Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2"

Transcriptie

1 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van P (), de constante getallen a n, a n 1,..., a 0 heten de coëfficiënten. Zijn P () en Q() polynomen van graad respectievelijk m en n dan is het mogelijk P () door Q() te delen, d.w.z. men kan polynomen S() (quotiënt) en R() (rest) bepalen zo, dat P () = Q()S() + R() (1) waarbij de graad r van de rest R() kleiner is dan de graad m van Q() (als m > n voldoen S() 0, P () = R()). Men kan S() en R() bepalen met een staartdeling. Hebben we bijvoorbeeld P () = en Q() = 3 2 2, dan geldt / \ 3 1 = S() = R() In dit geval geldt dus = (3 2 2)( 2 3 1) + ( ). De deling eindigt altijd zodra de graad van de rest kleiner is dan de graad van de deler Q(). Opgave 1.1 Bepaal quotiënt en rest bij deling van (a) door (c) 10 1 door 1. (b) door 3 +. De coëfficiënten a i zijn in het algemeen reële getallen. Soms wordt ook gewerkt met polynomen met uitsluitend gehele coëfficiënten. Het is van belang op te merken dat als P () en Q() beide gehele coëfficiënten hebben en de coëfficiënt van de hoogste macht ±1 is, het quotiënt en de rest bij deling van P () door Q() weer polynomen met gehele coëfficiënten zijn. (Ga dit na.) Beschouw weer in het algemeen vergelijking (1). Stel nu Q() = p. De rest is dan een polynoom van graad nul, dus een constante: P () = ( p)s() + R. Substitueer = p, dan volgt R = P (p). De rest bij deling van P () door p is dus P (p). Als in het bijzonder P (p) = 0, dan geldt P () = ( p)s(). Van P () kan men dus een factor p afsplitsen. Is q p een tweede nulpunt van P (), dan is 0 = P (q) = (q p)s(q), dus ook S(q) = 0. Van S() is dus een factor q af te splitsen. Als in het algemeen p 1, p 2,..., p k verschillende nulpunten van P () zijn, dan geldt P () = ( p 1 )( p 2 ) ( p k )P (). We vinden dus: 1

2 Stelling 1.1 Elk polynoom van graad n, n > 0, heeft ten hoogste n nulpunten. Er zijn polynomen zonder reële nulpunten, bijvoorbeeld P () = Maar elk polynoom van oneven graad heeft minstens één reëel nulpunt. Stel namelijk 0, dan geldt P () = a n n +a n 1 n 1 + +a 0 = n (a n + an 1 a0 + + ) (n oneven en n a n 0). Als voldoende groot is, is an a0 < a n n, dus als voldoende groot positief is, heeft P () hetzelfde teken als a n, en als voldoende groot negatief is, heeft P () juist het tegengestelde teken. Omdat polynomen continue functies zijn, moet er dan ook minstens één nulpunt zijn. Stelling (1.1) kan men vaak op de volgende wijze gebruiken: weet men dat het polynoom P () van graad kleiner dan of gelijk aan n is en meer dan n nulpunten heeft, dan moet het van graad nul zijn. Maar een constante functie met een nulpunt moet identiek nul zijn, dus P () 0. Alle coëfficiënten zijn dan ook nul. Voorbeeld: Stel dat P () = a a 1 + a 0 voldoet aan P () 1 voor alle [ 1, 1]. Dan geldt a 2 2. Bewijs.Stel a 2 > 2. Noem Q() = Dan Q(±1) = 1, Q(0) = 1. Noem P () = 2 a 2 P () dan geldt P () < P () 1 op [ 1, 1]. Nu is R() = Q() P () een eerstegraads polynoom met R( 1) > 0, R(0) < 0 en R(1) > 0. R heeft dus minstens twee nulpunten, dus R is identiek nul, m.a.w. Q() P (), in tegenspraak met P () < 1 op [ 1, 1]. De veronderstelling a 2 > 2 was dus onjuist Figuur 1: de grafiek van Q(). Voorbeeld: Elk polynoom van positieve graad met gehele coëfficiënten geeft voor gehele -waarden ook gehele functiewaarden. Kunnen die waarden allemaal priemgetallen zijn? Het antwoord is nee. Stel namelijk P () = a n n + + a 0 en stel dat voor een zekere gehele k P (k) = p met p priem. Beschouw voor een gehele waarde van i P (k + ip) P (k) = a n ((k + ip) n k n ) + + a 1 ((k + ip) k). Voor iedere j is a j b j deelbaar door a b, dus P (k + ip) P (k) is deelbaar door k + ip k = ip. Voor elke gehele i is P (k + ip) dus deelbaar door p. Zouden al deze waarden priemgetallen zijn, dan zouden ze allemaal gelijk zijn aan p. Het polynoom P () p zou dan oneindig veel verschillende nulpunten hebben. Tegenspraak. Er is al aangetoond dat van P () een factor a kan worden afgesplitst zodra P (a) = 0: P () = ( a)s(). Geldt ook S(a) = 0, dan kan ook van S() een factor a worden afgesplitst: P () = ( a) 2 T (). Kan men zo doorgaande k maal een factor a afsplitsen (P () = ( a) k U()) en geldt U(a) 0 (zodat er niet nog meer factoren a afgesplitst kunnen worden) dan heet a een k-voudig nulpunt van P (). Het getal k heet de multipliciteit van het nulpunt a. Een k- voudig nulpunt kan men opvatten als k samenvallende nulpunten. Stelling (1.1) is blijkbaar uit te breiden: Stelling 1.2 Het aantal nulpunten, elk geteld met zijn multipliciteit, van een polynoom van graad n > 0 bedraagt ten hoogste n. 2

3 Uit de regels voor differentiëren volgt: Stelling 1.3 Als a een k-voudig nulpunt van P () is (k > 1), dan is a een (k 1)- voudig nulpunt van P (). Als a een enkelvoudig nulpunt van P () is, dan geldt P (a) 0. Stel dat het polynoom P () = a n n + + a 0 (a n 0) precies n (niet noodzakelijk verschillende) nulpunten 1, 2,..., n heeft. Dan is Q() = a n ( 1 )( 2 ) ( n ) een polynoom van dezelfde graad met ook 1, 2,..., n als nulpunten. Het verschil is van graad kleiner dan n, heeft minstens n nulpunten, en is dus identiek nul. Na uitwerken van de haakjes in de uitdrukking voor Q() moet daarom de coëfficiënt van elke macht k gelijk zijn aan a k. In het bijzonder is de constante term a 0 = ( 1) n a n 1 2 n, m.a.w. het product van alle nulpunten is ( 1) n a0 a n. Vergelijken van de coëfficiënten van n 1 geeft a n 1 = a n ( n ), m.a.w. de som van alle nulpunten is an 1 a n. Vergelijken van de coëfficiënten van de andere machten geeft nog meer betrekkingen tussen de coëfficiënten en de nulpunten, maar de twee genoemde betrekkingen zijn de belangrijkste. Opgave 1.2 Stel P () = a a a 1 + a 0 voldoet aan P () 1 als [ 1, 1]. Bewijs a 3 4. (Men kan in het algemeen bewijzen dat als een n-de graads polynoom aan deze voorwaarde voldoet, dan a n 2 n 1.) Opgave 1.3 Bewijs stelling (1.3). Opgave 1.4 a en n zijn gehele getallen. De vergelijking a 2 n = 0 heeft drie gehele wortels. Bepaal a en n. (NWO 1970) Opgave 1.5 P () = ( ) 84 ( ) 184 wordt uitgewerkt tot P () = a n n + + a 0. Bepaal de som a n + a n a 0. Opgave 1.6 P () = a n n + + a 0 voldoet aan P () = P ( ) voor alle. Bewijs dat a i = 0 voor alle oneven i. Bewijs ook: als P () = P ( ) voor alle, dan is a i = 0 voor alle even i. Opgave 1.7 Bewijs dat als men het product ( )( ) uitwerkt, een polynoom ontstaat dat slechts even machten van bevat. Opgave 1.8 Bepaal de rest na deling van door (a) 1 (b) 2 1. Opgave 1.9 Een onbekend polynoom geeft rest 2 na deling door 1 en rest 1 na deling door 2. Wat is de rest na deling door ( 1)( 2)? Opgave 1.10 Uitwerken van ( 2 + 1) n ( 2 + 2) n + (1 + ) n + (2 ) n, n > 2, geeft a 2n 2 2n a 1 + a 0. Bewijs dat a 2n 2 + a 2n a 2 = 0. (NWO 1963) Opgave 1.11 P () = 2 + a + 1 en Q() = a. Bepaal alle waarden van a waarvoor P en Q een gemeenschappelijk nulpunt bezitten. Opgave 1.12 Bepaal alle mogelijke polynomen van de vorm P () = ( a)( b)( c) + 1 met a, b en c positief geheel en onderling verschillend die geschreven 3

4 kunnen worden als product van twee polynomen van positieve graad met gehele coëfficiënten. Opgave 1.13 Bewijs dat een polynoom met gehele coëfficiënten de waarde 14 voor geen enkele gehele waarde van de variabele kan aannemen als het de waarde 7 voor vier gehele waarden van de variabele aanneemt. Opgave 1.14 P () is een polynoom met gehele coëfficiënten en positieve graad n. Er zijn precies k gehele getallen N waarvoor P (N) 2 = 1. Bewijs dat k n 2. 2 De interpolatieformule van Lagrange Door elk tweetal punten ( 0, y 0 ), ( 1, y 1 ) met 0 < 1 kan men de grafiek van een eerstegraads polynoom (een rechte lijn) trekken. Dit polynoom is te schrijven als P () = y y Door elk drietal punten ( 0, y 0 ), ( 1, y 1 ), ( 2, y 2 ) met 0 < 1 < 2 kan men de grafiek trekken van het tweedegraads polynoom ( 1 )( 2 ) P () = y 0 ( 0 1 )( 0 2 ) + y ( 0 )( 2 ) 1 ( 1 0 )( 1 2 ) + y ( 0 )( 1 ) 2 ( 2 0 )( 2 1 ). In het algemeen geldt: Stelling 2.1 Stel gegeven 0 < 1 < < n en n + 1 getallen y 0, y 1,..., y n, dan voldoet het polynoom P () = n i=0 y i ( 0 ) ( i 1 )( i+1 ) ( n ) ( i 0 ) ( i i 1 )( i i+1 ) ( i n ) aan P ( i ) = y i voor i = 0, 1,..., n. Het is ook het enige polynoom van graad hooguit n met deze eigenschap. Bewijs. Door invullen controleert men dat inderdaad P ( i ) = y i voor alle i. Zou een tweede polynoom Q() van graad hooguit n dezelfde eigenschap hebben, dan zou P () Q() nul zijn in de n + 1 punten 0, 1,..., n. Dit kan alleen als het verschil identiek nul is, dus als P en Q gelijk zijn. Het bepalen van een functie die in voorgeschreven punten voorgeschreven waarden aanneemt, heet interpoleren. De interpolatieformule uit bovenstaande stelling is afkomstig van de franse wiskundige J.L. Lagrange( ). Opgave 2.1 Bepaal het polynoom P van graad hooguit 2 dat voldoet aan (a) P (0) = 1, P (1) = 0 en P (2) = 0. (b) P (0) = 0, P (1) = 1 en P (2) = 0. (c) P (0) = 0, P (1) = 0 en P (2) = 1. Opgave 2.2 Gebruik opgave (2) om een polynoom van graad hooguit 2 te vinden dat voldoet aan P (0) = π, P (1) = e en P (2) = π e. 4

5 Opgave 2.3 Noem Q() = ( 0 )( 1 ) ( n ) en definieer voor i = 0, 1,..., n L i () = Q() ( i )Q ( i ) als i en L i ( i ) = 1. Bewijs dat P () uit de stelling geschreven kan worden als P () = n y i L i (). i=0 3 Polynomen in meer variabelen Elke eindige som van termen van de vorm c k1 1 k2 2 kn n waarin de k i nietnegatieve gehele eponenten zijn, heet een polynoom in de variabelen 1, 2,..., n. De getallen c heten de coëfficiënten van het polynoom. Neem aan dat gelijksoortige termen, d.w.z. termen met hetzelfde stel eponenten k 1, k 2,..., k n zijn samengenomen. Voorbeeld voor n = 3: (In de tweede term geldt k 2 = k 3 = 0.) Vult men voor n 1 van de variabelen vaste waarden in, dan ontstaat een polynoom in de overblijvende variabele. De coëfficiënten van dit polynoom zijn zelf polynomen in de n 1 andere variabelen. Als P 1 ( 1 ), P 2 ( 2 ),..., P n ( n ) polynomen in respectievelijk 1, 2,..., n zijn, dan is het product P 1 ( 1 )P 2 ( 2 ) P n ( n ) een polynoom in 1, 2,..., n. Een voorbeeld is ( )( 2 5)( ). Het is echter niet waar dat elk polynoom in n variabelen ook geschreven kan worden als product van n polynomen in één variabele. Zo is het bijvoorbeeld duidelijk dat er geen polynomen P 1 ( 1 ) en P 2 ( 2 ) bestaan met P 1 ( 1 )P 2 ( 2 ) = Een polynoom in meer dan één variabele kan oneindig veel nulpunten hebben. Zo geldt bijvoorbeeld = 0 voor alle punten ( 1, 2 ) met 1 = ± 2. Stelling 3.1 Als het polynoom P ( 1, 2,..., n ) voor alle reële waarden van 1, 2,..., n de waarde 0 aanneemt, dan zijn alle coëfficiënten van het polynoom nul. Bewijs. We passen volledige inductie naar n toe. Voor n = 1 hebben we de stelling al bewezen. Stel dat de stelling geldt voor elk polynoom van n variabelen en dat P ( 1, 2,..., n, n+1 ) = 0 voor alle ( 1, 2,..., n, n+1 ). P ( 1, 2,..., n, n+1 ) = A 0 + A 1 n+1 + A 2 2 n A k k n+1, waarin de A i polynomen zijn in 1, 2,..., n. Voor elk stel ( 1, 2,..., n ) is P een polynoom in n+1 dat identiek nul is. Dit betekent dat de coëfficiënten A i allemaal nul zijn. Elke A i is dus nul voor elk stel waarden van de variabelen 1, 2,..., n. Volgens de inductieveronderstelling zijn dan alle coëfficiënten van elke A i nul, m.a.w. alle coëfficiënten van P zijn nul. Men gebruikt vaak polynomen in n variabelen waarbij de som k 1 + k k n voor alle termen c k1 1 k2 2 kn n hetzelfde is. Zulke polynomen heten homogeen. Voorbeelden voor n = 3: , en ( ) 8. Als in elke term k 1 + k k n = r, dan heet het polynoom homogeen van graad r. De voorbeelden hierboven zijn homogeen van respectievelijk graad 4, graad 5 en 5

6 graad 8. Het is duidelijk dat als P homogeen van graad r is, voor iedere waarde van t de gelijkheid geldt. Het omgekeerde is ook waar: P (t 1, t 2,..., t n ) = t r P ( 1, 2,..., n ) (2) Stelling 3.2 Voldoet het polynoom P voor iedere t en elk stel ( 1, 2,..., n ) aan (2), dan is P homogeen van graad r. Bewijs. Kies een vast stel waarden ( 1, 2,..., n ); P (t 1, t 2,..., t n ) is dan een polynoom in t: P (t 1, t 2,..., t n ) = A 0 + A 1 t + A 2 t 2 +. Hierbij is A i de som van alle termen c k1 1 k2 2 kn n met k 1 + k k n = i. Het polynoom in t P (t 1, t 2,..., t n ) t r P ( 1, 2,..., n ) = A 0 +A 1 t+a 2 t 2 + +A r 1 t r 1 +(A r P ( 1, 2,..., n ))t r + A r+1 t r+1 + is identiek nul, dus alle coëfficiënten zijn nul. Er geldt dus A i = 0 als i r, en dit geldt voor elk stel waarden ( 1, 2,..., n ). De coëfficiënten van alle polynomen A i ( 1, 2,..., n ) met i r zijn dus allemaal nul, dus P is homogeen van graad r. Opgave 3.1 P ( 1, 2,..., n ) en Q( 1, 2,..., n ) zijn homogene polynomen van graad r respectievelijk s. Bewijs dat het product van P en Q homogeen van graad r + s is. Wanneer is de som van P en Q ook homogeen? Opgave 3.2 Voor welke waarden van k bestaat er een polynoom P (, y, z) zo, dat 3 + y 3 + z 3 + kyz = ( + y + z)p (, y, z). Opgave 3.3 Het polynoom P (, y) voldoet aan P (, ) = 0 voor alle. Bewijs dat er een polynoom Q(, y) bestaat zo, dat P (, y) = ( y)q(, y). Opgave 3.4 Vind alle polynomen P (, y) die voldoen aan de volgende eigenschappen: (1) er is een n N zo, dat voor alle, y, t R geldt P (t, ty) = t n P (, y); (2) voor alle a, b, c R geldt P (a + b, c) + P (b + c, a) + P (c + a, b) = 0; (3) P (1, 0) = 1. 4 Gemengde opgaven Opgave 4.1 P () = ( a)( b) k( c)( d) met a < c < b. (a) Bewijs dat als k = 1, P voor elke waarde van d hooguit één nulpunt heeft. (b) Bewijs dat als k < 1, P voor elke waarde van d precies twee nulpunten heeft. (NWO 1 e ronde, 1969) Opgave 4.2 Bepaal alle polynomen P en Q zo, dat voor alle P () 3 + Q()P () 2 + ( 4 + 1)P () = 0. 6

7 Opgave 4.3 Bewijs dat deelbaar is door Opgave 4.4 Bepaal alle gehele getallen a zo, dat ( a)( 10) + 1 geschreven kan worden als ( b)( c) met b en c geheel. Opgave 4.5 P is een zevendegraads polynoom met gehele coëfficiënten en voor zeven verschillende gehele waarden van de variabele geldt P () 2 = 1. Bewijs dat P niet geschreven kan worden als product van twee polynomen met gehele coëfficiënten en positieve graad. Opgave 4.6 Een polynoom met gehele coëfficiënten neemt oneven gehele waarden aan in 0 en in 1. Bewijs dat geen van zijn nulpunten geheel is. Opgave 4.7 Bewijs dat alle rationale nulpunten van het polynoom met gehele coëfficiënten n + a n 1 n 1 + a n 2 n a 0 (a n = 1!) geheel zijn. Opgave 4.8 a en b zijn reële getallen zo, dat de vergelijking 4 +a 3 +b 2 +a+1 = 0 minstens één oplossing heeft. Bepaal de minimale waarde van a 2 + b 2. (IWO 1973) 7

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Oplossing van opgave 6 en van de kerstbonusopgave.

Oplossing van opgave 6 en van de kerstbonusopgave. Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.

Nadere informatie

Grafieken van veeltermfuncties

Grafieken van veeltermfuncties (HOOFDSTUK 43, uit College Mathematics, door Frank Ayres, Jr. and Philip A. Schmidt, Schaum s Series, McGraw-Hill, New York; dit is de voorbereiding voor een uit te geven Nederlandse vertaling). Grafieken

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Getaltheorie II. ax + by = c, a, b, c Z (1)

Getaltheorie II. ax + by = c, a, b, c Z (1) Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

Standaardfuncties. x c

Standaardfuncties. x c Standaards Constante Parameter We geven in dit document een overzicht van een aantal veelvoorkomende s. We geven steeds het voorschrift en de grafiek. (Ter herinnering: het domein vermelden we niet, het

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 3 De Nullstellensatz 1. De zwakke Nullstellensatz Stelling 1.1. Zij K een algebraïsch gesloten lichaam en zij I een ideaal in K[x] = K[x 1,...,

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Hoofdstuk 7 : Delen van veeltermen

Hoofdstuk 7 : Delen van veeltermen - 19 - Hoofdstuk 7 : Delen van veeltermen Delen van veeltermen door een veelterm: (boek pag 16) Bepaal het quotient en de rest van de volgende delingen (oefeningen pag 19 nr. - 5-6) 1.. 18 9 + 11 + 6........................

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

Public Key Cryptography. Wieb Bosma

Public Key Cryptography. Wieb Bosma Public Key Cryptography de wiskunde van het perfecte kopje koffie Wieb Bosma Radboud Universiteit Nijmegen Bachelordag 2 april 2011 Nijmegen, 6 november 2010 0 Nijmegen, 6 november 2010 1 cryptografie

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 Extremenprincipe 6 3 Ladenprincipe 11 1 Bewijs uit het ongerijmde In Katern hebben we de volgende rekenregel bewezen, als onderdeel van

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n

Nadere informatie

Proefexemplaar. Wendy Luyckx Mark Verbelen Els Sas. Dirk Vandamme. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door. Cartoons.

Proefexemplaar. Wendy Luyckx Mark Verbelen Els Sas. Dirk Vandamme. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door. Cartoons. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door Wendy Luyckx Mark Verbelen Els Sas Cartoons Dirk Vandamme Leerboek Getallen ISBN: 78 0 4860 48 8 Kon. Bib.: D/00/047/4 Bestelnr.: 4 0 000

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties Hoofdstuk 6 Congruentierekening 6.1 Congruenties We hebben waarschijnlijk allemaal wel eens opgemerkt dat bij vermenigvuldigen van twee getallen de laatste cijfers als het ware meevermenigvuldigen. Stel

Nadere informatie

Functievergelijkingen

Functievergelijkingen Functievergelijkingen Trainingsweek juni 2008 Basistechnieken Je mag alle getallen in het domein invullen in je functievergelijking. Wat er precies handig is, hangt af van het domein en van de functievergelijking.

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten Hoofdstuk 12 Sommen van kwadraten 12.1 Sommen van twee kwadraten In Hoofdstuk 11 hebben we gezien dat als p een oneven priemdeler van a 2 + b 2 is, en p deelt niet zowel a als b, dan is p gelijk aan 1

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π OVER IRRATIONALE GETALLEN EN MACHTEN VAN π KOEN DE NAEGHEL Samenvatting. In deze nota buigen we ons over de vraag of een macht van π een irrationaal getal is. De aangereikte opbouw en bewijsmethoden zijn

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen een onmogelijke uitdaging Frits Beukers Vakantiecursus 2010 Diophantische vergelijkingen Vakantiecursus 2010 1 / 34 Eerste voorbeeld Bedenk twee gehele getallen x en y zó dat

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten

Nadere informatie

Spookgetallen. Jan van de Craats en Janina Müttel

Spookgetallen. Jan van de Craats en Janina Müttel Spookgetallen Jan van de Craats en Janina Müttel leadtekst In de serie Open Problemen deze keer drie beroemde onopgeloste raadsels. Je kunt er geen miljoen dollar mee winnen, maar wel onsterfelijke roem.

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

Groepen, ringen en velden

Groepen, ringen en velden Groepen, ringen en velden Groep Een groep G is een verzameling van elementen en een binaire operator met volgende eigenschappen: 1. closure (gesloten): als a en b tot G behoren, doet a b dat ook. 2. associativiteit:

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Dossier 3 PRIEMGETALLEN

Dossier 3 PRIEMGETALLEN Dossier 3 PRIEMGETALLEN atomen van de getallenleer Dr. Luc Gheysens Een priemgetal is een natuurlijk getal met twee verschillende delers, nl. 1 en het getal zelf. De priemgetallen zijn dus 2, 3, 5, 7,

Nadere informatie

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade Katernen voor de regionale training ten behoeve van de tweede ronde van de Nederlandse Wiskunde Olympiade NEDERLANDSE WISKUNDE OLYMPIADE Birgit van Dalen Julian Lyczak Quintijn Puite Inhoudsopgave Katern

Nadere informatie

Opdracht 1 bladzijde 8

Opdracht 1 bladzijde 8 Opdrachten Opdracht bladzijde 8 Uit een stuk karton met lengte 45 cm en breedte 8 cm knip je in de vier hoeken vierkantjes af met zijde cm. Zo verkrijg je een open doos. 8 cm 45 cm Hoe groot is het volume

Nadere informatie

Rekenvaardigheden voor klas 3 en 4 VWO

Rekenvaardigheden voor klas 3 en 4 VWO Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

De wortel uit min één. Jaap Top

De wortel uit min één. Jaap Top De wortel uit min één Jaap Top IWI-RuG & DIAMANT j.top@rug.nl 20 maart 2007 1 Marten Toonder, verhaal de minionen (1980) 2 3 4 5 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

PARADOXEN 2 Dr. Luc Gheysens

PARADOXEN 2 Dr. Luc Gheysens PARADOXEN Dr. Luc Gheysens SPELEN MET ONEINDIG Historische nota De Griekse filosoof Zeno (ca. 90-0 v. Chr.) bedacht een aantal paradoen om aan te tonen dat beweging eigenlijk een illusie is. De meest bekende

Nadere informatie

Lineaire Algebra 3 en 4. Wieb Bosma

Lineaire Algebra 3 en 4. Wieb Bosma Lineaire Algebra 3 en 4 Wieb Bosma juni 2000/juni 2001 Inhoudsopgave 1 Vectorruimten 3 1.1 Inleiding........................................ 3 1.2 Lichamen....................................... 3 1.2.1

Nadere informatie

Mathematical Modelling

Mathematical Modelling 1 / 64 Mathematical Modelling Ruud van Damme Creation date: 09-11-09 2 / 64 Niet overal analytisch: een rangschikking 2. De hoofdklasse A: rationale functies: f (z) = z5 + z 2 + 3z + 4 z 3 + 4z 2 + 5z

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen Een praktische opdracht voor leerlingen van 5VWO met wiskunde B DE TELDUIVEL Inleiding Wiskunde? Hou op zeg! Voor

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN II NATUURLIJKE, GEHELE EN RATIONALE GETALLEN Iedereen ent getallen: de natuurlije getallen, N = {0,1,2,3,...}, gebruien we om te tellen, om getallen van elaar af te unnen treen hebben we de gehele getallen,

Nadere informatie

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Geef een goede onderbouwing van je antwoorden. Succes! 1. (a) (10 pt) Ontbindt het polynoom X 3 3X+3 in irreducibele factoren in Q[X] en in

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 2012

Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 2012 Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 202 Cor Kraaikamp August 24, 202 Cor Kraaikamp () Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde

Nadere informatie

Het rechterlid van het voorschrift van een veeltermfunctie is een veelterm in één veranderlijke.

Het rechterlid van het voorschrift van een veeltermfunctie is een veelterm in één veranderlijke. 5 ASO H zwak leerboek 5-8- 6:9 Pagina. INLEIDING Vorig jaar maakten we al kennis met een basispakket functies : h g a) de constante functies : f () = a b) de eerstegraadsfuncties : g () = a + b c) de tweedegraadsfuncties

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT Differentiaalvergelijkingen kunnen we ook oplossen met behulp van ICT. In dit geval zijn de oplossingen uitgewerkt met behulp van Derive. dy De differentiaalvergelijking = ky, met k een reëel getal Voorbeeld

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

Finaletraining Nederlandse Wiskunde Olympiade

Finaletraining Nederlandse Wiskunde Olympiade NEDERLANDSE W I S K U N D E OLYMPIADE Finaletraining Nederlandse Wiskunde Olympiade Met uitwerkingen Birgit van Dalen, Julian Lyczak, Quintijn Puite Dit trainingsmateriaal is deels gebaseerd op materiaal

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

Uitwerkingen toets 9 juni 2012

Uitwerkingen toets 9 juni 2012 Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 8 Voorkennis: Sinusfuncties ladzijde 9 V- Uit 8 radialen volgt 8 radialen Je krijgt dan de volgende tael: V-a V-a 8 graden 6 9 8 radialen O 6 6 7 8 9 Aflezen:,,,, c Aflezen:, d Aflezen:, e Aflezen: O Aflezen:,,,

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

handleiding ontbinden

handleiding ontbinden handleiding ontbinden inhoudsopgave inhoudsopgave de grote lijn 3 Bespreking per paragraaf 4 Applets 4 1 met gegeven product 4 ontbinden van getallen 4 3 vergelijkingen 5 4 onderzoek 6 tijdpad 9 materialen

Nadere informatie

Voorkennis getallenverzamelingen en algebra. Introductie 213. Leerkern 214

Voorkennis getallenverzamelingen en algebra. Introductie 213. Leerkern 214 Open Inhoud Universiteit Appendix A Wiskunde voor milieuwetenschappen Voorkennis getallenverzamelingen en algebra Introductie Leerkern Natuurlijke getallen Gehele getallen 8 Rationele getallen Machten

Nadere informatie

Oplossingen van vergelijkingen in rationale getallen

Oplossingen van vergelijkingen in rationale getallen Hoofdstuk VIII Oplossingen van vergelijkingen in rationale getallen Don Zagier Het gebied van de diophantische vergelijkingen, genoemd naar de grote Griekse wiskundige Diophantus, is een van de oudste

Nadere informatie

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 13 november 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Constructie der p-adische getallen

Constructie der p-adische getallen Constructie der p-adische getallen Pim van der Hoorn Marcel de Reus 4 februari 2008 Voorwoord Deze tekst is geschreven als opdracht bij de cursus Kaleidoscoop 2007 2008 aan de Universiteit Utrecht. De

Nadere informatie

Vergelijkingen en hun oplossingen

Vergelijkingen en hun oplossingen Vergelijkingen en hun oplossingen + 3 = 5 is een voorbeeld van een wiskundige vergelijking: er komt een = teken in voor, en een onbekende of variabele: in dit geval de letter. Alleen als we voor de variabele

Nadere informatie

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Bijzondere getallen Oneindig (als getal) TomVerhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica T.Verhoeff@TUE.NL http://www.win.tue.nl/~wstomv/ Oneindig ... Oneindig 2 Top tien

Nadere informatie

Onderneming en omgeving - Economisch gereedschap

Onderneming en omgeving - Economisch gereedschap Onderneming en omgeving - Economisch gereedschap 1 Rekenen met procenten, basispunten en procentpunten... 1 2 Werken met indexcijfers... 3 3 Grafieken maken en lezen... 5 4a Tweedegraads functie: de parabool...

Nadere informatie

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495.

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495. Bij vermenigvuldigen van twee grote getallen onder elkaar staan de rijen onder de streep elk voor een tussenstap. De eerste rij staat voor het vermenigvuldigen met het cijfer dat de eenheden van het onderste

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 9 februari 2009 BEWIJZEN Discrete Structuren Week1 : Bewijzen Onderwerpen Puzzels

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden.

Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden. - 239 - Naam:... Klas:... Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden. Eventjes herhalen!!! Voor een vergelijking van de eerste graad, herleid op nul, is het linkerlid een veelterm

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch) staan. Die

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

opgaven formele structuren deterministische eindige automaten

opgaven formele structuren deterministische eindige automaten opgaven formele structuren deterministische eindige automaten Opgave. De taal L over het alfabet {a, b} bestaat uit alle strings die beginnen met aa en eindigen met ab. Geef een reguliere expressie voor

Nadere informatie

DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen

DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen Wat voorafgaat aan het leren van de staartdeling: De kinderen moeten al vertrouwd zijn met de schrijfwijze van de delingen (hoofdrekenen)

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie