algebra en differentiëren van functies! vr! algebra, incl. logaritmen! ma! functies,

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch) staan. Die

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 97-9: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (Annual High School Mathematics Examination - USA en

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

Oef 1. Oef 2. Ontbind, indien mogelijk, de veeltermen in factoren.

Oef 1. Oef 2. Ontbind, indien mogelijk, de veeltermen in factoren. Herhalingsoefeningen Problemen oplossen Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Elk

Nadere informatie

Tentamen: Kwantitatieve methoden 1.2(wiskundige methoden) Opleiding: Bacheloropleiding Economie Vakcode: 60121110

Tentamen: Kwantitatieve methoden 1.2(wiskundige methoden) Opleiding: Bacheloropleiding Economie Vakcode: 60121110 Vrije Universiteit Amsterdam Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Kwantitatieve methoden.2(wiskundige methoden) Opleiding: Bacheloropleiding Economie

Nadere informatie

Wat zijn de diameter en hoogte van een literblik waarin het minste blik verwerkt is?

Wat zijn de diameter en hoogte van een literblik waarin het minste blik verwerkt is? EXTREEM 1. Extreem Bij het vinden van maxima en minima (extremen of uiterste waarden), zoals nodig is voor het beantwoorden van onderstaande vragen, is de afgeleide functie een buiten gewoon krachtig hulpmiddel.

Nadere informatie

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde Analytische Meetkunde Lieve Houwaer, Unit informatie, team wiskunde . VECTOREN EN RECHTEN.. Vectoren... Het vectorbegrip De verzameling punten van het vlak noteren we door π. Kies in het vlak π een vast

Nadere informatie

Primitiveren. Omgekeerd differentiëren (primitieve bepalen)

Primitiveren. Omgekeerd differentiëren (primitieve bepalen) Primitiveren WISNET-HBO update april 2006 Inleiding Soms moet je juist de functie bepalen waarvan de afgeleide bekend is. Dit omgekeerd differentiëren (de primitieve bepalen) heet in het Engels de antiderivative.

Nadere informatie

De Laplace-transformatie

De Laplace-transformatie De Laplace-transformatie De Laplace-transformatie is een instrument dat functies omzet in andere functies. Deze omzetting, de transformatie, heeft nette wiskundige eigenschappen. Zowel in de kansrekening

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie