Hoofdstuk 9 : Steekproefstatistieken. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 9 : Steekproefstatistieken. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent."

Transcriptie

1 Hoofdstuk 9 : Steekproefstatistieke Marix Va Daele Vakgroep Toegepaste Wiskude e Iformatica Uiversiteit Get Steekproefstatistieke p 1/20

2 Schattige Waeer uit ee steekproef de waarde va ee statistiek wordt bereked om de waarde va ee bepaalde parameter of karakteristiek te beadere, da wordt ee schattig estimate gemaakt Waeer éé ekele waarde vooropgesteld wordt, da spreekt me va ee putschattig Omdat me meestal ook ee idee west omtret de betrouwbaarheid va de schattig, ka me uitgaade va de steekproef ook betrouwbaarheidsitervalle cofidece iterval opstelle waarbie de te schatte parameter met ee vrij grote kas zal gelege zij Steekproefstatistieke p 2/20

3 Putschattige Ogelijkheid va Chebyshev : P Y µ Y >kσ Y < 1 k 2 ɛ = kσ Y 1 k = σ Y ɛ = P Y µ Y >ɛ < σ2 Y ɛ 2 Als lim σ Y =0, da lim P Y µ Y >ɛ=0 ɛ willekeurig = lim PY = µ Y =1 Praktisch : aarmate groter wordt zal Y alsmaar dichter bij µ Y gelege zij Me zegt dat Y ee schattig is voor µ Y of dat Y i waarschijlijkheid aar µ Y covergeert i kas Notatie : Y µ Y Steekproefstatistieke p 3/20

4 Putschattige voor µ Is X : Nµ X,σ X da is X : Nµ X, σx Zoiet, da geldt voor voldoede grote dat X Nµ X, σx lim σ X =0 Het steekproefgemiddelde X is ee putschattig voor het populatiegemiddelde µ X X i kas µ X Steekproefstatistieke p 4/20

5 Putschattige voor σ 2 Is X : Nµ X,σ X da is Y = S2 σ 2 : χ 2 1 µ Y = 1 σ 2 Y =2 1 S 2 = S2 1 = σ2 Y 1 = µ S 2 = σ 2 e σ 2 S 2 = 2 1 σ4 lim σ2 S =0= S 2 i kas σ 2 2 De verbeterde steekproefvariatie S 2 is ee putschattig voor σ 2 S 2 = σ2 Y = µ S 2 = 1 σ2 e σ 2 S 2 = σ 4 lim σ2 S =0= S 2 i kas σ 2 2 De steekproefvariatie S 2 is ee putschattig voor σ 2 Steekproefstatistieke p 5/20

6 Putschattige voor θ Is X : biomiaal met parameter θ, da is µ X = θ σ 2 X = θ1 θ X : steekproefverhoudig µ X/ = θ σ 2 X/ = X i kas θ θ 1 θ Steekproefstatistieke p 6/20

7 Eigeschappe va schatters Ee statistiek Y is ee cosistete schatter voor de parameter ω i kas idie Y ω X is ee cosistete schatter voor µ S 2 e S 2 zij cosistete schatters voor σ 2 X/ is ee cosistete schatter voor θ Steekproefstatistieke p 7/20

8 Eigeschappe va schatters Ee statistiek Y is ee overtekede ubiased schatter voor de ϕ Y y parameter ω idie E[Y ]=ω ogeacht ϕ Y y ω ẏ ω ẏ X is ee overtekede schatter voor µ S 2 is ee vertekede schatter voor σ 2 S 2 is ee overtekede schatter voor σ 2 X/ is ee overtekede schatter voor θ Steekproefstatistieke p 8/20

9 Eigeschappe va schatters De schatter Y voor de parameter ω met de kleist mogelijke spreidig wordt de meest efficiëte schatter voor ω geoemd ϕ Y y ϕ Y y ω ẏ ω ẏ S 2 is ee efficiëtere schatter voor σ 2 da S 2 wat σ 2 S = 2 1 σ 4 <σ S = σ4 Steekproefstatistieke p 9/20

10 Itervalschattige voor µ X : N µ, σ met σ geked = X : N µ, σ 1 p 100 = P X µ <λ p σ = P λ p σ <µ X<λ p σ = P X λ p σ <µ<x + λ p σ λ p 0 λ p x ψx 100 p 100 p/2 100 p/2 100 I 100 p% va alle gevalle bevat het iterval [ x λ p σ, x + λ p σ ] de ware µ Steekproefstatistieke p 10/20

11 Itervalschattige voor µ I 100 [ p%va alle gevalle ] bevat het iterval σ x λ p σ, x + λ p de ware µ µ ẋ 100 p%bepaalt de betrouwbaarheid va de schattig µ = x ± λ p σ λ p σ bepaalt de auwkeurigheid va de schattig Steekproefstatistieke p 11/20

12 Betrouwbaarheid auwkeurigheid Stel dat de steekproefgrootte costat is Als de betrouwbaarheid 100 p % stijgt, da worde de itervalle lager, e da daalt de auwkeurigheid Als de auwkeurigheid stijgt, da worde de itervalle korter e daalt de kas e dus ook de betrouwbaarheid dat zo iterval de ware µ bevat Coclusie : auwkeurigheid e betrouwbaarheid kue iet tegelijkertijd geoptimaliseerd worde Steekproefstatistieke p 12/20

13 Itervalschattige voor µ X : N µ, σ met σ obeked = X µ S/ 1 =P =P =P 1 p 100 X µ <T p 1 T p 1 X T p 1 S 1 S 1 <µ X<T p 1 : T 1 S 1 <µ<x + T p 1 I [ 100 p%va alle gevalle bevat het iterval ] s s x T p 1, x + T p de ware µ S 1 S 1 Steekproefstatistieke p 13/20

14 Itervalschattige voor µ X willekeurig verdeeld met σ geked : σ X N µ, als groot σ σ P X λ p <µ<x + λ p 1 p 100 X willekeurig verdeeld met σ obeked : s X N µ, 1 als groot P X λ p S 1 <µ<x + λ p S 1 1 p 100 Steekproefstatistieke p 14/20

15 Itervalschattige voor σ Is X :Nµ, σ met µ e σ obeked = S2 σ 2 : χ 2 1 P χ 2p1 1 < S2 σ 2 <χ 2 p 2 1 = p 1 p P 1 χ 2 p 2 1 < σ2 S 2 < 1 χ 2 p 1 1 = p 1 p P S 2 χ 2 p 2 1 <σ2 < S 2 χ 2 p 1 1 = p 1 p ϕ S 2 σ 2 x x χ 2 p 1 1 χ 2 p 2 1 p 1 p Steekproefstatistieke p 15/20

16 Itervalschattige voor θ Is X biomiaal verdeeld e voldoede groot, da X : N θ, θ1 θ P X θ >λ p θ1 θ p 100 X θ 1 θ P λ p <θ< X θ 1 θ + λ p 100 p 100 P X X λ 1 X p <θ< X X + λ 1 X p 100 p 100 Steekproefstatistieke p 16/20

17 Voorbeelde va biomiale verdelige Voor voldoede grote geldt theoretisch N i : N θ, θ1 θ waarbij θ = ϕ X x i Φ X ti + i 2 ΦX ti i 2 F i = N i : relatieve frequetie Voor voldoed grote geldt theoretisch N c w : N θ, θ1 θ waarbij θ =Φ X w F C w = N cw : cumulatieve relatieve frequetie X discreet X cotiu Steekproefstatistieke p 17/20

18 Schattige die gelde ogeacht ω voorwaarde Y betrouwbaarheidsiterval rede 100 p% of p 1 p 2 % µ X X : Nµ X,σ X X σ X beked [ ] σ X σ X x λ p, x + λ p X : N µ X, σ X X : Nµ X,σ X σ X obeked X σ 2 X X : Nµ X,σ X S2 1 [ x st p 1 1, x + st p 1 1 ] X µx S/ 1 [ ] s 2 χ 2 p 2 1, s 2 χ 2 p 1 1 S 2 : T 1 σ 2 : χ 2 1 Steekproefstatistieke p 18/20

19 Schattige die beadered gelde voor grote ω voorwaarde Y 100 p% betrouwbaarheidsiterval rede µ X σ X beked X σ X obeked X θ X X : Biomiaal X [ ] σ X σ X x λ p, x + λ p [ x λ p x λ p s 1, x + λ p x x + λ p 1 x x ] s 1, 1 x X : N X : N X : N S 2 1 µ X, σ X µ X, σ X i kas σ 2 θx 1 θ θ X, X Steekproefstatistieke p 19/20

20 Schatt va freq die beadered gelde voor grote θ = ϕ X x i Φ X ti + i 2 ΦX ti i 2 X discreet X cotiu ω Y 100 p% betrouwbaarheidsiterval rede θ F i [ ] fi 1 f i fi 1 f i f i λ p,f i + λ p ] θ N i [ i λ p i 1 f i, i + λ p i 1 f i F i : N N i : N θ, i kas F i θ 1 θ θ θ, θ1 θ i kas N i θ Steekproefstatistieke p 20/20

2de bach TEW. Statistiek 2. Van Driessen. uickprinter Koningstraat Antwerpen ,00

2de bach TEW. Statistiek 2. Van Driessen. uickprinter Koningstraat Antwerpen ,00 de bach TEW Statistiek Va Driesse Q www.quickpriter.be uickpriter Koigstraat 3 000 Atwerpe 46 5,00 Nieuw!!! Olie samevattige kope via www.quickpritershop.be Hoofdstuk : Het schatte va populatieparameters.

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 5: Wet van de grote aantallen en Centrale limietstelling

Opgeloste Oefeningen Hoofdstuk 5: Wet van de grote aantallen en Centrale limietstelling Opgeloste Oefeige Hoofdstuk 5: Wet va de grote aatalle e Cetrale limietstellig 5.. Ee toevalsveraderlijke X is oisso-verdeeld met parameter λ = 00. Bepaal ee odergres voor de waarschijlijkheid (75 X 5).

Nadere informatie

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6 HOOFDSTUK III SCHATTEN VAN PARAMETERS Schatters e Betrouwbaarheidsitervalle 3. HET GEMIDDELDE VAN EEN NV Steekproef uit ee ormaal verdeelde populatie De kasveraderlijke X, X, X 3,..., X zij N(µ, σ) verdeeld

Nadere informatie

Antwoorden bij Inleiding in de Statistiek

Antwoorden bij Inleiding in de Statistiek Atwoorde bij Ileidig i de Statistiek Hoofdstuk. model: bi(, p), p [0, ], schattig: /.2 (i) i bloeddrukveraderig i e persoo i treatmet groep, Y j bloeddrukveraderig j e persoo i cotrolegroep, model:,...,,

Nadere informatie

Statistiek Voor studenten Bouwkunde College 6

Statistiek Voor studenten Bouwkunde College 6 Statistiek Voor studete Bouwkude College 6 extrapolatie va steekproef aar populatie Programma voor vadaag Terugblik Populatie e steekproef: extrapolatiestap Represetativiteit, (o)zuiverheid Populatiepercetage

Nadere informatie

Schatters en betrouwbaarheidsintervallen

Schatters en betrouwbaarheidsintervallen Statistiek voor Iformatiekude, 006 Les 3 Schatters e betrouwbaarheidsitervalle I de vorige les hebbe we era gekeke hoe we bijvoorbeeld het gemiddelde e de variatie va ee populatie kue schatte, door deze

Nadere informatie

familie verdelingen van alle waardes van θ Binomiaal X~Bin(n,θ) π " (k)=p(x=k)= ( ) θ) 1 θ (-) μ " =nθ σ & " =nθ(1-θ) X=# successen in n pogingen

familie verdelingen van alle waardes van θ Binomiaal X~Bin(n,θ) π  (k)=p(x=k)= ( ) θ) 1 θ (-) μ  =nθ σ &  =nθ(1-θ) X=# successen in n pogingen . Statistische modellerig Stappepla:. Succes?. Wat geregistreerd? 3. meerdere successe per eeheid? à Aatal successe? Max. #? JA Bi θ NEE Poisso λ JA: cotiu: Poisso of Exp λ à wachttijd? Komma? JA Exp λ

Nadere informatie

Cursus Theoretische Biologie. Onderdeel Statistiek

Cursus Theoretische Biologie. Onderdeel Statistiek Cursus Theoretische Biologie Oderdeel Statistiek J.J.M. Bedaux Oktober 2000 1 THEORETISCHE BIOLOGIE, ONDERDEEL STATISTIEK 1 Theorie 1 Parameterschattig We begie met ee voorbeeld. I Wiskude e Modelbouw

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1. Ee ieuwe aam voor ee gekede grootheid...2

Nadere informatie

SAMENVATTING HOOFDSTUK 1. Eigenschappen gebeurtenissen. uitkomsten kan hebben. A = AB A B. 3. (Regels van de Morgan)

SAMENVATTING HOOFDSTUK 1. Eigenschappen gebeurtenissen. uitkomsten kan hebben. A = AB A B. 3. (Regels van de Morgan) SAMENVATTING HOOFDSTUK Toevalsexperimet: experimet, dat meerdere uitkomste ka hebbe Uitkomsteruimte: S = {uitkomste} Gebeurteis A : deelverzamelig vas : A S A e B sluite elkaar uit als A B = A,A 2,...

Nadere informatie

Betrouwbaarheid. Betrouwbaarheidsinterval

Betrouwbaarheid. Betrouwbaarheidsinterval Betrouwbaarheid Ee simulatie beoogt éé of i.h.a. twee of meerdere sceario s te evaluere e te vergelijke, bij Mote Carlo (MC) simulatie voor ee groot aatal istelwaarde, voor éé of meerdere parameters. Hierbij

Nadere informatie

Statistiek. (relatieve) frequenties: histogram cumulatieve (relatieve) frequenties: cumulatief frequentiepolygoon of ogief

Statistiek. (relatieve) frequenties: histogram cumulatieve (relatieve) frequenties: cumulatief frequentiepolygoon of ogief Samevattig statistiek Academiejaar 006-007 Statistiek 4 examevrage: - tabel aavulle met spreidigs- e cetrummate - poisso- e biomiale verdelig Deel Beschrijvede statistiek Soorte variabele Kwalitatief:

Nadere informatie

FORMULARIUM: STATISTIEK

FORMULARIUM: STATISTIEK FORMULARIUM: STATISTIEK VARIABELE STEEKPROEF x,x,...,x POPULATIE X Dichtheid relatieve frequetie: f j kas met kasregels P(G C ) = P(G) P(G G ) = P(G ) + P(G ) P(G G ) P(G \ G ) = P(G ) P(G ) als G G voorwaardelijke

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodelle e ormaal verdeelde steekproefgroothede 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

Hoofdstuk 4: Aanvullende Begrippen (Extra Oefeningen)

Hoofdstuk 4: Aanvullende Begrippen (Extra Oefeningen) Hoofdstuk 4: Aavullede Begrippe (Extra Oefeige) 9. Veroderstel dat X e Y ormaal verdeeld zij met resp. gemiddelde waarde µ X e µ Y e met dezelfde variatie 2. Wat is da de distributie va X Y? Bepaal de

Nadere informatie

Help! Statistiek! Overzicht. Voorbeeld: bloeddruk. Interpretatie van het 95%-BI. Interpretatie van 95%-BI (2) Meest voorkomende vorm van het BI

Help! Statistiek! Overzicht. Voorbeeld: bloeddruk. Interpretatie van het 95%-BI. Interpretatie van 95%-BI (2) Meest voorkomende vorm van het BI Help! Statistiek! Overzicht Doel: Iformere over statistiek i kliisch oderzoek. Tijd: Derde woesdag i de maad, -3 uur 8 maart: Betrouwbaarheidsitervalle 5 april: Herhaald mete met twee mate 0 mei: Statistiek

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18 Stochastiek 2 Inleiding in de Mathematische Statistiek 1 / 18 t-toetsen 2 / 18 Steekproefgemiddelde en -variantie van normale observaties Stelling. Laat X 1,..., X n o.o. zijn en N(µ, σ 2 )-verdeeld. Dan:

Nadere informatie

Eindexamen wiskunde A vwo 2010 - I

Eindexamen wiskunde A vwo 2010 - I Eidexame wiskude A vwo - I Beoordeligsmodel Maratholoopsters maximumscore 3 uur, 43 miute e 3 secode is 98 secode De selheid is 495 98 (m/s) Het atwoord: 4,3 (m/s) maximumscore 3 Uit x = 5 volgt v 4,4

Nadere informatie

WenS eerste kans Permutatiecode 0

WenS eerste kans Permutatiecode 0 Aatekeige op de vrageblade zij NIET TOEGELATEN. Je mag gebruik make va schrijfgerief e ee eevoudige rekemachie; alle adere materiaal blijft achteri. Leg je studetekaart duidelijk zichtbaar op je bak. Klap

Nadere informatie

Samenvatting. Inleiding Statistiek - Collegejaar

Samenvatting. Inleiding Statistiek - Collegejaar Samevattig Ileidig Statistiek - Collegejaar 2012-2013 Mathematical Statistics ad Data Aalysis, 3-rd editio. Joh A. Rice Hoofdstuk 7 paragraaf 1, 2, 3 e 5. Hoofdstuk 8 e paragraaf 1, 2 e 3 va Hoofdstuk

Nadere informatie

WenS eerste kans Permutatiecode 0

WenS eerste kans Permutatiecode 0 WeS eerste kas 203 204 Permutatiecode 0 Aatekeige op de vrageblade zij NIET TOEGELATEN. Je mag gebruik make va schrijfgerief e ee eevoudige rekemachie; alle adere materiaal blijft achteri. Gee GSM s toegelate:

Nadere informatie

12 Kansrekening. 12.1 Kansruimten WIS12 1

12 Kansrekening. 12.1 Kansruimten WIS12 1 WIS12 1 12 Kasrekeig 12.1 Kasruimte Kasmaat Ee experimet is ee hadelig of serie hadelige met ee of meer mogelijke resultate uitkomste geoemd). De uitkomsteruimte, die we steeds zulle aageve met Ω, is de

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen)

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) 8.16. Men wenst H 0 : p 0.2 te testen tegenover H 1 : p 0.4 voor een binomiale distributie met n 10. Bepaal α en β als de testfunctie gegeven

Nadere informatie

Betrouwbaarheid van een steekproefresultaat m.b.t. de hele populatie

Betrouwbaarheid van een steekproefresultaat m.b.t. de hele populatie Betrouwbaarheid va ee steekproefresultaat m.b.t. de hele populatie Verschillede steekproeve uit eezelfde populatie levere verschillede (steekproef) resultate op. Dit overmijdelijke verschijsel oeme we

Nadere informatie

G0N34a Statistiek: Examen 7 juni 2010 (review)

G0N34a Statistiek: Examen 7 juni 2010 (review) G0N34a Statistiek: Exame 7 jui 00 review Vraag Beoordeel de volgede uitsprake. Als ee uitspraak iet juist is of ovolledig, leg da uit waarom e verbeter de uitspraak.. Bij het teste va hypotheses is de

Nadere informatie

Hoofdstuk 1 Rijen en webgrafieken

Hoofdstuk 1 Rijen en webgrafieken Hoofdstuk Rije e wegrafieke Voorkeis: Rije ladzijde V-a u 7 + v +, c De vergelijkig 7 + +, oplosse geeft, e dus 8. Ze hee eide 8 rode gelope. V- u, u met u V-a u + ( ) + + s u + u + u +... + u + + 8 +

Nadere informatie

OPLOSSINGEN KANSREKENEN STATISTIEK. voor ingenieurs. Katholieke Universiteit Leuven Academiejaar

OPLOSSINGEN KANSREKENEN STATISTIEK. voor ingenieurs. Katholieke Universiteit Leuven Academiejaar OPLOSSINGEN KANSREKENEN EN STATISTIEK voor igeieurs Katholieke Uiversiteit Leuve Academiejaar 00-0 H Beschrijvede Statistiek MKZ..4 d. De steekproefomvag is te klei om dit met zekerheid te besluite. Je

Nadere informatie

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100...

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100... Opgave OPGAVE 1 a. Itereer met F( ) = e als startwaarde 1 e 1. 16 1............... 16 1............... b. Stel de bae grafisch voor i ee tijdgrafiek. c. Formuleer het gedrag va deze bae. (belagrijk is

Nadere informatie

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl) wiskude A, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 04 Tijdvak izede scores Verwerk de scores va de alfabetisch eerste vijf kadidate per school i het programma Wolf

Nadere informatie

Steekproeftrekking Onderzoekspopulatie Steekproef

Steekproeftrekking Onderzoekspopulatie Steekproef Steekproeftrekkig I dit artikel worde twee begrippe beschreve die va belag zij voor het uitvoere va ee oderzoek. Het gaat om de populatie va het oderzoek e de steekproef. Voor wat betreft steekproeve lichte

Nadere informatie

SOCIALE STATISTIEK (deel 2)

SOCIALE STATISTIEK (deel 2) SOCIALE STATISTIEK (deel 2) D. Vanpaemel KU Leuven D. Vanpaemel (KU Leuven) SOCIALE STATISTIEK (deel 2) 1 / 57 Hoofdstuk 5: Schatters en hun verdeling 5.1 Steekproefgemiddelde als toevalsvariabele D. Vanpaemel

Nadere informatie

Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek

Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek UNIVERSITY OF GHENT Samenvatting Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek Auteur: Nicolas Vanden Bossche Lesgever: Prof. Hans De Meyer Hoofdstuk 1 Het kansbegrip en elementaire kansrekening

Nadere informatie

De standaardafwijking die deze verdeling bepaalt is gegeven door

De standaardafwijking die deze verdeling bepaalt is gegeven door RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE VWO CM T311-VCM-H911 Voor elk oderdeel is aagegeve hoeveel pute kue worde behaald. Atwoorde moete altijd zij voorzie va ee berekeig, toelichtig of argumetatie. MAX:

Nadere informatie

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl Kastheorie 2de bachelor wiskude Vrije Uiversiteit Brussel U. Eimahl Academiejaar 2011/2012 Ihoudsopgave 1 Kasruimte 1 1.1 Toevallige experimete................................. 1 1.2 De axioma s va Kolmogorov.............................

Nadere informatie

1. Meetniveaus en Notatie

1. Meetniveaus en Notatie 1. Meetiveaus e Notatie Meetiveaus Oderzoek wordt gedaa met het verzamele va iformatie over éé of meer variabele. Ee variabele wordt gemete ee va de volgede 4 meetiveaus (va laag aar hoog) : Er wordt oderscheid

Nadere informatie

Statistiek = leuk + zinvol

Statistiek = leuk + zinvol Statistiek = leuk + zivol Doel 1: Doel : Doel 3: zie titel ee statistisch oderzoek kue beoordele ee statistisch oderzoek kue opzette ee probleem vertale i stadaardmethode gegeves verzamele, verwerke via

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Statistiek Voor studenten Bouwkunde College 2

Statistiek Voor studenten Bouwkunde College 2 Statistiek Voor studete Bouwkude College Numerieke samevattige va data Dataverdelig, meetfoute, uitbijters e scatterplots Programma voor vadaag Terugblik op college Numeriek samevatte va data Normale beaderig

Nadere informatie

Statistiek Voor studenten Bouwkunde College 8

Statistiek Voor studenten Bouwkunde College 8 Statistiek Voor studete Bouwkude College herhalig e ekele voorbeelde Programma voor vadaag Uitgebreide terugblik (per deel Is 0% va de Nederladers likshadig? Hoe checke we of ee theorie klopt? Aalyse va

Nadere informatie

Functies, Rijen, Continuïteit en Limieten

Functies, Rijen, Continuïteit en Limieten Fucties, Rije, Cotiuïteit e Limiete Fucties, Rije, 2-0 Cotiuïteit e Limiete Fucties, Rije, Cotiuïteit e Limiete Ihoud 1. Fucties Defiitie e kemerke / bewerkige op fucties Reële fucties va éé reële veraderlijke

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/28 Schatten van de verwachting We hebben een stochast X en

Nadere informatie

Statistiek voor A.I. College 10. Donderdag 18 Oktober

Statistiek voor A.I. College 10. Donderdag 18 Oktober Statistiek voor A.I. College 10 Donderdag 18 Oktober 1 / 28 Huffington Post poll verkiezingen VS - 12 Oktober 2012 2 / 28 Gallup poll verkiezingen VS - 15 Oktober 2012 3 / 28 Jullie - onderzoek Kimberly,

Nadere informatie

Videoles Discrete dynamische modellen

Videoles Discrete dynamische modellen Videoles Discrete dyamische modelle Discrete dyamische modelle Orietatie Algebraisch Algebraisch/ umeriek Numeriek Maak de volgede rijtjes af: Puzzele met rijtjes a. 2 4 6 8 10 - b. 1 2 4 8 16 - c. 1 2

Nadere informatie

1 Ileidig De vraag is of de spelers i het spel Fatasie 24 (ee variat va observatie roulette), gespeeld i casio YYY te ZZZ, ivloed kue hebbe op de kasb

1 Ileidig De vraag is of de spelers i het spel Fatasie 24 (ee variat va observatie roulette), gespeeld i casio YYY te ZZZ, ivloed kue hebbe op de kasb Behedigheid bij Fatasie 24? R.D. Gill, C.G.M. Oudshoor 4 maart 1997 Samevattig Dit artikel is ee aagepaste versie va ee verslag wat geschreve is.a.v. ee oderzoek voor ee casio. Dit oderzoek gig over de

Nadere informatie

Samenvatting. Fouriertheorie en distributies. Fourier en Schwartz. De warmtevergelijking. De exacte benadering

Samenvatting. Fouriertheorie en distributies. Fourier en Schwartz. De warmtevergelijking. De exacte benadering Samevattig Fouriertheorie e distributies De exacte beaderig Ileidig 2 De warmtevergelijkig Ja Wiegerick Korteweg - de Vries Istituut voor Wiskude Uiversiteit va Amsterdam 27 september 22 3 Oplossig door

Nadere informatie

7. Betrouwbaarheidsintervallen voor proporties

7. Betrouwbaarheidsintervallen voor proporties VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 7. Betrouwbaarheidsitervalle voor proporties Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

2.6 De Fourierintegraal

2.6 De Fourierintegraal 2.6 De Fourieritegraal We vertrekke va de Fourierreeks i complexe vorm: voor g : [ π,π] C kue we schrijve met g(t) α e it, α 1 Z π g(t)e it dt. 2π π We herschrijve deze formules eerst voor ee fuctie f

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame HAVO 2013 tijdvak 2 woesdag 19 jui 13.30-16.30 uur wiskude A Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 21 vrage. Voor dit exame zij maximaal 80 pute te behale. Voor elk vraagummer

Nadere informatie

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking 1. Wat is iteratie? Iteratie is het steeds herhale va eezelfde proces, verwerkig op het bekome resultaat. INPUT Verwerkig OUTPUT Idie de verwerkig gebeurt met ee (reële) fuctie geldt voor ee startwaarde

Nadere informatie

Stochastische loadflow. Beschrijving model belasting.

Stochastische loadflow. Beschrijving model belasting. Stochastische loadflow. eschrijvig model belastig. 95 pmo 5-- Phase to Phase V Utrechtseweg 3 Postbus 68 AC Arhem T: 6 356 38 F: 6 356 36 36 www.phasetophase.l 95 pmo INHOUD Ileidig...3 eschrijvig belastig...

Nadere informatie

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak Lesbrief 5 Recurreties e ogelijkhede Recursief gedefiieerde rije Er zij getallerije {a } die voldoe aa ee recurrete betrekkig va de vorm a +k = f(a +k ;a +k ;:::;a ) voor = ; ;:::, waardoor de + k-de term

Nadere informatie

2. Limiet van een rij : convergentie of divergentie

2. Limiet van een rij : convergentie of divergentie 2. Limiet va ee rij : covergetie of divergetie 2. Eigelijke of eidige limiet 2.. Voorbeeld I ee bos staa 4 bome. De diest bosbeheer zal jaarlijks 2% bome kappe e ieuwe aaplate. Zal het bos verdwije? Zal

Nadere informatie

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling.

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling. Deze week: Verdelingsfuncties Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties Cursusjaar 29 Peter de Waal Toepassingen Kansmassafuncties / kansdichtheidsfuncties Eigenschappen Departement Informatica

Nadere informatie

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 12 : Regressie en correlatie Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Regressie en correlatie p 1/26 Regressielijn Vraag : vind het

Nadere informatie

Hoofdstuk 6 Discrete distributies

Hoofdstuk 6 Discrete distributies Hoofdstuk 6 Discrete distributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Discrete distributies p 1/33 Discrete distributies binomiale verdeling

Nadere informatie

Sheets K&S voor INF HC 10: Hoofdstuk 12

Sheets K&S voor INF HC 10: Hoofdstuk 12 Sheets K&S voor INF HC 1: Hoofdstuk 12 Statistiek Deel 1: Schatten (hfdst. 1) Deel 2: Betrouwbaarheidsintervallen (11) Deel 3: Toetsen van hypothesen (12) Betrouwbaarheidsintervallen (H11) en toetsen (H12)

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Bedrijfskunde. Hoofdstuk 1. Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse

Bedrijfskunde. Hoofdstuk 1. Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse Hoofdstuk 1 Bedrijfskunde Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse - McGregor - Elton Mayo - Frank Lilian Gilbreth - Alfred Sloan - Henri Fayol Vraag 1.2 Je

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

Ongelijkheden. IMO trainingsweekend 2013

Ongelijkheden. IMO trainingsweekend 2013 Ogelijkhede IMO traiigsweeked 0 Deze tekst probeert de basis aa te brege voor het bewijze va ogelijkhede op de IMO. Het is de bedoelig om te bewijze dat ee bepaalde grootheid (ee uitdrukkig met ee aatal

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen 8.1. Stel dat medisch onderzoek heeft uitgewezen dat als het gemiddelde nicotinegehalte van een sigaret 25 mg of meer bedraagt, de kans op longkanker

Nadere informatie

Inleiding Applicatie Software - Statgraphics

Inleiding Applicatie Software - Statgraphics Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een

Nadere informatie

Convergentie, divergentie en limieten van rijen

Convergentie, divergentie en limieten van rijen Covergetie, divergetie e limiete va rije TI-spire e rije 7N5p GGHM 22-23 Eigeschappe rekekudige rij b = begiwaarde v = verschil tusse twee opeevolgede terme recursieve formule: u = u + v met u = b directe

Nadere informatie

Betrouwbaarheidsintervallen en het testen van hypothesen

Betrouwbaarheidsintervallen en het testen van hypothesen Cahiers T 3 Europe Vlaadere r. 8 Betrouwbaarheidsitervalle e het teste va hypothese Va steekproef aar populatie Guido Herweyers Betrouwbaarheidsitervalle e het teste va hypothese Va steekproef aar populatie

Nadere informatie

p(1 p) 0,16(1 0,16) 0,0164 n Het gevraagde 95%-betrouwbaarheidsinterval is: [ p 2, p 2 ] [0,16 2 0,0164;0,16 2 0,0164] [0,1272;0,1928]

p(1 p) 0,16(1 0,16) 0,0164 n Het gevraagde 95%-betrouwbaarheidsinterval is: [ p 2, p 2 ] [0,16 2 0,0164;0,16 2 0,0164] [0,1272;0,1928] Diagostische toets hoofdstuk 10 1a) Gevraagd: 95% betrouwbaarheidsiterval voor proporties, dus berekee de 80 steekproefproportie = p 0,16 Dat geeft: 500 p(1 p) 0,16(1 0,16) 0,0164 500 Het gevraagde 95%-betrouwbaarheidsiterval

Nadere informatie

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek.

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek. 006 Wolters-Noordhoff bv Groige/Houte De steekproefomvag Ee toelichtig op het belag e het berekee va de steekproefomvag i marktoderzoek. Ihoud 1 Ileidig Eerst ekele defiities 3 Steekproefomvag e respose

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

Deel I : beschrijvende statistiek

Deel I : beschrijvende statistiek HOOFDSTUK 1 TYPISCHE FOUTEN BIJ STATISTIEK Foute gegevens Fouten in berekening kans Foute interpretatie resultaten Statistiek : de wetenschap van het leren uit data & van het meten, controleren en communiceren

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur Kansrekening en statistiek wi2105in deel 2 27 januari 2010, 14.00 16.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na

Nadere informatie

Thermodynamica HWTK PROEFTOETS- AT02 - UITWERKING.doc 1/9

Thermodynamica HWTK PROEFTOETS- AT02 - UITWERKING.doc 1/9 VAK: hermodyamica HWK Set Proeftoets A0 hermodyamica HWK PROEFOES- A0 - UIWERKING.doc /9 DI EERS LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 00 miute Uw aam:... Klas:... Leerligummer:

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07)

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07) Uitwerkingen tentamen 6 juli 22. We stellen T de gebeurtenis test geeft positief resultaat, F de gebeurtenis, chauffeur heeft gefraudeerd, V de gebeurtenis, chauffeur heeft vergissing gemaakt C de gebeurtenis,

Nadere informatie

d 25, 35, 47 of27, 43, 69 b 2, 27, 10240, 100, e = 287 u( n) = 243 ( ) n

d 25, 35, 47 of27, 43, 69 b 2, 27, 10240, 100, e = 287 u( n) = 243 ( ) n Netwerk 4-5 vwo wiskude D Hoofdstuk 8 uitwerkige Hoofdstuk 8 Ker a 3, 37, 43 c 5, 3, 49 b, 3, d 5, 35, 47 of7, 43, 9 a,, 3, 5, 7 d 0,,,, 0 b, 7,, 3, 8 e 35, 35, 35, 35, 35 c 5, 0, 0, 40,80 f 0,, 8, 7,

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Discrete Distributiefuncties 3. Er zijn 3 studenten aan het begin van de dag aanwezig bij een symposium. De kans dat een student volhoudt

Nadere informatie

werkcollege 6 - D&P9: Estimation Using a Single Sample

werkcollege 6 - D&P9: Estimation Using a Single Sample cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties

Nadere informatie

Rijen. 6N5p

Rijen. 6N5p Rije 6N5p 0-03 Rije Ileidig I de wiskude werke we vaak met formules e/of fucties die elke mogelijke waarde aa kue eme. Als bijvoorbeeld f( x) = 5x + 5x 3, da ku je voor x (bija) elke waarde ivulle e ka

Nadere informatie

Dollard College leerlingen 3 MAVO Dollard College Bellingwedde Online Evaluatie Instrument april 2015

Dollard College leerlingen 3 MAVO Dollard College Bellingwedde Online Evaluatie Instrument april 2015 leerlige 3 MAVO Pagia 1 va 7 www.vospiegel.l Olie Evaluatie Istrumet Dollard College Dollard College Belligwedde leerlige 3 MAVO april 2015 Alle rechte voorbehoude. CopyRight 2015 DigiDoc VOspiegel.l Pagia

Nadere informatie

Hoofdstuk 6. Propagatie matrices

Hoofdstuk 6. Propagatie matrices Hoodstuk 6 Propagatie matrices eschrijvig va ee lichtstraal: Ee lichtstraal (voortplatigsrichtig: z-as) ka beschreve worde met:. Hoek, (z), met de optische as.. Plaats, (z), bove de optische as. λ Straal

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2008-II

Eindexamen wiskunde A1-2 vwo 2008-II Groepsfoto s Alle mese kippere met hu oge. Daardoor staa op groepsfoto s vaak ekele persoe met geslote oge. Sveso e Bares hebbe oderzocht hoeveel foto s je moet make va ee groep va persoe om 99% kas te

Nadere informatie

8. Betrouwbaarheidsintervallen voor gemiddelden

8. Betrouwbaarheidsintervallen voor gemiddelden VOOR HET SECUNDAIR ONDERWIJS Verklarede tatitiek 8. Betrouwbaarheiditervalle voor gemiddelde Werktekt voor de leerlig Prof. dr. Herma Callaert Ha Bekaert Cecile Goethal Lie Provoot Marc Vacaudeberg Statitiek

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

Machtsfuncties en wortelfuncties. Introductie 177. Leerkern 178

Machtsfuncties en wortelfuncties. Introductie 177. Leerkern 178 Ope Ihoud Uiversiteit leereeheid 6 Wiskude voor ilieuweteschappe Machtsfucties e wortelfucties Itroductie 77 Leerker 7 Machtsfucties et ee atuurlijk getal als epoet 7 Machtsfucties et ee egatief geheel

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Dinsdag 18 Oktober 1 / 1 2 Statistiek Vandaag: Centrale Limietstelling Correlatie Regressie 2 / 1 Centrale Limietstelling 3 / 1 Centrale Limietstelling St. (Centrale

Nadere informatie

Rijen met de TI-nspire vii

Rijen met de TI-nspire vii Rije met de TI-spire vii De tore va Pisa Me laat ee bal valle vaaf de tore va Pisa(63m hoog) Na elke keer stuitere haalt de bal og ee vijfde va de voorgaade hoogte. Gevraagd zij: a) De hoogte a de e keer

Nadere informatie

Uitwerkingen opdrachten en opgaven

Uitwerkingen opdrachten en opgaven Uitwerkige opdrachte e opgave Statistiek i Busiess voor gevorderde Rob Erve, Zwolle 4. Ihoudsopgave Uitwerkige hoofdstuk... Uitwerkige hoofdstuk 5 Uitwerkige hoofdstuk 3..3 Uitwerkige hoofdstuk 4..7 Uitwerkige

Nadere informatie

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden.

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden. Hertentamen Inleiding Kansrekening WI64. 9 augustus, 9:-: Het tentamen heeft 5 onderdelen. Met ieder onderdeel kan maximaal punten verdiend worden. Het tentamen is open boek. Boeken, nota s en een (eventueel

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing M, M & C, Chapter 6, Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Use and Abuse

Nadere informatie

1. Symmetrische Functies

1. Symmetrische Functies Algebra III 1 1. Symmetrische Fucties permutatios sot la metaphysique des équatios Lagrage*, 1771 I dit hoofdstuk bestudere we de ivariate va de werkig va de symmetrische groep S op polyoomrige i variabele.

Nadere informatie

Beoordelingsmodel VWO wiskunde B II. Een rij. Voor de limiet geldt: u 2 u. 2u u = 1. Dit schrijven als un. De (enige) oplossing: u = 1

Beoordelingsmodel VWO wiskunde B II. Een rij. Voor de limiet geldt: u 2 u. 2u u = 1. Dit schrijven als un. De (enige) oplossing: u = 1 Beoordeligsmodel VWO wiskude B 009-II Vraag Atwoord Scores Ee rij maximumscore Voor de limiet geldt: u u u u Dit schrijve als u u+ 0 De (eige) oplossig: u maximumscore 5 vervage door i u + u + + + Dit

Nadere informatie

Waarschijnlijkheidsrekening en Statistiek

Waarschijnlijkheidsrekening en Statistiek Vrije Uiversiteit Brussel Faculteit Toegepaste Weteschappe Waarschijlijkheidsrekeig e Statistiek S. Caeepeel e P. de Groe Syllabus bij de cursus Waarschijlijkheidsrekeig e Statistiek Tweede Kadidatuur

Nadere informatie