1. Gegeven x Y, waaraan is de fouriergetransformeerde gelijk? f g 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "1. Gegeven x Y, waaraan is de fouriergetransformeerde gelijk? f g 1"

Transcriptie

1 1. Gegeven x Y, waaraan is de fouriergetransformeerde gelijk? (a) X ỹ (b) x Y 2π (c) 2π X ỹ (d) X y Vanwege Volgt er Of dus antwoord (1a). x X 2π x f g 1 2π F G x Y X ỹ 2. 4 personen lenen eenzelfde bedrag bij de bank. (a) Persoon A betaalt 10 jaar af aan een rente van 6% (b) Persoon B betaalt 15 jaar af aan een rente van 4% (c) Persoon C betaalt 20 jaar af aan een rente van % (d) Persoon D betaalt 25 jaar af aan een rente van 2.5% Wie heeft de voordeligste lening? Het totale bedrag dat persoon N betaalt aan de bank wordt gegeven door JRB 1 (1 + R) J Met J Het aantal jaar, R de rentevoet en B het ontleende bedrag. Dit uitrekenen voor elk van de 4 gevallen geeft dat (2c) de voordeligste lening heeft. 1

2 . Gegeven a 0 n 4N a x(n) = 1 n 4N + 1 a 2 n 4N n 4N + X(2) = 0 en X() = i, waaraan is a 2 gelijk? (a) a 2 4 (b) 0 < a 2 < 4 (c) 4 < a 2 < 0 (d) a 2 4 Uit de gegevens omtrent X(2) en X() volgt a 0 a 1 + a 2 1 = 0 a 0 + i a 1 a 2 i = 4 ( 12 ) + 5i Ervan uitgaande dat a n reëel is stelt bovenstaande een x stelsel voor, waarvan de oplossing luidt a 0 = 10 a 1 = 21 a 2 = Bepaal de energie van sinc 2 (t). Merk op dat Zodat vanwege dualiteit H(1 t ) 2sinc(ω) Waarbij via Parseval volgt dat sinc 2 (t) π H(1 t ) H(1 t ) 2 sinc 2 (t) 2 = 1 2π = π π 2 H(1 t ) H(1 t ) 2 t 2 dt = 2π Waarbij de laatste stap volgt uit de observatie dat de convolutie van 2 gelijke blokgolven een driehoek teruggeeft, met als maximale hoogte de oppervlakte van het blok en als basis de dubbele breedte van het blok. 2

3 5. S : y u. Gegeven is dat voor een vaste waarde t element van R, y(t) = u(t ) voor alle t die behoren tot R. Hoeveel uitspraken zijn waar? S is causaal S is niet-lineair S is stationair Neem een t < t, dan volgt uit y(t) = u(t ), dat het systeem niet causaal is. Verder is y(t) een constante functie, dus lineair en stationair. Alles samen is dus enkel de laatste uitspraak waar. 6. Gegeven het systeem S : u y waarbij de ingang u 1 = H(t) de uitgang y 1 = t exp( t) H(t). Wat is de uitgang op het systeem voor ingang u 2 (t) = H(t 1) (t 1) (t 2) H(t 2) H(t 2). Om deze oefening op te lossen kan je de hele boel overbrengen naar het frequentiedomein en van daaruit het impulsantwoord bepalen. Bij deze werkwijze zou je echter de fouriergetransformeerde van de heaviside moeten bepalen. Een makkelijkere werkwijze bestaat erin om alles laplace te transformeren en op het einde s iω. Merk dus op dat in onderstaande redenering telkens nog de limiet moet worden genomen. Y 1 (s) = H(s)U 1 (s) Zodat Invers transformeren levert H(s) = L{u 1 (t)} = 1 s 1 L{y 1 (t)} = (1 + s) 2 s (s + 1) 2 = s 1 (1 + s) 2 h(t) = (1 t)e t H(t) Waarbij nu enkel nog maar h u 2 moet worden berekend, dit geeft 0 t < 1 y 2 (t) = 1 te 1 t 1 t < 2 e 2 t te 1 t t 2

4 7. Gegeven de signalen x : R R : H(1 t n ) en y : R R met FR spectrum Y (k) = 1 sin(kπ/). Neem z = x + y met Z(k) het FR spectrum van z. Bepaal de waarde van Z(1) Z(0). 1 n Z x(t) t Figuur 1: Signaal x De fouriercoëfficiënten X(k) worden gegeven door Met X(0) = 2. Bijgevolg is 1 X(k) = 1 e ik 2π t dt 1 = sin ( ) 2πk πk Z(1) Z(0) = X(1) + Y (1) X(0) Y (0) = 2π

5 8. Gegeven systemen die als volgt geschakeld worden: u v w y T S a B k B γ Zodat v = u(at) w = v(kn) y = w(γn) we leggen nu een ingangssignaal u(t) = cos aan, voor hoeveel van de volgende gegeven waarden voor k, γ en a is de uitgang periodiek en niet constant? k = 5, γ=5, a = π/2 k = 2, γ=10, a = π/2 k = 5, γ=5, a = 5 Het uitgangssignaal, nadat het door het systeem is gelopen, wordt gegeven door y(n) = cos(akγn) In het eerste geval verkrijgen we de reeks Voor het tweede geval wordt de constante 1 bekomen, en de derde is periodiek als 125n = mπ met m, n Z, maar π is irrationaal, dus geen oplossing, of dus aperiodiek. Enkel de eerste voldoet dus. 5

6 9. Gegeven onderstaand (A, B, C, D) toestandsmodel voor een systeem in discrete tijd Bepaal het impulsantwoord A = B = C = ( ) D = ( 0 ) De matrix A staat reeds in zijn Jordan vorm. Hierin kan een nilpotente matrix herkent worden, zodat A niet gediagonaliseerd kan worden. We kunnen A n wel bepalen via Waaruit ( ) n ( ) ( ) n = ( ) ( ) n 1 p(n 1) = n 1 ( 2 n 2 = n 1 ) + 2p(n 1) 0 2 n p(n) = 2 n 1 + 2p(n 1) Deze vergelijking oplossen geeft (evt. via Z-transformatie) p(n) = n2 n 1 Waarmee het impulsantwoord kan bepaald worden h(n) = CA n 1 B = ( ) n 1 (n 1)2 n n 1 2 = ( 2 + n2 n 1 2 n 1) H(n) Het is natuurlijk een meerkeuze-examen, waardoor bovenstaande werkwijze vrij veel werk is. Een andere methode is gewoon enkele waarden uitrekenen voor h(n), dus enkele machten van A berekenen, om daarna via eliminatie het juiste antwoord aan te duiden. 10. cos(6πt) samplen (met H = ω s /2π), ω s > 0 en ω c = π. Voor hoeveel mogelijke ω s (dit aantal=n) verkrijg je de uitgang y = α cos(πt/2) met α 0. { } { 6π π/2 De waarden die voldoen zijn: ω s = 6π + π/2 n n = 1,..., n }. n = 1,..., 4 Of dus 7 mogelijke waarden. 6

7 11. Hoeveel van deze stellingen zijn juist Er bestaan periodieke, niet constante signalen die na sampling perfect gereconstrueerd kunnen worden d.m.v. zowel first en zero order hold. Het is niet noodzakelijk dat ω bandbegrensd is om een perfecte reconstructie te verkrijgen via zero order hold of lineaire interpolatie Er bestaan continue-tijd, niet constante signalen die na sampling perfect gereconstrueerd kunnen worden d.m.v. zowel first order hold als de ideale interpolatie. De eerste uitspraak is vals. zero order hold zal discontinuïteiten vertonen die je via lineaire interpolatie enkel kan verkrijgen als de sampling punten oneindig dicht tegen elkaar liggen. De tweede uitspraak is waar, neem bv. een zaagtand die perfect gereconstrueerd kan worden via first order hold, of een blokgolf via zero order hold. De derde uitspraak is ook vals. Lineaire interpolatie zal altijd hoeken introduceren waardoor het resulterend signaal niet meer bandbegrensd is. Via ideale interpolatie zal je echter altijd een bandbegrensd signaal terugkrijgen. 12. Gegeven onderstaand continue tijd (A,B,C,D) toestandsmodel A = Het impulsantwoord heeft dan een (a) dalend exponentieel verloop (b) ongedempt sinusoïdaal verloop (c) uitdovend sinusoïdaal verloop (d) versterkend sinusoïdaal verloop Het impulsantwoord wordt gegeven door ( 2 ) 1/ B = ( ) 0 1 C = ( 4 2 ) D = ( 0 ) h(t) = Ce At B + Dδ(t) De matrix A heeft hierbij eigenwaarden op ±2i, zodat er een lineaire combinatie wordt gemaakt van e 2it en e 2it, wat overeenkomt met een ongedempt sinusoïdaal verloop. 7

8 1. De functie u(t) : t sin ( π (t ) + 1)) wordt door een systeem geperst met overdrachtsfunctie H(ω) : ω 2π ω exp (i (2π)2 ω. Waaraan is de uitgangsfasor Y gelijk? Hint: de functie A cos(ωt + φ) wordt geschreven als A exp(iφ). (a) 18 exp(iπ/) (b) 18 exp( iπ/6) (c) exp(iπ/) (d) 18 exp(iπ/6) Het ingangssignaal kan herschreven worden als u(t) = ei π (t+1) e i π (t+1) 2i Het uitgangssignaal wordt dan y(t) = ei π (t+1) H ( ) π e i π (t+1) H ( π ) ( 2i π ) = 18 sin (t + 1) Of met behulp van de hint in fasornotatie Y = 18e i π e i π 2 = 18e i π 6 8

9 14. Gegeven Waarbij y(2) = 66 en h(n) = n+1 H(n). Gevraagd: y(). (a) 10 (b) 197 (c) 201 u(0) = 2 u(1) = 1 u(2) = 1 u() = 1 u(4) = 2 (d) Je hebt te weinig gegevens om dit te berekenen Uit y(2) = 66 volgt y(2) = = n= 2 n= h(2 n)u(n) n u(n) = u(0) + u(1) 2 + u(2) + = 66 1 n= n u(n) Zodat Hieruit volgt voor y() 1 n= n u(n) = 0 y() = h( n)u(n) = n= h( n)u(n) n=0 = 201 9

10 15. Welke uitspraak is NIET correct D 1 T S 2 (H( 1/)) = T S 2 D 1 (H( 2/)) D 1 T S 2 (H( 2/)) = T S 2 D 1 (H( 1/)) D 1 T S 2 (H(1/)) = T S 2 D 1 (H(2/)) D 1 T S 2 (H(2/)) = T S 2 D 1 (H(1/)) Merk op dat D a T S b u(t) = u(b(t a)) T S b D a u(t) = u(bt a) Waardoor enkel de derde uitspraak verkeerd is. 16. Beschouw het continue-tijd systeem S gedefinieerd door onderstaand blokdiagram. Het systeem S heeft als toestandsmodel (a, b, c, d) R 4. S we weten dat a < /4, d = 0 en dat het systeem S niet BIBO-stabiel is. Hoeveel van de volgende beweringen zijn waar? Als b > 0 dan bestaan er c 0 zodat systeem S BIBO-stabiel is Als c > 0 dan bestaan er b 0 zodat systeem S BIBO-stabiel is Het systeem S is BIBO-stabiel als b = c = a De transferfunctie van S wordt gegeven door S = S = s a s a + bc Deze heeft een pool op s = a bc. S is niet BIBO stabiel, maar wel causaal (het is een toestandsmodel, deze zijn altijd causaal) en heeft dus een pool in het rechterhalfvlak. Hierbij kan de pool in de eerste 2 gevallen telkens naar links verschoven worden tot het GAC de imaginaire as omvat om BIBO-stabiliteit te garanderen. In het laatste geval komt de pool op s = a a 2 te liggen. Doordat 0 < a < /4 ligt deze pool altijd in het rechterhalfvlak zodat het systeem niet BIBO stabiel is. 10

11 x i is een element van het GAC. De transferfunctie wordt gegeven door x 2 + 2x + 2 waarbij x staat voor z in discrete tijd en voor s in continue tijd. Hoeveel uitspraken zijn niet juist? In discrete tijd is het systeem niet BIBO stabiel en niet causaal In continue tijd is het systeem causaal en niet BIBO stabiel In discrete tijd is het systeem BIBO stabiel en niet causaal De transferfunctie heeft polen op 1 ± i. In discrete tijd ligt het GAC dus buiten een schijf met straal 2 of het systeem is dus niet BIBO (eenheidsschijf ligt er niet in) maar wel causaal (convergent buiten de schijf). In continue tijd ligt het GAC rechts van s = 1 of dus convergent in het rechterhalfvlak (= causaal) en de imaginaire as ligt in het GAC (= BIBO). Bijgevolg is geen enkele uitspraak correct. 11

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Inleiding Wiskundige Systeemtheorie 156056

Inleiding Wiskundige Systeemtheorie 156056 Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/28 Elektrotechniek, Wiskunde en Informatica EWI Evenwichtspunt.x 0 ; y 0 ; u 0 / heet een evenwichtspunt

Nadere informatie

Digitale systemen. Hoofdstuk 6. 6.1 De digitale regelaar

Digitale systemen. Hoofdstuk 6. 6.1 De digitale regelaar Hoofdstuk 6 Digitale systemen Doelstellingen 1. Weten dat digitale systemen andere stabiliteitsvoorwaarden hebben In deze tijd van digitalisatie is het gebruik van computers in regelkringen alom.denk maar

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Signalen en Transformaties

Signalen en Transformaties Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/42 Elektrotechniek, Wiskunde en Informatica EWI Laplace transformatie éénzijdige Laplace-transformatie:

Nadere informatie

Bespreking van het examen Complexe Analyse (tweede zittijd)

Bespreking van het examen Complexe Analyse (tweede zittijd) Bespreking van het examen Complexe Analyse (tweede zittijd) Bekijk ook de bespreking van het examen van de eerste zittijd (op Toledo). Het valt hier op dat de scores op sommige vragen wel heel slecht zijn.

Nadere informatie

Tentamen Inleiding Meten Vakcode 8E020 22 april 2009, 9.00-12.00 uur

Tentamen Inleiding Meten Vakcode 8E020 22 april 2009, 9.00-12.00 uur Tentamen Inleiding Meten Vakcode 8E april 9, 9. -. uur Dit tentamen bestaat uit opgaven. Indien u een opgave niet kunt maken, geeft u dan aan hoe u de opgave zou maken. Dat kan een deel van de punten opleveren.

Nadere informatie

Systeemtheorie. De Brabanter Jos

Systeemtheorie. De Brabanter Jos Systeemtheorie De Brabanter Jos Deel I Inleiding 1 Hoofdstuk 1 Signalen en Systemen 1.1 Signalen en classificatie van signalen Een signaal wordt mathematisch voorgesteld als een functie van een onafhankelijke

Nadere informatie

2 de Bachelor IR 2 de Bachelor Fysica

2 de Bachelor IR 2 de Bachelor Fysica de Bachelor IR de Bachelor Fysica 6 augustus 05 Er worden 4 vragen gesteld. Vul op ieder blad je naam in. Motiveer of bewijs iedere uitspraak. Los alle vragen op, op een apart blad! Het examen duurt u30.

Nadere informatie

De Laplace-transformatie

De Laplace-transformatie De Laplace-transformatie De Laplace-transformatie is een instrument dat functies omzet in andere functies. Deze omzetting, de transformatie, heeft nette wiskundige eigenschappen. Zowel in de kansrekening

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen?

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen? Vraag Een vloeistoftank met onbeperkte capaciteit, bevat aanvankelijk V liter zuiver water. Tijdens de eerste faze stroomt water, dat zout bevat met een concentratie van k kilogram per liter, de tank binnen

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Inleiding Wiskundige Systeemtheorie

Inleiding Wiskundige Systeemtheorie Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/32 Elektrotechniek, Wiskunde en Informatica EWI Definitie Een ingang-uitgang systeem H heet een

Nadere informatie

Regeltechniek. Les 2: Signaaltransformaties. Prof. dr. ir. Toon van Waterschoot

Regeltechniek. Les 2: Signaaltransformaties. Prof. dr. ir. Toon van Waterschoot Regeltechniek Les 2: Signaaltransformaties Prof. dr. ir. Toon van Waterschoot Faculteit Industriële Ingenieurswetenschappen ESAT Departement Elektrotechniek KU Leuven, Belgium Regeltechniek: Tijdschema

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

Discrete Fourier transformatie

Discrete Fourier transformatie Wiskunde voor kunstmatige intelligentie, 7/8 Les Discrete Fourier transformatie We hebben in de vorige lessen gezien hoe we met behulp van de Fourier transformatie voor een in het tijdsdomein gegeven signaal

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

DSP Labo 3&4: Fourier

DSP Labo 3&4: Fourier DSP Labo 3&4: Fourier 24 januari 25 Inhoudsopgave Inleiding 3 2 Analyse 3 2. Fourierreeks 3 2.. Complex 3 2..2 Som van sinussen en cosinussen 3 2..3 Verband tussen beide vormen 4 2.2 Fourierreeks van enkele

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Signalen en Transformaties

Signalen en Transformaties Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/29 Elektrotechniek, Wiskunde en Informatica EWI Complexe getallen z D a C bi We definiëren de complex

Nadere informatie

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal? Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Calculus I, 23/11/2015

Calculus I, 23/11/2015 Calculus I, /11/015 1. Beschouw de functie met a, b R 0. f = a + b + lne a Benoem het domein van de functie f. b Bepaal a en b zodat de rechte y = 1 een schuine asymptoot is voor f. c Voor a = en b = 1,

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries)

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries) Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017 Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer) / B

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

tan c b + a c c b HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN

tan c b + a c c b HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN ) Gegeven: een rechthoekige driehoek ABC. Schrijf de volgende goniometrische getallen in functie van de lengten van de zijden van

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 986 987: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Signalen en Transformaties 5608 op maandag 9 oktober 007, 9.00.00 uur. De uitwerkingen van de opgaven dienen duidelijk

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

Calculus I, 19/10/2015

Calculus I, 19/10/2015 Calculus I, 9/0/05. a Toon aan dat de rationale functie f = 3 + 3 + voor alle 0 bekomen wordt via volgende procedure: Start met een gelijkbenige rechthoekige driehoek OAB, met B het punt, 0 op de -as,

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

DFT, Windowing, STFT, spectrogrammen

DFT, Windowing, STFT, spectrogrammen DFT, Windowing, STFT, spectrogrammen José Lagerberg Universiteit van Amsterdam November, 216 José Lagerberg (FNWI) DFT, Windowing, STFT, spectrogrammen November, 216 1 / 48 1 Discrete frequentie Ω van

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Donderdag 8 juli 4. Tijd: 14. 17. uur. Plaats: MA 1.44/1.46 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je

Nadere informatie

lengte aantal sportende broers/zussen

lengte aantal sportende broers/zussen Oefening 1 Alvorens opgenomen te worden in een speciaal begeleidingsprogramma s voor jonge talentvolle lopers, worden jonge atleten eerst onderworpen aan een aantal vragenlijsten en onderzoeken. Uit het

Nadere informatie

Supplement Wiskunde 2017/2018. Inhoudsopgave

Supplement Wiskunde 2017/2018. Inhoudsopgave Inhoudsopgave Hoofdstuk 1: Missende stof in de verslagen... 2 Hoofdstuk 2: Overbodige stof in de verslagen... 7 Hoofdstuk 3: Fouten in de verslagen... 8 Tentamen halen? www.rekenmaarverslagen.nl 1 Hoofdstuk

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2001-II

Eindexamen wiskunde B1-2 vwo 2001-II Koordentrapezium In figuur is koordenvierhoek ABCD getekend. AB is evenwijdig aan DC; ABCD is dus een trapezium. De figuur is ook op de bijlage getekend. figuur C D B A 5p Bewijs de volgende stelling:

Nadere informatie

Examen VWO. wiskunde B1,2

Examen VWO. wiskunde B1,2 wiskunde B1,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur 20 05 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

Bijlage 2: Eerste orde systemen

Bijlage 2: Eerste orde systemen Bijlage 2: Eerste orde systemen 1: Een RC-kring 1.1: Het frequentiegedrag Een eerste orde systeem kan bijvoorbeeld opgebouwd zijn uit de serieschakeling van een weerstand R en een condensator C. Veronderstel

Nadere informatie

Tentamen Analyse 4 (wi2602) 17 juni 2011, uur. ) (1 gratis)) Deel 2: opgaven 2b, 4ab, 5, 6 (normering: 2 + (

Tentamen Analyse 4 (wi2602) 17 juni 2011, uur. ) (1 gratis)) Deel 2: opgaven 2b, 4ab, 5, 6 (normering: 2 + ( TU Delft Mekelweg 4 Faculteit EWI, DIAM 68 CD Delft Tentamen Analyse 4 (wi6) 7 juni, 4-7 uur Het tentamen bestaat uit twee delen: Deel : opgaven, a, 3ab, 4c (normering: + + ( + ) + + ( gratis)) Deel :

Nadere informatie

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie.

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie. Katholieke Universiteit Leuven September 2008 Poolcoördinaten (versie 27 juni 2008) Inleiding Y y p o θ r X fig In fig worden er op twee verschillende manieren coördinaten gegeven aan het punt p Een eerste

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

Labo Digitale Signaalverwerking Fourrier Sound Synthese. Dumon Willem & Van Haute Tom - 4elictI1

Labo Digitale Signaalverwerking Fourrier Sound Synthese. Dumon Willem & Van Haute Tom - 4elictI1 Labo Digitale Signaalverwerking Fourrier Sound Synthese Dumon Willem & Van Haute Tom - 4elictI1 1 december 009 Inhoudsopgave 1 Inleiding......................................... 3 Wiskundige Analyse..................................

Nadere informatie

Complexe getallen: oefeningen

Complexe getallen: oefeningen Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Op deze manier ligt φ exact vast (als we zouden zeggen 0 φ 2π zouden we de reële getallen dubbelop hebben, en dat willen wij als wiskundigen niet).

Op deze manier ligt φ exact vast (als we zouden zeggen 0 φ 2π zouden we de reële getallen dubbelop hebben, en dat willen wij als wiskundigen niet). Moddergooien n.a.v. 31 augustus Allereerst: hartelijk dank voor de vragen; als dat zo doorgaat en als jullie zo blijven komen en ook nog eens huiswerk maken, dan weet ik zeker dat ik dicht bij 100% ga

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

HOOFDSTUK 3: Netwerkanalyse

HOOFDSTUK 3: Netwerkanalyse HOOFDSTUK 3: Netwerkanalyse 1. Netwerkanalyse situering analyseren van het netwerk = achterhalen van werking, gegeven de opbouw 2 methoden manuele methode = reductie tot Thévenin- of Norton-circuit zeer

Nadere informatie

Gevorderde onderwerpen

Gevorderde onderwerpen Hoofdstuk 5 Gevorderde onderwerpen Doelstellingen 1. Weten wat M-cirkels voorstellen en de functie ervan begrijpen 2. Bodediagram van een algemene transfertfunctie kunnen tekenen 3. Begrijpen dat een regelaar

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen Referentieniveaus uitgelegd De beschrijvingen zijn gebaseerd op het Referentiekader taal en rekenen'. In 'Referentieniveaus uitgelegd' zijn de niveaus voor de verschillende sectoren goed zichtbaar. Door

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur Wiskunde B Profi (oude stijl) Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 20 juni 3.30 6.30 uur 20 0 Voor dit eamen zijn maimaal 78 punten te behalen; het eamen bestaat uit 4 vragen.

Nadere informatie

Inleiding Wiskundige Systeemtheorie

Inleiding Wiskundige Systeemtheorie Inleiding Wiskundige Systeemtheorie 156056 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/28 Elektrotechniek, Wiskunde en Informatica EWI x.k C 1/ D Ax.k/ C Bu.k/; y.k/ D Cx.k/ C Du.k/ We

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

DEC SDR DSP project 2017 (2)

DEC SDR DSP project 2017 (2) DEC SDR DSP project 2017 (2) Inhoud: DSP software en rekenen Effect van type getallen (integer, float) Fundamenten onder DSP Lezen van eenvoudige DSP formules x[n] Lineariteit ( x functie y dus k maal

Nadere informatie

Tentamen Systeemanalyse (113117)

Tentamen Systeemanalyse (113117) Systeemanalyse (113117) 1/6 Vooraf Tentamen Systeemanalyse (113117) 17 augustus 2010, 8:45 12:15 uur Dit is een open boek tentamen, hetgeen betekent dat gebruik mag worden gemaakt van het dictaat Systeemanalyse

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen). Jozef Hoekmeters bevindt zich op de top van een berg die hoog uit zee rijst (zie figuur ). Aan de overkant van het water ziet hij een appartementsgebouw vlakbij

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Systeemtheorie. Hoofdstuk 3. 3.1 Signalen aan de ingang

Systeemtheorie. Hoofdstuk 3. 3.1 Signalen aan de ingang Hoofdstuk 3 Systeemtheorie Doelstellingen. Weten welke signalen men aan de ingang kan aanleggen om de reactie van een systeem te bestuderen 2. Weten wat een Bode en Nyquistdiagram voorstellen en deze diagramma

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

Examenvragen Wiskundige Analyse I 1ste bach ir wet, eerste examenperiode

Examenvragen Wiskundige Analyse I 1ste bach ir wet, eerste examenperiode Examenvragen Wiskundige Analyse I 1ste bach ir wet, eerste examenperiode 2008-2009 Een vloeistoftank met een capaciteit van 500 liter bevat aanvankelijk 100 liter water, waarin 30 kilogram zout is opgelost.

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Tweede Ronde e tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem werkt (opnieuw) als volgt : een deelnemer start met 0 punten Per goed antwoord

Nadere informatie

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari 9. Opgave: Bereken dt ( q) als p = (, ), q = (, ) en p u+v x = e t dt T : (u, v) (x, y) : u y = u sin(vt) dt Oplossing:

Nadere informatie

Het vinden van een particuliere oplossing

Het vinden van een particuliere oplossing Het vind van e particuliere oplossing Voor e lineaire differtiaalvergelijking met constante (reële) coëfficiënt a 0 y (n) (t) + a 1 y (n 1) (t) +... + a n 1 y (t) + a n y(t) = g(t), a 0 0 (1) geldt, dat

Nadere informatie

7. Hamiltoniaanse systemen

7. Hamiltoniaanse systemen 7. Hamiltoniaanse systemen In de moleculaire dynamica, maar ook in andere gebieden zoals de hemelmechanica of klassieke mechanica, worden oplossingen gezocht van het Hamiltoniaanse systeem van differentiaalvergelijkingen

Nadere informatie

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 7 Poolcoördinaten (versie 22 augustus 2011) Inhoudsopgave 1 Poolcoördinaten 1 2 Poolvergelijkingen 3 21 Cartesiaanse coördinaten versus poolcoördinaten

Nadere informatie

Hoe belangrijk is lineaire algebra voor akoestiek en omgekeerd?

Hoe belangrijk is lineaire algebra voor akoestiek en omgekeerd? Hoe belangrijk is lineaire algebra voor akoestiek en omgekeerd? 9 februari 2007 Overzicht 1 Situering 2 Numerieke simulatie 3 Gedempt massa-veersysteem 4 Numerieke simulaties voor trillingen 5 Versnellingstechnieken

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Mathematical Modelling

Mathematical Modelling 1 / 95 Mathematical Modelling Ruud van Damme Creation date: 21-08-08 Last adapt: 30-08-09 2 / 95 Overzicht 1 Inleiding 2 Complexe getallen: rekenen 3 Complexe getallen: iets meer dan rekenen alleen 3 /

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B,2 (nieuwe stijl) Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni 330 630 uur 20 0 Voor dit eamen zijn maimaal 80 punten te behalen; het eamen bestaat uit 5 vragen

Nadere informatie

Tussentoets Analyse 2. Natuur- en sterrenkunde.

Tussentoets Analyse 2. Natuur- en sterrenkunde. Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

Stelsels van vergelijkingen

Stelsels van vergelijkingen Module 5 Stelsels van vergelijkingen 5.1 Definitie en voorbeelden Een verzameling van vergelijkingen in een aantal onbekenden waarvan men de gemeenschappelijke oplossing(en) zoekt, noemt men een stelsel

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

Uitwerking studie stimulerende toets Embedded Signal Processing (ESP)

Uitwerking studie stimulerende toets Embedded Signal Processing (ESP) Uitwerking studie stimulerende toets Embedded Signal Processing (ESP) Cursus code 259, Dinsdag 7 maart 29, 3:3h 7:h. U mag gebruiken: uw eigen aantekeningen, de uitgeprinte college sheets van Teletop en

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback IJkingstoets 5 september 04 - reeks - p. /0 Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 5 september 04: algemene feedback In totaal namen 5 studenten deel aan deze ijkingstoets industrieel

Nadere informatie

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom 8. Fouriertheorie Periodieke functies. Veel verschijnselen en processen hebben een periodiek karakter. Na een zekere tijd, de periode, komt hetzelfde patroon terug. Denk maar aan draaiende of heen en weer

Nadere informatie

5 Lineaire differentiaalvergelijkingen

5 Lineaire differentiaalvergelijkingen 5 Lineaire differentiaalvergelijkingen In veel toepassingen in de techniek en de exacte wetenschappen wordt gewerkt met differentiaalvergelijkingen om continue processen te modelleren. Het gaat dan meestal

Nadere informatie

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 19 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 19 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2009 tijdvak 1 dinsdag 19 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor

Nadere informatie