Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden.

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden."

Transcriptie

1 Naam:... Klas:... Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden. Eventjes herhalen!!! Voor een vergelijking van de eerste graad, herleid op nul, is het linkerlid een veelterm van de eerste graad met één onbepaalde. Voorbeeld: = 0 Algemeen : a + b = 0 Vergelijking van de eerste graad met twee onbekenden: Voor een vergelijking van de eerste graad met twee onbekenden, herleid op nul, is het linkerlid een veelterm van de eerste graad met twee onbepaalden. Voorbeelden: = = = = 0 Algemeen : u + v + w = 0 met u 0 v 0 Oplossen van een vergelijking van de eerste graad met twee onbekenden: Om een vergelijking van de eerste graad met twee onbekenden op te lossen moeten we naar een waarde voor en een waarde van zodat de uitdrukking een ware uitdrukking wordt. Voorbeeld: = 0 Als = 0 =. Als we deze waarden in de vergelijking steken dan krijgen we volgende uitdrukking: = 0 en we mogen zeggen dat deze uitdrukking. is.

2 Maw. Naam:... Klas:... We mogen zeggen dat het koppel (0,...) van de vgl een uitspraak maakt. We hebben nu een koppel gevonden dat een oplossing van de vergelijking is, maar we kunnen ons de vraag stellen of er nog koppels bestaan die van die uitdrukking een ware uitspraak maken. Als = 1 = Want als we deze waarden in de vergelijking steken dan krijgen we volgende uitdrukking: = 0 en we mogen zeggen dat deze uitdrukking. is. Maw. We mogen zeggen dat ook het koppel (1,...) van de vgl ook een uitspraak maakt. Als = 2 =. Als we deze waarden in de vergelijking steken dan krijgen we volgende uitdrukking: = 0 en we mogen zeggen dat deze uitdrukking. is. Maw. We mogen zeggen dat ook het koppel (2,...) van de vgl ook een uitspraak maakt. Hoveel koppels kunnen we zo vinden die van deze vergelijking een ware uitspraak maken?. Algemene voorstelling van de oplossingsverzameling In het voorbeeld: = 0 Als = t ( met t R ) t = 0 =. ( we noteren de formule) We mogen zeggen dat het koppel (t,...) van de vgl een uitspraak maakt. We kunnen dus de oplossingsverzameling noteren als volgt: Opl = {( t,...) ; t

3 Naam:... Klas:... In het voorbeeld: = 0 = 2 - ( of = - +2 ) Uit het vorige hoofdstuk weten we dat = een... is. Deze... is tevens de grafische voorstelling van de... van de gegeven vergelijking. Om deze rechte te bepalen volstaat het de coördinaten van twee punten ( twee oplossingen van de vergelijking) te bepalen Richtingscoëfficiënt ( of rico) De richtingscoëfficiënt is de coëfficiënt van in de naar opgeloste vgl. Dus: de richtingscoëfficiënt van de vgl = 0 is... want =...

4 Naam:... Klas:... Taak 1: Los op in R 2 + = = 5 stel = t =.. =.. {( t,..) Richtingscoëfficiënt : rico =..

5 Naam:... Klas:... Taak 2: Los op in R 2-5 = = 0 stel = t =.. =.. {( t,..) Richtingscoëfficiënt : rico =..

6 Naam:... Klas:... Taak 3: Los op in R 3-6 = = 0 =.. Enkele mogelijke oplossingen zijn : (..,0), (..,1), (..., 2) {( 2, t) Richtingscoëfficiënt : rico =..

7 Naam:... Klas:... Taak 4: Los op in R = = 0 =.. Enkele mogelijke oplossingen zijn : (..,.), (..,...), (...,.) {( t,...) Richtingscoëfficiënt : rico =..

8 Naam:... Klas:... Taak 5: Los op in R ( + ) 5 ( 4 ) = 3 ( 1 ) = 0 =.. Enkele mogelijke oplossingen zijn : (..,.), (..,...), (...,.) {( t,...) Richtingscoëfficiënt : rico =..

9 Naam:... Klas:... Taak 6: Los op in R = = 0 =.. {( t,...) Richtingscoëfficiënt : rico =..

10 Naam:... Klas:...

Hoofdstuk 13 : Stelsels van vergelijkingen van de eerste graad met twee onbekenden.

Hoofdstuk 13 : Stelsels van vergelijkingen van de eerste graad met twee onbekenden. Hoofdstuk1: Stelsels van vergelijkingen met twee onbekenden - 9 - Hoofdstuk 1 : Stelsels van vergelijkingen van de eerste graad met twee onbekenden. Instap (boek pag ) Opgave: Zoek de afmetingen van alle

Nadere informatie

Werkbladen vergelijking van een rechte

Werkbladen vergelijking van een rechte In deze werktekst proberen wij de vergelijkingen op te stellen van rechten die aan bepaalde voorwaarden voldoen. Wij onderscheiden volgende gevallen: 1. Vergelijking van een rechte gaande door de oorsprong

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie

SOM- en PRODUCTGRAFIEK van twee RECHTEN

SOM- en PRODUCTGRAFIEK van twee RECHTEN SOM- en PRODUCTGRAFIEK van twee RECHTEN 1. SOMGRAFIEK Walter De Volder Breng onder Y 1 en Y 2 de vergelijking van een rechte in. Stel Y 3 = Y 1 + Y 2. Construeer de drie grafieken. Onderzoek verschillende

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Stelsels van vergelijkingen

Stelsels van vergelijkingen Module 5 Stelsels van vergelijkingen 5.1 Definitie en voorbeelden Een verzameling van vergelijkingen in een aantal onbekenden waarvan men de gemeenschappelijke oplossing(en) zoekt, noemt men een stelsel

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Vergelijkingen met breuken

Vergelijkingen met breuken Vergelijkingen met breuken WISNET-HBO update juli 2013 De bedoeling van deze les is het doorwerken van begin tot einde met behulp van pen en papier. 1 Oplossen van gebroken vergelijkingen Kijk ook nog

Nadere informatie

Eerste- en tweedegraadsvergelijkingen Stelsels eerstegraadsvergelijkingen met twee onbekenden

Eerste- en tweedegraadsvergelijkingen Stelsels eerstegraadsvergelijkingen met twee onbekenden Eerste- en tweedegraadsvergelijkingen Stelsels eerstegraadsvergelijkingen met twee onbekenden Opgave: Twee verschillende winkels verkopen beide een artikel A aan 2 800. Door een tijdelijke promotie verlaagt

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie

Systeemtheorie en Regeltechniek

Systeemtheorie en Regeltechniek Systeemtheorie en Regeltehnie Oefenzitting Lineaire Tijds-invariante (LTI) Disrete tijdssystemen: Oplossen van de differentievergelijing wouter.biesmans@esat.uleuven.be Hoe unnen we een system voorstellen?

Nadere informatie

Vergelijkingen met één onbekende

Vergelijkingen met één onbekende - 89 - Hoofdstuk 3: ergelijkingen met één onbekende Opgave boek pag 67 nr. 5: Los op in R a. 3 ( + ) 4 7.................. {... }... proef : 1 e lid :... e lid :... b. ( 3 ) + 7 5 ( )........................

Nadere informatie

Types differentiaal vergelijkingen

Types differentiaal vergelijkingen 1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking

Nadere informatie

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2 IJkingstoets 30 juni 04 - reeks - p. /5 Oefening Een functie f : A B : 7 f () van verzameling A naar verzameling B is injectief als voor alle, A geldt: als 6=, dan is f () 6= f (). Welke van de volgende

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Hoofdstuk 11: Eerstegraadsfuncties in R

Hoofdstuk 11: Eerstegraadsfuncties in R - 229 - Hoofdstuk 11: Eerstegraadsfuncties in R Definitie: Een eerstegraadsfunctie in R is een functie met een voorschrift van de gedaante y = ax + b (met a R 0 en b R ) Voorbeeld 1: y = 2x Functiewaardetabel

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

Het opstellen van een lineaire formule.

Het opstellen van een lineaire formule. Het opstellen van een lineaire formule. Gegeven is onderstaande lineaire grafiek (lijn b). Van deze grafiek willen wij de lineaire formule weten. Met deze formule kunnen we gaan rekenen. Je kan geen lineaire

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Alle werkvormen die jullie kunnen vinden in deze syllabus, kunnen jullie gebruiken voor volgend leerplan: D/2002/0279/048

Alle werkvormen die jullie kunnen vinden in deze syllabus, kunnen jullie gebruiken voor volgend leerplan: D/2002/0279/048 Syllabus: smaakmakers voor de tweede graad Alle werkvormen die jullie kunnen vinden in deze syllabus, kunnen jullie gebruiken voor volgend leerplan: D/2002/0279/048 Tweede graad - eerste jaar getallenleer

Nadere informatie

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π OVER IRRATIONALE GETALLEN EN MACHTEN VAN π KOEN DE NAEGHEL Samenvatting. In deze nota buigen we ons over de vraag of een macht van π een irrationaal getal is. De aangereikte opbouw en bewijsmethoden zijn

Nadere informatie

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT Differentiaalvergelijkingen kunnen we ook oplossen met behulp van ICT. In dit geval zijn de oplossingen uitgewerkt met behulp van Derive. dy De differentiaalvergelijking = ky, met k een reëel getal Voorbeeld

Nadere informatie

Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A

Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A . Bereken zonder rekenmachine: + d. + 0 + 6 6 6 Hogeschool Rotterdam Voorbeeldeamen Wiskunde A 6 6 Oplossingen. Bereken zonder rekenmachine: + 6 b. + 6 0 + 9. Bereken zonder rekenmachine: 9 9 d.. Een supermarkt

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

Het rechterlid van het voorschrift van een veeltermfunctie is een veelterm in één veranderlijke.

Het rechterlid van het voorschrift van een veeltermfunctie is een veelterm in één veranderlijke. 5 ASO H zwak leerboek 5-8- 6:9 Pagina. INLEIDING Vorig jaar maakten we al kennis met een basispakket functies : h g a) de constante functies : f () = a b) de eerstegraadsfuncties : g () = a + b c) de tweedegraadsfuncties

Nadere informatie

HET SPINNENWEB. Een vierde verdeler. Luc Van den Broeck. Eén leverancier

HET SPINNENWEB. Een vierde verdeler. Luc Van den Broeck. Eén leverancier HET SPINNENWEB Een vierde verdeler Luc Van den Broeck En hoe zit het nu wanneer er vier verdelers op mijn shortlist staan?, heb je wellicht gedacht na het lezen van het spinnenwebartikel over het kiezen

Nadere informatie

Herhalingsoefenigen FUNCTIES EERSTEGRAADSFUNCTIES

Herhalingsoefenigen FUNCTIES EERSTEGRAADSFUNCTIES 4KSO 4TSO Herhalingsoefenigen FUNCTIES EERSTEGRAADSFUNCTIES V5 1. Gegeven is het onderstaande functievoorschrift. k 14m 12 Welke formule zal je ingeven in je grafisch rekentoestel? Beschrijf kort hoe je

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

5. Krachtenkoppels Moment van krachten

5. Krachtenkoppels Moment van krachten Fysica hoofdstuk 1 : Mechanica 1 e jaar 2 e graad (2uur) 5. Krachtenkoppels Moment van krachten 5.1 Definitie krachtenkoppel: Onder een koppel van krachten verstaat men twee even grote, evenwijdige en

Nadere informatie

Rekenvaardigheden voor klas 3 en 4 VWO

Rekenvaardigheden voor klas 3 en 4 VWO Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

OPLOSSEN VAN TWEEDEGRAADSVERGELIJKINGEN

OPLOSSEN VAN TWEEDEGRAADSVERGELIJKINGEN OPLOSSEN VAN TWEEDEGRAADSVERGELIJKINGEN Het bestaan van reële oplossingen of wortels van een tweedegraadsvergelijking van de vorm ax²+bx+c = 0 waarbij x de onbekende is en a, b, c reële parameters zijn,

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking 5. Vergelijkingen 5.1. Vergelijkingen met één variabele 5.1.1. Oplossen van een lineaire vergelijking Probleem : We willen x oplossen uit de lineaire vergelijking p x+q=r met p. Maxima biedt daartoe in

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

Goed aan wiskunde doen

Goed aan wiskunde doen Goed aan wiskunde doen Enkele tips Associatie K.U.Leuven Tim Neijens Katrien D haeseleer Annemie Vermeyen Maart 2011 Waarom? Dit document somt de belangrijkste aandachtspunten op als je een wiskundeopgave

Nadere informatie

Te kennen leerstof wiskunde voor het toelatingsexamen graduaten. Lea De Bie lea.debie@cvoleuven.be

Te kennen leerstof wiskunde voor het toelatingsexamen graduaten. Lea De Bie lea.debie@cvoleuven.be Te kennen leerstof wiskunde voor het toelatingsexamen graduaten Lea De Bie lea.debie@cvoleuven.be SOORTEN GETALLEN (Dit hoofdstukje geldt als inleiding en is geen te kennen leerstof). Natuurlijke getallen

Nadere informatie

STUDIERICHTING:... NAAM:... NUMMER:... VOORNAAM:... SCHRIFTELIJKE OVERHORING VAN 23 JANUARI 2006 MECHANICA

STUDIERICHTING:... NAAM:... NUMMER:... VOORNAAM:... SCHRIFTELIJKE OVERHORING VAN 23 JANUARI 2006 MECHANICA FYSICA I J. DANCKAERT SCHRIFTELIJKE OVERHORING VAN 3 JANUARI 006 MECHANICA OPGEPAST - Deze schriftelijke overhoring bevat 3 verschillende soorten vragen : A) Meerkeuzevragen waarbij je de letter overeenstemmend

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Het oplossen van kwadratische vergelijkingen met de abc-formule

Het oplossen van kwadratische vergelijkingen met de abc-formule Het oplossen van kwadratische vergelijkingen met de abc-formule door Pierre van Arkel Dit verslag is een voorbeeld hoe bij wiskunde een verslag er uit moet zien. Elk schriftelijk verslag heeft een titelblad.

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

Dossier 3 PRIEMGETALLEN

Dossier 3 PRIEMGETALLEN Dossier 3 PRIEMGETALLEN atomen van de getallenleer Dr. Luc Gheysens Een priemgetal is een natuurlijk getal met twee verschillende delers, nl. 1 en het getal zelf. De priemgetallen zijn dus 2, 3, 5, 7,

Nadere informatie

Elliptische krommen en hun topologische aspecten

Elliptische krommen en hun topologische aspecten Elliptische krommen en hun topologische aspecten René Pannekoek 25 januari 2011 Dit is een korte introductie tot elliptische krommen voor het bachelorseminarium van de Universiteit Leiden. De bespreking

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

Het installatiepakket haal je af van de website http://www.gedesasoft.be/.

Het installatiepakket haal je af van de website http://www.gedesasoft.be/. Softmaths 1 Softmaths Het installatiepakket haal je af van de website http://www.gedesasoft.be/. De code kan je bekomen op de school. Goniometrie en driehoeken Oplossen van driehoeken - Start van het programma:

Nadere informatie

AAN DE SLAG Arbeid verricht door de wrijvingskracht (thema 1)

AAN DE SLAG Arbeid verricht door de wrijvingskracht (thema 1) Arbeid verricht door de wrijvingskracht (thema 1) Is de arbeid die moet verricht worden op een voorwerp om dat voorwerp over een afstand h omhoog te brengen, afhankelijk van de gevolgde weg? Kies een van

Nadere informatie

Bijlage 11 - Toetsenmateriaal

Bijlage 11 - Toetsenmateriaal Bijlage - Toetsenmateriaal Toets Module In de eerste module worden de getallen behandeld: - Natuurlijke getallen en talstelsels - Gemiddelde - mediaan - Getallenas en assenstelsel - Gehele getallen met

Nadere informatie

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie.

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie. Katholieke Universiteit Leuven September 2008 Poolcoördinaten (versie 27 juni 2008) Inleiding Y y p o θ r X fig In fig worden er op twee verschillende manieren coördinaten gegeven aan het punt p Een eerste

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2001-I

Eindexamen wiskunde B1-2 vwo 2001-I Eindexamen wiskunde B- vwo 00-I 4 Antwoordmodel Boottocht Het gezochte punt is het snijpunt van en de middelloodlijn van het lijnstuk van het punt P aximumscore 6 = =, met het midden van dus = 90 Het punt

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

Monitoraatssessie Wiskunde

Monitoraatssessie Wiskunde Monitoraatssessie Wiskunde 1 Overzicht van de cursus Er zijn drie grote blokken, telkens voorafgegaan door de rekentechnieken die voor dat deel nodig zullen zijn. Exponentiële en logaritmische functies;

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

Opfriscursus wiskunde 1 B HW avond en schakelprogramma avond 2015-2016

Opfriscursus wiskunde 1 B HW avond en schakelprogramma avond 2015-2016 KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN Opfriscursus wiskunde B HW avond en schakelprogramma avond 05-06 C. Biront J. Deprez T. Moons DAG

Nadere informatie

NETWERKEN EN DE WETTEN VAN KIRCHHOFF

NETWERKEN EN DE WETTEN VAN KIRCHHOFF NETWERKEN EN DE WETTEN VN KIRCHHOFF 1. Doelstelling van de proef Het doel van deze proef is het bepalen van de klemspanning van een spanningsbron, de waarden van de beveiligingsweerstanden en de inwendige

Nadere informatie

Overgangsverschijnselen

Overgangsverschijnselen Hoofdstuk 5 Overgangsverschijnselen Doelstellingen 1. Overgangsverschijnselen van RC en RL ketens kunnen uitleggen waarbij de wiskundige afleiding van ondergeschikt belang is Als we een condensator of

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong Hoofdstuk 4 Verloop van functies Met DERIVE is het mogelijk om tal van eigenschappen van functies experimenteel te ontdekken. In een eerste paragraaf onderzoeken we het verband tussen de grafieken van

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrodynamica. 25 juli 2015 dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrodynamica. 25 juli 2015 dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Elektrodynamica 25 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

WISNET-HBO NHL update jan. 2009

WISNET-HBO NHL update jan. 2009 Tweedegraadsfuncties Parabolen maken WISNET-HBO NHL update jan. 2009 Inleiding In deze les leer je wat systeem brengen in het snel herkennen van tweedegraadsfuncties. Een paar handige trucjes voor het

Nadere informatie

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam:

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam: Datum: Klas: Nr: Naam: Score G1 /5 /5 Opgave 1 G2 / / Opgave 2 G3 /10 /10 Opgave 3 G4 /5 /5 Opgave 4 G5 /4 /4 Opgave 5 G6 /5 /5 G7 /5 /5 G8 /10 /10 G9 /10 /10 G10 /7 /7 G11 /10 /10 Totaal Zelfevaluatie

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Rekenen met procenten en evenredigheden Oefening Een patiënt had vorig jaar een cholesterol van 60 mg/dl. Een jaar later is zijn cholesterol met 5% toegenomen. Wat is zijn cholesterol

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Correctievoorschrift HAVO

Correctievoorschrift HAVO Correctievoorschrift HAVO 20 tijdvak wiskunde A (pilot) Het correctievoorschrift bestaat uit: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels

Nadere informatie

ICT in de lessen wiskunde van de 3de graad: een overzicht

ICT in de lessen wiskunde van de 3de graad: een overzicht ICT in de lessen wiskunde van de 3de graad: een overzicht Dr Didier Deses KA Koekelberg - VUB wiskak@yahoo.com Inleiding Wat omvat ICT in de wiskunde? Rekenmachine Wetenschappelijk Grafisch Symbolisch

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

Voorbeeldopgaven Meetkunde voor B

Voorbeeldopgaven Meetkunde voor B Voorbeeldopgaven Meetkunde voor B Hoofdstuk 2: Opgave 2 1 Gegeven zijn de vlakken U : x + y + z = 0 en V : x y + az = 0 waarbij a een parameter is. a) Bereken de cosinus van de hoek tussen de twee vlakken

Nadere informatie

VEILIGHEIDSVOORRADEN BEREKENEN

VEILIGHEIDSVOORRADEN BEREKENEN VEILIGHEIDSVOORRADEN BEREKENEN 4 Soorten berekeningen 12 AUGUSTUS 2013 IR. PAUL DURLINGER Durlinger Consultancy Management Summary In dit paper worden vier methoden behandeld om veiligheidsvoorraden te

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

Lineaire differentiaalvergelijkingen met constante coëfficienten

Lineaire differentiaalvergelijkingen met constante coëfficienten Lineaire differentiaalvergelijkingen met constante coëfficienten 1 Differentiaalvergelijkingen Als we een functie y : t y(t) expliciet, in formulevorm, kennen, dan is het niet zo moeilijk hiervan de afgeleide

Nadere informatie

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis Wiskunde voor economie drs. H.J.Ots Hellevoetsluis 15-2-2004, Wiskunde voor economie, ISBN 90-70619-05-9,drs. H.J. Ots, www.webecon.nl Wiskunde voor economie Drs. H.J. Ots ISBN 90-70619-05-9 Webecon, Hellevoetsluis,

Nadere informatie

Zomercursus Wiskunde. Module 8 Complexe getallen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 8 Complexe getallen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 8 Complexe getallen (versie 22 augustus 2011) Inhoudsopgave 1 De getallenverzameling C 1 2 Het complex vlak of het vlak van Gauss 7 3 Vierkantsvergelijkingen

Nadere informatie

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

De landbouwer als landschapsbouwer. 5. De landbouwer als landschapsbouwer: ICT-thuisopdracht

De landbouwer als landschapsbouwer. 5. De landbouwer als landschapsbouwer: ICT-thuisopdracht 5. De landbouwer als : ICT-thuisopdracht Bedrijf: Steven Vanhecke Oude Burkelslag 10 9990 Maldegem Inleiding Een belangrijk doel in de derde graad van het secundair onderwijs is ongetwijfeld jullie laten

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Examen HAVO. wiskunde B1

Examen HAVO. wiskunde B1 wiskunde B Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak Donderdag 3 juni 3.30 6.30 uur 20 04 Voor dit examen zijn maximaal 8 punten te behalen; het examen bestaat uit 2 vragen. Voor elk vraagnummer

Nadere informatie

BOEING 777 VERSUS F-16

BOEING 777 VERSUS F-16 BOEING 777 VERSUS F-16 De moderne passagiersvliegtuigen halen gemiddelde snelheden van rond de 1000 km/uur. Militaire vliegtuigen vliegen nog veel sneller. Een aantal van deze vliegtuigen, zoals bijvoorbeeld

Nadere informatie

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100...

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100... Opgave OPGAVE 1 a. Itereer met F( ) = e als startwaarde 1 e 1. 16 1............... 16 1............... b. Stel de bae grafisch voor i ee tijdgrafiek. c. Formuleer het gedrag va deze bae. (belagrijk is

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Wiskunde 20 maart 2014 versie 1-1 -

Wiskunde 20 maart 2014 versie 1-1 - Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6

Nadere informatie

Merkwaardige producten en ontbinden in factoren

Merkwaardige producten en ontbinden in factoren 6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm

Nadere informatie

Verrassende uitkomsten in stromingen

Verrassende uitkomsten in stromingen Verrassende uitkomsten in stromingen Deel 2 G.A. Bruggeman De wiskundige theorie van de grondwaterstroming biedt nu en dan uitkomsten die opvallen door hun eenvoud of anderszins door hun bijzonder structuur,

Nadere informatie

t in uren 0 1 2 3 5 8 10 H in mg 100 68 46,2 31,4 Hoeveel procent breekt het lichaam ieder uur af? voelen. Geef je antwoord in minuten nauwkeurig.

t in uren 0 1 2 3 5 8 10 H in mg 100 68 46,2 31,4 Hoeveel procent breekt het lichaam ieder uur af? voelen. Geef je antwoord in minuten nauwkeurig. Opgave 1 Een peuter heeft in een onbewaakt moment 100 mg gedronken van een medicijn dat uitsluitend bestemd is voor volwassenen. De tabel hieronder geeft aan hoeveel werkzame stof H er na t uren nog in

Nadere informatie

WERKBOEK REKENVAARDIGHEID. Voeding en Diëtetiek

WERKBOEK REKENVAARDIGHEID. Voeding en Diëtetiek WERKBOEK REKENVAARDIGHEID Voeding en Diëtetiek 11 INHOUDSOPGAVE ACHTERGROND 3 1. Elementaire bewerkingen 4 2. Voorrangsregels (bewerkingsvolgorde) 8 3. Bewerkingen met machten 11 4. Rekenen met breuken

Nadere informatie

Polynomen. De algemene vorm van een polynoom is: f(x) = a 0. + a 1. 0, n N. x +... + a n 1. x n 1 + a n. x n. met a n

Polynomen. De algemene vorm van een polynoom is: f(x) = a 0. + a 1. 0, n N. x +... + a n 1. x n 1 + a n. x n. met a n Polnomen Polnomen Funties als 4 en + 1 zijn vooreelden van een grote klasse van veelvoorkomende funties: de polnomen of veeltermfunties. Wij zullen steeds de term polnomen geruiken. Een van de redenen

Nadere informatie