2.1 Twee gekoppelde oscillatoren zonder aandrijving

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "2.1 Twee gekoppelde oscillatoren zonder aandrijving"

Transcriptie

1 Hoofdstuk Twee gekoppelde oscillatoren.1 Twee gekoppelde oscillatoren zonder aandrijving We beschouwen als voorbeeld van een systeem van puntmassa s die gekoppeld zijn aan elkaar en aan twee vaste wanden met behulp van drie identieke veren, zoals aangegeven in figuur.1. De veren hebben veerconstante K en evenwichtslengte a. De uitwijkingen (t) en x (t) van respectievelijk de puntmassa s 1 en worden gemeten vanaf de evenwichtposities (t) = 0 en x (t) = De bewegingsvergelijkingen In de evenwichtsstand, zoals getekend in figuur.1, ondervinden de puntmassa s geen externe krachten. Voor het gemak nemen we aan dat de oscillatoren geen wrijving ondervinden, dus we nemen de demping nul. Het rekenwerk wordt hierdoor aanzienlijk eenvoudiger terwijl de belangrijkste conclusies onveranderd blijven. Indien (t) 0, x (t) 0 oefenen beide veren krachten uit op de massa s. Veer I oefent een terugdrijvende kracht Figuur.1: Een systeem van puntmassa s gekoppeld met behulp van identieke veren met veerconstante K en evenwichtslengte a. 11

2 uit op massa 1 die rechtevenredig is met de uitwijking, volgens de wet van Hooke: F I = K. De lengte van de veer is dan namelijk toe- of afgenomen met. De lengte verandering van veer II wordt bepaald door de uitwijkingen van zowel massa 1 en massa en is dus gelijk aan x. De kracht van veer II op massa 1 is dus gelijk aan F II = K (x ). De bewegingsvergelijking voor massa 1 is dus gegeven door: ẍ 1 = F I + F II = K + K(x ) (.1) Analoog vinden we voor massa : ẍ = F II + F III = K(x ) Kx (.) erk op dat bovenstaande vergelijkingen gekoppeld zijn, wat wil zeggen dat bv. in de vergelijking voor massa 1 zowel als x voorkomt. De strategie die meestal gevolgd wordt om zulke vergelijkingen op te lossen is te zoeken naar nieuwe coördinaten, doorgaans een lineaire combinatie van de oude coördinaten, teneinde de vergelijkingen te ontkoppelen. Deze nieuwe coördinaten worden normaalcoördinaten genoemd. In dit geval is deze procedure tamelijk eenvoudig, door de normaalcoördinaten u 1 (t) en u (t) als volgt te definiëren: u 1 (t) = (t) + x (t) ofwel (t) = 1 (u 1(t) + u (t)) u (t) = (t) x (t) x (t) = 1 (u 1(t) u (t)) Optellen en aftrekken van de bewegingsvergelijkingen (.1) en (.) levert namelijk: (ẍ 1 + ẍ ) = K( + x ) ofwel ü 1 = Ku 1 (ẍ 1 ẍ ) = 3K( x ) ü = 3Ku Dit zijn twee ontkoppelde bewegingsvergelijkingen voor de harmonische oscillator met als oplossingen: u 1 (t) = A 1 cos(ω 1 t + ϕ 1 ) met ω 1 = K u (t) = A cos(ω t + ϕ ) met ω = 3K Deze twee oplossingen worden de eigentrillingen, eigenmodes of normaaltrillingen genoemd. In dit geval hebben we twee eigentrillingen gevonden omdat we twee gekoppelde oscillatoren hebben. Later zullen we zien dat we in het geval van N gekoppelde oscillatoren N eigentrillingen zullen vinden. De karakteristieke eigenschap van een eigentrilling is dat elke afzonderlijke oscillator met dezelfde (eigen)frequentie trilt, met een karakteristieke verhouding tussen de amplitudes waarmee de oscillatoren trillen. De eigentrilling u 1 correspondeert met massa s die elk met een frequentie ω 1, gezamenlijk, in fase bewegen: (t) = 1 u 1(t) = 1 A 1 cos(ω 1 t + ϕ 1 ) x (t) = 1 u 1(t) = 1 A 1 cos(ω 1 t + ϕ 1 ) 1

3 Figuur.: De eigentrillingen u 1 (t) en u (t) van gekoppelde oscillatoren. Evenzo correspondeert eigentrilling u met massa s die met frequentie ω = 3ω 1 gezamenlijk bewegen maar precies uit fase: (t) = 1 u (t) = 1 A cos(ω t + ϕ ) x (t) = 1 u (t) = 1 A cos(ω t + ϕ ) Beide eigentrillingen zijn te zien in figuur.. Een willekeurige oplossing van het systeem van gekoppelde oscillatoren is nu gegeven door de lineaire combinatie van de normaaltrillingen: (t) = A 1 cos(ω 1 t + ϕ 1 ) + A cos(ω t + ϕ ) x (t) = A 1 cos(ω 1 t + ϕ 1 ) A cos(ω t + ϕ ) Er zijn nu nog vier onbekenden A 1, A, ϕ 1 en ϕ die gevonden worden uit de beginvoorwaarden gegeven door de posities en snelheden van de oscillatoren op tijdstip t = 0: (0), ẋ 1 (0), x (0) en ẋ (0). Stel de beginvoorwaarden zijn (0) = x (0) = A en ẋ 1 (0) = ẋ (0) = 0. Dan volgt ϕ 1 = ϕ = 0 en A 1 = A en A = 0, ofwel = x = 1 u 1(t) (Ga dit zelf na). Door beide oscillatoren dezelfde uitwijking te geven wordt dus een eigentrilling van het systeem aangeslagen. De andere eigentrilling wordt aangeslagen door de beginvoorwaarden: (0) = A, x (0) = A en ẋ 1 (0) = ẋ (0) = 0. Indien op t = 0 slechts één oscillator een uitwijking wordt gegeven dan worden beide eigentrillingen evenredig aangeslagen (zie werkcollege opgave). In dit voorbeeld van gekoppelde oscillatoren trillen de puntmassa s in longitudinale richting. De aanpak, d.w.z. de beschrijving in termen van eigentrillingen ieder gekarakteriseerd door een eigenfrequentie, is echter breed toepasbaar, zoals bijvoorbeeld ook voor twee gekoppelde slingers of oscillatoren die transversaal trillen. Dit zullen we op het werkcollege verifiëren. 13

4 .1. Algemene methode voor het vinden van de eigentrillingen We hebben bovenstaand probleem opgelost door de substitutie naar normaaltrillingen u 1 (t) en u (t) te poneren. Dit kon vanwege de betrekkelijke eenvoudigheid van het probleem. In het algemeen is dit echter niet zo. Om dan toch het probleem op te lossen wordt er doorgaans specifiek naar de eigentrillingen gezocht, omdat voor eigentrillingen alle oscillatoren met dezelfde frequentie trillen in een bepaalde amplitudeverhouding. We gaan dus op zoek naar oplossingen van de volgende vorm: (t) = C 1 cos(ωt + ϕ) x (t) = C cos(ωt + ϕ) Invullen in de bewegingsvergelijkingen (.1) en (.) geeft: ω C 1 cos(ωt + ϕ) = KC 1 cos(ωt + ϕ) + KC cos(ωt + ϕ) ω C cos(ωt + ϕ) = KC 1 cos(ωt + ϕ) KC cos(ωt + ϕ) ofwel: (K ω )C 1 KC = 0 KC 1 + (K ω )C = 0 Ofwel in matrix notatie: K ω K K K ω C 1 C = 0 Het betreft dus een standaard eigenwaarde probleem, wat alleen niet-triviale oplossingen heeft indien de determinant gelijk aan nul is: K ω K K K ω = 0 Dus (K ω ) K = 0 wat de volgende eigenfrequenties en eigentrillingen oplevert: eigentrilling 1: ω 1 = K C 1 = C (t) = x (t). eigentrilling : ω = 3K C 1 = C (t) = x (t).. Twee gekoppelde oscillatoren met aandrijving We beschouwen wederom het systeem uit figuur.1 van puntmassa s gekoppeld door drie identieke veren (veerconstante K, evenwichtslengte a), maar nu wordt puntmassa 1 14

5 aangedreven door een harmonische kracht f 0 cos(ωt). Ook nu nemen we voor het gemak aan dat de oscillatoren geen wrijving ondervinden. erk op dat de algemene oplossing wordt gegeven door de som van de oplossing van het homogene stelsel vergelijkingen, zoals we dat in de vorige paragraaf hebben opgelost, en de particuliere oplossing die we nu gaan bepalen. De bewegingsvergelijkingen worden gegeven door: ẍ 1 = K + K(x ) + f 0 cos(ωt) (.3) ẍ = K(x ) Kx (.4) We gaan over op nieuwe coördinaten, de normaalcoördinaten u 1 (t) en u (t): u 1 (t) = (t) + x (t) u (t) = (t) x (t) Optellen en aftrekken van de bewegingsvergelijkingen levert: (ẍ 1 + ẍ ) = K( + x ) + f 0 cos(ωt) (ẍ 1 ẍ ) = 3K( x ) + f 0 cos(ωt) Ofwel: ü 1 = Ku 1 + f 0 cos(ωt) ẍ = 3Ku + f 0 cos(ωt) Het probleem is aldus gereduceerd tot het oplossen van twee ongekoppelde, aangedreven harmonische oscillatoren. De kracht heeft zich evenredig verdeeld over de twee normaaltrillingen: ü 1 = K u 1 + f 0 ω 1 u 1 + f 0 ü = 3Ku + f 0 ω u + f 0 met als eigenfrequenties ω 1 = K ; ω = 3K De oplossingen zijn (zie de oplossingen van de gedreven harmonische oscillator zonder wrijving in paragraaf 1..3: f 1. u 1 (t) = 0 ω1 ω cos(ωt ψ 1(ω)) tanψ 1 = 0; ψ 1 = 0 voor ω < ω 1 en ψ 1 = π voor ω > ω 1. f. u (t) = 0 ω ω cos(ωt ψ (ω)) tanψ = 0; ψ = 0 voor ω < ω en ψ = π voor ω > ω. De amplitudes en fases van beide oplossingen staan getekend in figuur.3 a). De particuliere oplossingen voor (t) en x (t) zijn dus: 15

6 Amplitude π a) u 1 u Amplitude 0 b) x Fase Frequentie ( ω 1 ) Frequentie ( ω 1 ) Figuur.3: De frequentie afhankelijkheid van de particuliere oplossing van gekoppelde aangedreven harmonische oscillatoren. a) de amplitude en fase van de eigentrillingen u 1 en u en b) de bijbehorende amplitudes van de afzonderlijke trillende massa s en x. (t) = 1 (u [ 1(t) + u (t)) = f 0 [ x (t) = 1 (u 1(t) u (t)) = f ω1 ω 1 1 ω1 ω ω ω ] cosωt ω ω ] cos ωt erk op dat de fase-sprongen in ψ 1 en ψ verdisconteerd worden door het modulus teken in de noemers van de amplitudes van u 1 en u weg te laten. De resulterende frequentieafhankelijkheid van de trillingen is te zien in figuur.3 b). De uitwijkingen van beide massa s worden dus groot (oneindig in dit geval, niet oneindig in het fysische geval met demping) als ze aangedreven worden met één van de eigenfrequenties. In dit geval worden de eigentrillingen aangeslagen, zoals we later nog zullen zien...1 echanisch filter Beschouw louter de, stationaire, particuliere oplossing. De verhouding tussen de amplitude van de tweede oscillator (output) ten opzichte van de eerste oscillator (input) wordt gegeven door: x (t) (t) = ω ω 1 ω + ω 1 ω = K K ω Het resultaat is uitgezet in figuur.4 als functie van de aandrijffrequentie. In de limiet van ω gaat x 0, terwijl voor ω 0 gaat x 1. In het gebied ω 1 < ω < ω keert de verhouding x om van teken en wel als ω = ω1 + ω dus als ω = K. In dit geval is x =. Voor ω1 < ω < ω geldt dat x > 1, dus in deze 16

7 10 pass-band 5 X / X ω 1 ω Frequentie ( ω 1 ) Figuur.4: De amplitude verhouding tussen de trillingen van massa s en 1 als functie van de frequentie: de karakteristiek van een mechanisch band-pass filter. frequentieband wordt de aangeboden trilling aan massa 1 effectief doorgegeven aan massa. en spreekt van een mechanisch filter met een doorlaatgebied of pass-band. Ligt de aandrijffrequentie buiten dit gebied dan wordt de drijvende kracht op massa 1 nauwelijks doorgegeven op massa. De frequenties ω 1 en ω worden ook wel de afsnijfrequenties genoemd. Een zogenaamd low-pass filter heeft ω 1 = 0 en een eindige ω, terwijl een high-pass filter een eindige ω 1 en ω = heeft (zie figuur.5). Figuur.5: Schematische presentatie van een low-pass (links) en een high-pass (rechts) filter. Er geldt voor: 1. ω = ω 1 dat x = 1, dus beide massa s bewegen in fase met elkaar mee eigentrilling 1 wordt aangeslagen. 17

8 . ω = ω dat x = 1, dus beide massa s bewegen uit fase eigentrilling wordt aangeslagen. In beide gevallen wordt dus één van de eigentrillingen aangeslagen. De eigentrillingen kunnen dus experimenteel bepaald worden door het resonant gedrag van gekoppelde oscillatoren met aandrijving te bekijken. 18

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen 1 VRIJE TRILLINGEN 1.0 INLEIDING Veel fysische systemen, van groot tot klein, mechanisch en elektrisch, kunnen trillingen uitvoeren. Daarom is in de natuurkunde het bestuderen van trillingen van groot

Nadere informatie

Trillingen en Golven

Trillingen en Golven College-aantekeningen Trillingen en Golven vijfde kwartaal Natuur- en Sterrenkunde, Natuurwetenschappen najaar 008 F. Filthaut Experimentele Hoge-Energie Fysica Institute for Mathematics, Astrophysics,

Nadere informatie

m C Trillingen Harmonische trilling Wiskundig intermezzo

m C Trillingen Harmonische trilling Wiskundig intermezzo rillingen http://nl.wikipedia.org/wiki/bestand:simple_harmonic_oscillator.gif http://upload.wikimedia.org/wikipedia/commons/7/74/simple_harmonic_motion_animation.gif Samenvatting bladzijde 110: rilling

Nadere informatie

5 Lineaire differentiaalvergelijkingen

5 Lineaire differentiaalvergelijkingen 5 Lineaire differentiaalvergelijkingen In veel toepassingen in de techniek en de exacte wetenschappen wordt gewerkt met differentiaalvergelijkingen om continue processen te modelleren. Het gaat dan meestal

Nadere informatie

De leraar fysica als goochelaar. lesvoorbeeld: harmonische trillingen

De leraar fysica als goochelaar. lesvoorbeeld: harmonische trillingen De leraar fysica als goochelaar lesvoorbeeld: harmonische trillingen Stan Wouters Docent Fysica aan de Faculteit Industriële Ingenieurs Fi² (= KHLim en Xios) VLAAMS CONGRES VAN LERAARS WETENSCHAPPEN zaterdag

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Deze toets bestaat uit 3 opgaven (30 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes!

Deze toets bestaat uit 3 opgaven (30 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! NAUURKUNDE KLAS 5 INHAALPROEFWERK HOOFDSUK 15: RILLINGEN 9/1/010 Deze toets bestaat uit 3 opgaven (30 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! Opgave 1 (3p+ 5p) Een

Nadere informatie

Respons van een voertuig bij passage over een verkeersdrempel

Respons van een voertuig bij passage over een verkeersdrempel Respons van een voertuig bij passage over een verkeersdrempel G. Lombaert en G. Degrande. Departement Burgerlijke Bouwkunde, K.U.Leuven, Kasteelpark Arenberg 40, B-3001 Leuven 1 Formulering van het probleem

Nadere informatie

Essential University Physics Richard Wolfson 2 nd Edition

Essential University Physics Richard Wolfson 2 nd Edition Chapter Hoofdstuk 13 13 Lecture Essential University Physics Richard Wolfson nd Edition Trillingen Slide 13-1 13.1 Trillingen Een systeem voert een trilling uit (of oscilleert) als het een periodieke beweging

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30 TENTAMEN DYNAMICA (14030) 9 januari 010, 9:00-1:30 Verzoek: begin de beantwoording van een nieuwe vraag op een nieuwe pagina. En schrijf duidelijk: alleen leesbaar en verzorgd werk kan worden nagekeken.

Nadere informatie

Trillingen en Golven. Samenvatting natuurkunde Hoofdstuk 3 & 4 Joris van Rijn

Trillingen en Golven. Samenvatting natuurkunde Hoofdstuk 3 & 4 Joris van Rijn Trillingen en Golven Samenvatting natuurkunde Hoofdstuk 3 & 4 Joris van Rijn NOTE: DE HOOFDSTUKKEN IN DEZE SAMENVATTING KOMEN OVEREEN MET DE PARAGRAFEN UIT HET BOEK. BIJ EEN AANTAL PARAGRAFEN VAN DEZE

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Golven. 25 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Golven. 25 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fsica: Golven 25 juli 2015 dr. Brenda Castelen Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fsica/wiskunde/wiskunde.htm), Leen

Nadere informatie

2de bach HIR. Optica. Smvt - Peremans. uickprinter Koningstraat Antwerpen EUR

2de bach HIR. Optica. Smvt - Peremans. uickprinter Koningstraat Antwerpen EUR 2de bach HIR Optica Smvt - Peremans Q uickprinter Koningstraat 13 2000 Antwerpen www.quickprinter.be 231 3.00 EUR Trillingen 1. Eenparige harmonische beweging Trilling =een ladingsdeeltje beweegt herhaaldelijk

Nadere informatie

2 GEDWONGEN TRILLINGEN

2 GEDWONGEN TRILLINGEN GEDWONGEN TRILLINGEN.0 INLEIDING Onder de titel gedwongen trillingen bekijken we de trillingen van een zwak gedempte harmonische oscillator die ontstaan als deze niet zelfstandig trilt, maar wor aangedreven

Nadere informatie

Trillingen... 2 Harmonische trilling... 3 Opgave: Bol aan veer II... 5

Trillingen... 2 Harmonische trilling... 3 Opgave: Bol aan veer II... 5 Inhoud... 2 Harmonische trilling... 3 Opgave: Bol aan veer I... 5 Opgave: Bol aan veer II... 5 Resonantie... 6 Biosensoren... 7 Opgave: Biosensor... 8 Energiebehoud... 9 Energiebehoud in een massaveersysteem...

Nadere informatie

Tentamen Inleiding Meten en Modelleren 8C120-2011 6 april 2011, 09:00-12:00

Tentamen Inleiding Meten en Modelleren 8C120-2011 6 april 2011, 09:00-12:00 Tentamen Inleiding Meten en Modelleren 8C20-20 6 april 20 09:00-2:00 Dit tentamen bestaat uit 4 opgaven. Indien u een opgave niet kunt maken geeft u dan aan hoe u de opgave zou maken. Dat kan een deel

Nadere informatie

Theory Dutch (Netherlands) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave.

Theory Dutch (Netherlands) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave. Q1-1 Twee problemen uit de Mechanica (10 punten) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave. Deel A. De verborgen schijf (3.5 punten) We beschouwen een

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Natuurkunde. theorie. vwo. INKIJKEXEMPlAAR. WisMon examentrainer

Natuurkunde. theorie. vwo. INKIJKEXEMPlAAR. WisMon examentrainer Natuurkunde vwo theorie INKIJKEXEMPlAAR WisMon examentrainer NATUURKUNDE VWO Examentrainer theorie 1 Eerste Druk, Utrecht, 2017 ISBN 978-90-826941-4-7 Alle rechten voorbehouden. Niets uit deze uitgave

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Examentraining Natuurkunde havo Subdomein B1. Informatieoverdracht

Examentraining Natuurkunde havo Subdomein B1. Informatieoverdracht Examentraining Natuurkunde havo 2015 Subdomein B1. Informatieoverdracht Een trilling is een periodieke beweging rond een evenwichtsstand Kenmerkende grootheden: trillingstijd T (in s). Uit T is de frequentie

Nadere informatie

Trillingen en geluid wiskundig

Trillingen en geluid wiskundig Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek

Nadere informatie

Een snaar vertoont de bovenstaande staande trilling. Met welke toon hebben we hier te maken? 1. De grondtoon; 2. De vijfde boventoon; 3. De zesde bove

Een snaar vertoont de bovenstaande staande trilling. Met welke toon hebben we hier te maken? 1. De grondtoon; 2. De vijfde boventoon; 3. De zesde bove Een snaar vertoont de bovenstaande staande trilling. Met welke toon hebben we hier te maken? 1. De grondtoon; 2. De vijfde boventoon; 3. De zesde boventoon; 4. De zevende boventoon. Een snaar vertoont

Nadere informatie

Als de lijn een sinusvorm heeft spreek je van een harmonische trilling of een zuivere toon.

Als de lijn een sinusvorm heeft spreek je van een harmonische trilling of een zuivere toon. muziek; trillingen en golven Geluidsbron: alles dat geluid maakt. Een geluidsbron maakt geluid door te trillen. Periodieke beweging: een heen en weer beweging van een geluidsbron. Een zo een heen en weer

Nadere informatie

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 7.

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 7. Drs. J.H. Blankespoor Drs.. de Joode Ir. A. Sluijter Toegepaste wiskunde voor het hoger beroepsonderwijs Deel Derde, herziene druk herhalingsopgaven hoofdstuk 7 augustus 009 HBuitgevers, Baarn Toegepaste

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Hierin is λ de golflengte in m, v de golfsnelheid in m/s en T de trillingstijd in s.

Hierin is λ de golflengte in m, v de golfsnelheid in m/s en T de trillingstijd in s. Inhoud... 2 Opgave: Golf in koord... 3 Interferentie... 4 Antigeluid... 5 Staande golven... 5 Snaarinstrumenten... 6 Blaasinstrumenten... 7 Opgaven... 8 Opgave: Gitaar... 8 Opgave: Kerkorgel... 9 1/10

Nadere informatie

Als l groter wordt zal T. Als A groter wordt zal T

Als l groter wordt zal T. Als A groter wordt zal T Naam: Klas: Practicum: slingertijd Opstelling en benodigdheden: De opstelling waarmee gewerkt wordt staat hiernaast (schematisch) afgebeeld. Voor de opstelling zijn nodig: statief met dwarsstaaf, dun touw

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen Klassieke Mechanica a (Tentamen mei ) Uitwerkingen Opgave. (Beweging in een conservatief krachtenveld) a. Een kracht is conservatief als r F =. Dit blijkt na invullen: (r F) x = @F z =@y @F y =@z = =,

Nadere informatie

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen

Nadere informatie

****** Deel theorie. Opgave 1

****** Deel theorie. Opgave 1 HIR - Theor **** IN DRUKLETTERS: NAAM.... VOORNAAM... Opleidingsfase en OPLEIDING... ****** EXAMEN CONCEPTUELE NATUURKUNDE MET TECHNISCHE TOEPASSINGEN Deel theorie Algemene instructies: Naam vooraf rechtsbovenaan

Nadere informatie

Beschouw allereerst het eenvoudig geval van een superpositie van twee harmonische golven die samen een amplitude gemoduleerde golf vormen:

Beschouw allereerst het eenvoudig geval van een superpositie van twee harmonische golven die samen een amplitude gemoduleerde golf vormen: 60 Hoofdstuk 8 Modulaties en golfpakketten Met een lopende harmonische golf kan geen informatie overgebracht worden. Teneinde toch een boodschap te versturen met behulp van een harmonische golf dient deze

Nadere informatie

Trillingen. Welke gegevens heb je nodig om dit diagram exact te kunnen tekenen?

Trillingen. Welke gegevens heb je nodig om dit diagram exact te kunnen tekenen? Inhoud... 2 Fase... 3 Voorbeeld: Fase en uitwijking van een trillende massa... 3 Faseverschil... 5 Gereduceerde fase... 5 In fase en in tegenfase... 5 Opgave: Uitwijking, fase en gereduceerde fase... 5

Nadere informatie

Hoe belangrijk is lineaire algebra voor akoestiek en omgekeerd?

Hoe belangrijk is lineaire algebra voor akoestiek en omgekeerd? Hoe belangrijk is lineaire algebra voor akoestiek en omgekeerd? 9 februari 2007 Overzicht 1 Situering 2 Numerieke simulatie 3 Gedempt massa-veersysteem 4 Numerieke simulaties voor trillingen 5 Versnellingstechnieken

Nadere informatie

Herhalingsopgaven 6e jaar

Herhalingsopgaven 6e jaar Herhalingsopgaven 6e jaar 1. Schijf A is door middel van een onuitrekbare rubber band verbonden met schijf B. Op schijf B is een grotere schijf C gemonteerd, zo dat ze draaien rond dezelfde as (zie figuur).

Nadere informatie

De 35 e Internationale Natuurkunde Olympiade Pohang, Zuid-Korea Practicum-toets Maandag 19 juli 2004

De 35 e Internationale Natuurkunde Olympiade Pohang, Zuid-Korea Practicum-toets Maandag 19 juli 2004 De 35 e Internationale Natuurkunde Olympiade Pohang, Zuid-Korea Practicum-toets Maandag 19 juli 2004 Lees dit eerst! 1. De toets duurt 5 uur. 2. Gebruik uitsluitend de door de organisatie ter beschikking

Nadere informatie

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen De inhoud van hoofdstuk 3 zou grotendeels bekende stof moeten zijn. Deze stof is terug te vinden in Stewart, hoofdstuk 17. Daar staat alles

Nadere informatie

6. Goniometrische functies.

6. Goniometrische functies. Uitwerkingen R-vragen hodstuk 6 6. Goniometrische functies. R1 Wat heeft een cirkelomwenteling te maken met een sinus cosinus? ls een punt met constante snelheid een cirkelbeweging uitvoert en je zet hoogte

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Examen Algemene natuurkunde 1, oplossing

Examen Algemene natuurkunde 1, oplossing Examen Algemene natuurkunde 1, oplossing Vraag 1 (6 ptn) De deeltjes m 1 en m 2 bewegen zich op eenzelfde rechte zoals in de figuur. Ze zitten op ramkoers want v 1 > v 2. v w m n Figuur 1: Twee puntmassa

Nadere informatie

Opgave 3 - Uitwerking

Opgave 3 - Uitwerking Mathrace 2014 Opgave 3 - Uitwerking Teken de rode hulplijntjes, en noem de lengte van dit lijntje y. Noem verder de lengte van een zijde van de gelijkzijdige driehoek x. Door de hoek van 45 graden in de

Nadere informatie

Lineaire differentiaalvergelijkingen met constante coëfficienten

Lineaire differentiaalvergelijkingen met constante coëfficienten Lineaire differentiaalvergelijkingen met constante coëfficienten 1 Differentiaalvergelijkingen Als we een functie y : t y(t) expliciet, in formulevorm, kennen, dan is het niet zo moeilijk hiervan de afgeleide

Nadere informatie

Dit examen bestaat uit vier opgaven Bijlage: 1 antwoordpapier

Dit examen bestaat uit vier opgaven Bijlage: 1 antwoordpapier HAVO I EXAMEN HOGER ALGEMEEN VOORTGEZET ONDERWIJS IN 1983 Dinsdag 10 mei, 9.00-12.00 uur NATUURKUNDE Dit examen bestaat uit vier opgaven Bijlage: 1 antwoordpapier 2 " Benodigde gegevens kunnen worden opgezocht

Nadere informatie

Trilling en demping in de Zouthavenbrug

Trilling en demping in de Zouthavenbrug Congres Geluid, Trillingen en Luchtkwaliteit Trilling en demping in de Zouthavenbrug A.A. van de Griend 9 november 2005 voetgangersbrug lichte gelaste stalen constructie lengte 61 m 19 ruimtelijke spanten

Nadere informatie

Tentamen Golven en Optica

Tentamen Golven en Optica Tentamen Golven en Optica 5 juni 008, uitwerking 1 Lopende golven en interferentie op een snaar a In[1]:= y 0 1; y 1 x, t : y x, t : y 0 x 300 t 4 y 0 x 300 t 4 4 In[4]:= Ploty 1 x, 0, y x, 0, x, 10, 10,

Nadere informatie

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude 1 De sinus van een hoek Eenheidscirkel In de figuur hiernaast

Nadere informatie

13 Golven. e Transversale lopende golven. Onderwerpen:

13 Golven. e Transversale lopende golven. Onderwerpen: 3 Golven Onderwerpen: - Transversale lopende golven - Staande transversale golven - Longitudinale lopende golven - Longitudinale staande golven - Toepassingen 3. Transversale lopende golven In de onderstaande

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

7. Hamiltoniaanse systemen

7. Hamiltoniaanse systemen 7. Hamiltoniaanse systemen In de moleculaire dynamica, maar ook in andere gebieden zoals de hemelmechanica of klassieke mechanica, worden oplossingen gezocht van het Hamiltoniaanse systeem van differentiaalvergelijkingen

Nadere informatie

Van slinger. tot seismograaf

Van slinger. tot seismograaf Van slinger tot seismograaf Leerlingenhandleiding Inleiding In de komende weken gaan jullie werken aan een mini-profielwerkstuk (mini- PWS). Het mini-pws is een voorbereiding voor je uiteindelijke PWS,

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Inhoudsopgave 1 Definitie Betekenis van de afgeleide 1 2 Standaardafgeleiden

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

d. Bereken bij welke hoek α René stil op de helling blijft staan (hij heeft aanvankelijk geen snelheid). NB: René gebruikt zijn remmen niet.

d. Bereken bij welke hoek α René stil op de helling blijft staan (hij heeft aanvankelijk geen snelheid). NB: René gebruikt zijn remmen niet. Opgave 1 René zit op zijn fiets en heeft als hij het begin van een helling bereikt een snelheid van 2,0 m/s. De helling is 15 m lang en heeft een hoek van 10º. Onderaan de helling gekomen, heeft de fiets

Nadere informatie

Differentiaalvergelijkingen I : separabele en lineaire 1ste orde DV

Differentiaalvergelijkingen I : separabele en lineaire 1ste orde DV WISKUNDIGE ANALYSE OEFENZITTING 0 c D. Keppens 2004 Differentiaalvergelijkingen I : separabele en lineaire ste orde DV Onderwerp : separabele differentiaalvergelijkingen van de eerste orde en vergelijkingen

Nadere informatie

Stelsels lineaire differentiaalvergelijkingen (homogeen)

Stelsels lineaire differentiaalvergelijkingen (homogeen) Stelsels lineaire differentiaalvergelijkingen (homogeen) Voorbeeld Voorbeeld ( 7., Opgave 22) Op t = 0 bevatten de vaten respectievelijk 25 en 5 oz (ounces) zout. 3 september 206 Onderzoeken we hoeveel

Nadere informatie

Advanced Creative Enigneering Skills

Advanced Creative Enigneering Skills Enigneering Skills Kinetica November 2015 Theaterschool OTT-2 1 Kinematica Kijkt naar de geometrische aspecten en niet naar de feitelijke krachten op het systeem Kinetica Beschouwt de krachten Bewegingsvergelijkingen

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

m C Trillingen FREQUENTIE De periode is 0,73 s. Bereken de frequentie.

m C Trillingen FREQUENTIE De periode is 0,73 s. Bereken de frequentie. Trillingen FREQUENTIE De periode is 0,73 s. Bereken de frequentie. PERIODIEKE BEWEGING Een schijf met één stip wordt snel rondgedraaid. Het toerental van de schijf is 0 Hz. Je belicht de schijf met een

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

De comfortabele auto

De comfortabele auto De comfortabele auto 1e Matlab practicum Inleiding Wiskundige Systeemtheorie (156056) (inleveren tot en met vrijdag 13 Maart 2009, via Teletop). Dit is de eerste van twee verplichte Matlab/Simulink-practica

Nadere informatie

Vraag 1. F G = 18500 N F M = 1000 N k 1 = 100 kn/m k 2 = 77 kn/m

Vraag 1. F G = 18500 N F M = 1000 N k 1 = 100 kn/m k 2 = 77 kn/m Vraag 1 Beschouw onderstaande pickup truck met de afmetingen in mm zoals gegeven. F G is de massa van de wagen en bedraagt 18,5 kn. De volledige combinatie van wielen, banden en vering vooraan wordt voorgesteld

Nadere informatie

Wiskunde 3 partim Analyse: oefeningen

Wiskunde 3 partim Analyse: oefeningen Wiskunde 3 partim Analyse: oefeningen Lijnintegralen 1. Bereken de lijnintegraal waarbij C xdx + ydy (x 2 + y 2 ) 5/2 C : P (t) = exp t sin t e x + exp t cos t e y, 0 t 2π. Antwoord: 1 (1 exp ( 6π)) 3

Nadere informatie

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË PRACTICUM-TOETS

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË PRACTICUM-TOETS XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË PRACTICUM-TOETS 20 juli 1999 13.1 practicum toets ---63 De Torsieslinger In dit experiment bestuderen we een relatief complex mechanisch systeem een

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

TENTAMEN DYNAMICA ( )

TENTAMEN DYNAMICA ( ) TENTAMEN DYNAMICA (1914001) 8 januari 011, 08:45 1:15 Verzoek: Begin de beantwoording van een nieuwe opgave op een nieuwe pagina. Alleen leesbaar en verzorgd werk kan worden beoordeeld. Opgave 1 (norm:

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Trillingen en tonen. 5.1 Inleiding. 5.2 Trillingsgrootheden

Trillingen en tonen. 5.1 Inleiding. 5.2 Trillingsgrootheden 5 Trillingen en tonen 5.1 Inleiding A 1 a Hartslag (polsslag), enstruatiecyclus, adehaling b De snaren van een gitaar en de lucht in blaasinstruenten trillen. De toeschouwers aken heen en weer gaande bewegingen

Nadere informatie

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 7 Poolcoördinaten (versie 22 augustus 2011) Inhoudsopgave 1 Poolcoördinaten 1 2 Poolvergelijkingen 3 21 Cartesiaanse coördinaten versus poolcoördinaten

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

Wiskundige vaardigheden

Wiskundige vaardigheden Inleiding Bij het vak natuurkunde ga je veel rekenstappen zetten. Het is noodzakelijk dat je deze rekenstappen goed en snel kunt uitvoeren. In deze presentatie behandelen we de belangrijkste wiskundige

Nadere informatie

TENTAMEN NATUURKUNDE

TENTAMEN NATUURKUNDE CENTRALE COMMISSIE VOORTENTAMEN NATUURKUNDE TENTAMEN NATUURKUNDE tweede voorbeeldtentamen CCVN tijd : 3 uur aantal opgaven : 5 aantal antwoordbladen : 1 (bij opgave 2) Iedere opgave dient op een afzonderlijk

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

NATUURKUNDE. Bepaal de frequentie van deze toon. (En laat heel duidelijk in je berekening zien hoe je dat gedaan hebt, uiteraard!)

NATUURKUNDE. Bepaal de frequentie van deze toon. (En laat heel duidelijk in je berekening zien hoe je dat gedaan hebt, uiteraard!) NATUURKUNDE KLAS 5 PROEFWERK HOOFDSTUK 15: TRILLINGEN OOFDSTUK 15: TRILLINGEN 22/01/2010 Deze toets bestaat uit 4 opgaven (29 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Denk er

Nadere informatie

Het vinden van een particuliere oplossing

Het vinden van een particuliere oplossing Het vind van e particuliere oplossing Voor e lineaire differtiaalvergelijking met constante (reële) coëfficiënt a 0 y (n) (t) + a 1 y (n 1) (t) +... + a n 1 y (t) + a n y(t) = g(t), a 0 0 (1) geldt, dat

Nadere informatie

Het thermisch stemmen van een gitaar

Het thermisch stemmen van een gitaar Het thermisch stemmen van een gitaar In dit experiment wordt bestudeerd hoe snaarinstrumenten beïnvloed kunnen worden door warmte. Door gebruik te maken van elektriciteit is het mogelijk om instrumenten

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Beknopte uitwerking Examen Neurale Netwerken (2L490) d.d. 11-8-2004.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Beknopte uitwerking Examen Neurale Netwerken (2L490) d.d. 11-8-2004. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Beknopte uitwerking Eamen Neurale Netwerken (2L490) d.d. 11-8-2004. 1. Beschouw de volgende configuratie in het platte vlak. l 1 l 2

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

Geleid herontdekken van de golffunctie

Geleid herontdekken van de golffunctie Geleid herontdekken van de golffunctie Nascholingscursus Quantumwereld Lodewijk Koopman lkoopman@dds.nl januari-maart 2013 1 Dubbel-spleet experiment Er wordt wel eens gezegd dat elektronen interfereren.

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

Wisnet-HBO update nov. 2008

Wisnet-HBO update nov. 2008 Lineair verband Lineair verband Wisnet-HBO update nov. 28 Twee grootheden hebben een lineair verband als je in een grafiek de ene grootheid tegen de ander uitzet en je ziet een rechte lijn. Bijvoorbeeld:

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi2030wbmt 1 / 14 Niet-lineaire diff. vgl. en stabiliteit Niet-lineaire

Nadere informatie

Bewegingen en Trillingen. Nokkenmechanisme: deel B

Bewegingen en Trillingen. Nokkenmechanisme: deel B Katholieke Universiteit Leuven Faculteit Ingenieurswetenschappen Departement Werktuigkunde Bewegingen en Trillingen Nokkenmechanisme: deel B Groepsnummer 35 Jan-Pieter Jacobs Christophe Mestdag 1 Inhoudsopgave

Nadere informatie

Torsie de vergeten trilling

Torsie de vergeten trilling Congres Geluid, Trillingen en Luchtkwaliteit A.A. van de Griend 9 november 2006 torsie (

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

An analytical algebraic approach to determining differences in oscillation data between observed, computed and simulated environments

An analytical algebraic approach to determining differences in oscillation data between observed, computed and simulated environments Practicum Trillen en Slingeren 5VWO Natuurkunde Totaal An analytical algebraic approach to determining differences in oscillation data between observed, computed and simulated environments (PO Trillingen

Nadere informatie

Tweedegraads functies. Introductie 89. Leerkern 89

Tweedegraads functies. Introductie 89. Leerkern 89 Open Inhoud Universiteit leereenheid 3 Wiskunde voor milieuwetenschappen Tweedegraads functies Introductie 89 Leerkern 89 De parabool y = x 89 De grafiek van een tweedegraads functie 9 3 Domein en bereik

Nadere informatie