2de bach TEW. Statistiek 2. Van Driessen. uickprinter Koningstraat Antwerpen ,00

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "2de bach TEW. Statistiek 2. Van Driessen. uickprinter Koningstraat Antwerpen ,00"

Transcriptie

1 de bach TEW Statistiek Va Driesse Q uickpriter Koigstraat Atwerpe 46 5,00

2 Nieuw!!! Olie samevattige kope via

3 Hoofdstuk : Het schatte va populatieparameters. Ileidig: schatter versus schattig Voorbeeld: Aakomstepatroo va klate i ee bakkatoor Poisso-verdeeld (λ) We kee deze parameter iet, dus we gaa hem schatte Schattig is gebaseerd op metige/waaremige Steekproefgegeves Schattig voor λ gaat ee fuctie zij va de verzamelde steekproefwaarde Elke oderzoeker gaat adere waarde verkrijge Dus ook ee adere schattig o Omdat het ee kasvariabele is HOOFDLETTER Schattig reëel getal Schatter kasvariabele met obekede waarde. Het schatte va ee gemiddelde.. Gemiddelde va ee ormaal verdeelde populatie Normaal verdeelde populatie Geked populatiegemiddelde μ 3,5 Gekede populatiemediaa 3,5 000 oderzoekers elke oderzoeker verricht 5 metige Wat: steekproefgemiddelde bepale Hoe: steekproefgemiddelde e steekproefmediaa berekee Steekproefgemiddelde berekee 3,5 Steekproefmediaa berekee 3,5 Gemiddelde e mediaa zuivere/overtekede schatters va het gemiddelde va ee ormaal verdeelde populatie.. Gemiddelde va ee expoetieel verdeelde populatie Expoetieel verdeelde populatie Parameter λ 00 Populatiegemiddelde μ λ oderzoekers elke oderzoeker verricht 5 metige Steekproefgemiddelde 99,47 00 Steekproefmediaa 77,04 00 Mediaa ozuivere/vertekede schatter va het gemiddelde va ee expoetieel verdeelde populatie.3 Criteria voor schatters.3. Ee overtekede of zuivere schatter Ee ideale schatter bestaat iet!!!

4 Overtekede schatter θ voor ee obekede populatieparameter θ zuiver of overteked als E(θ ) θ formularium p.0 Hier is de vertekeig V(θ ) E(θ ) θ 0 formularium p.0 Aadacht op 3 schatters:. Steekproefgemiddelde X overtekede/zuivere schatter Heeft de kleiste variatie schattig het dichtst bij populatiegemiddelde. Steekproefproportie P overtekede/zuivere schatter Speciaal geval va steekproefgemiddelde 3. Steekproefvariatie S overtekede/zuivere schatter Steekproefstadaarddeviatie S vertekede schatter!!!.3. Precisie of efficiëtie va ee schatter Schatter moet ee kleie variatie/stadaarddeviatie hebbe precieze/efficiëte schatter Wat moete we hier kieze? Overtekede schatter e grote variatie vertekede schatter e kleie variatie De kleiste gemiddelde gekwadrateerde afwijkig GGA(θ ) var(θ ) + [V(θ )] var(θ ) + E(θ ) θ formularium p.0 Meer waaremige meer iformatie betere schattige DUS: auwkeurigheid moet toeeme aarmate de waaremige toeeme.4 Methode voor het berekee va schatters 3 methode voor schatters te vide met goede eigeschappe:. De methode va momete. De methode va de kleiste kwadrate 3. De methode va de grootste aaemelijkheid Deze zij overteked, maar kome iet aa bod i dit boek.5 Het steekproefgemiddelde X.5. Verwachte waarde e variatie Steekproefgemiddelde kasvariabele schatter als we gee data verzameld hebbe Idividuele waaremige iet beked hoofdletters: X, X,, X Idividuele waaremige beked kleie letters: x, x,, x Verwachte waarde: formularium p.0 E(X ) μ Bewijs: E(X ) E ( X i) E(X i)

5 (μ + μ + + μ) μ μ Deze stellig toot aa dat het steekproefgemiddelde ee overtekede/zuivere schatter is va het populatiegemiddelde Variatie: formularium p.0 var(x ) X X Bewijs: var(x ) X var ( X i) var(x i) ( ) Variatie va het steekproefgemiddelde eemt lieair af waer de steekproefomvag toeeemt Dus als groter wordt, is er meer kas dat het steekproefgemiddelde x dicht bij μ zal ligge Stadaardfout/stadard error vierkatswortel va deze variatie X.5. Kasdichtheid va het steekproefgemiddelde uit ee ormaal verdeelde populatie Geval : ormaal verdeelde populatie formularium p.8 Als X, X,, X ~ N(μ, ) oafakelijk Da geldt voor het gemiddelde: X ~ N (μ, ) Da geldt voor de som: X i ~ N(μ, ) Geval : iet-ormaal verdeelde populatie (dus wel uiform, expoetieel, ) Als X, X,, X ~ N(μ, ) oafakelijk Da is het metee duidelijk welke kasdichtheid X heeft (zie volgede titeltje).5.3 Kasverdelig of dichtheid va het steekproefgemiddelde uit ee iet-ormaal verdeelde populatie We gebruike ee grote steekproef de cetrale limietstellig ka gebruikt worde.5.3. Cetrale limietstellig 3

6 Voor steekproeve waarva je de verdelig iet ket! Ka pas uitgevoerd worde als 30 Als je de verdelig iet ket, is de som/gemiddelde beadered ormaal verdeeld Variat 3 formularium p.0 Werkt met het gemiddelde Werkt met dezelfde μ e Als X,, X oafhakelijk met gemiddelde μ e met variatie Da is X X + +X N ( μ, ) N (μ,.5.4 Illustratie va de cetrale limietstellig Zie boek p De steekproefproportie P speciaal geval va steekproefgemiddelde X Bestudeerde variabele ka ekel de waarde 0 (falig) of (succes) aaeme o Vb. Ma/vrouw, defect/iet defect Idie X i ~ Beroulli(π) e is voldoede groot: formularium p. Voorwaarde: π > 5 ( π) > 5 Verwachte waarde: formularium p. E(P ) π Bewijs: E(P ) E ( X i) E(X i) (π + π + + π) π π ) P X i π( π) N (π, ) P π π( π) ~ N(0,) Deze stellig toot aa dat de steekproefproportie ee overtekede/zuivere schatter is va de populatieproportie Variatie: formularium p. π( π) var(p ) 4

7 Bewijs: var(x ) X var ( X i) var(x i) (π( π) + π( π) + + π( π)) π( π) π( π) Variatie va de steekproefproportie eemt lieair af waer de steekproefomvag toeeemt Dus als groter wordt, is er meer kas dat de steekproefproportie dicht bij π zal ligge Voor klei Biomiale kasverdelig Aatal successe i ee steekproef ~ bi(; π).7 De steekproefvariatie S S (X i X ) formularium p..7. Verwachte waarde formularium p. E(S ) Bewijs: E(S ) E ( (X i X ) ) E ( (X i μ + μ X ) ) E ( (X i μ) + (X i μ)(μ X ) + (μ X ) ) 5

8 E ( (X i μ) E ( (X i μ) E ( (X i μ) E ( (X i μ) + (μ X ) (X i μ) + (μ X ) ) + (μ X )(X μ) + (μ X ) ) (μ X ) + (μ X ) ) (μ X ) ) ( E [(X i μ) ] E(μ X ) ) ( var(x i) var(x ) ) ( ( ) ( ) ) De steekproefvariatie S is ee overtekede/zuivere schatter va de populatievariatie.7. De χ -verdelig ( chi-kwadraatverdelig ) X ~ χ k Speciaal geval va ee gammaverdelig Heeft éé parameter k het aatal vrijheidsgrade Verwachte waarde e variatie: formularium p.9 E(X) k var(x) k.7.3 Relatie tusse stadaardormale e χ -verdelig X, X,, X k ~ N(0,) som kwadrate: X + X + + X k ~ χ k formularium p.9 Hoe groter het aatal vrijheidsgrade, hoe meer lijked op ormale kasdichtheid (CLS) k 50 6

9 .7.4 Kasdichtheid va ee steekproefvariatie Kasdichtheid formularium p. S (X i X ) ( )S (X i X ) ( )S (X i X ) ( )S (X i μ) ( )S (X i μ) ( )S ~ χ idie X i ~ N(μ, ) ~ N(0,) idie X i ~ N(μ, ) Variatie ( )S var ( ) k ( ) ( ) var(s ) ( ) var(s ) ( ) ( ) 4 Variatie va de steekproefvariatie eemt lieair af waer de steekproefomvag toeeemt Dus als groter wordt, is er meer kas dat de steekproefvariatie dicht bij zal ligge.8 De steekproefstadaarddeviatie S ee vertekede/ozuivere schatter va de populatiestadaarddeviatie S (X i X ) formularium p. (wortel va S ) E(S) < Levert ee oderschattig va de populatiestadaarddeviatie Hoe kleier het aatal waaremige, hoe groter de oderschattig va 7

10 8

11 . Put- e itervalschatters Hoofdstuk : Itervalschatters Schatters uit hoofdstuk levere slechts éé waarde op putschatters Gee idicatie va betrouwbaarheid Itervalschatters geeft aa ee putschatter ee bepaalde betrouwbaarheid Berekee va ee iterval op basis va de steekproefgegeves P(L θ U) α. Betrouwbaarheidscoëfficiët α waarde tusse 0 e (ee kas) dus α tusse 0 e moet zo groot mogelijk zij (90%,95% of 99%). Betrouwbaarheidsiterval [L, U] zo smal mogelijk (voor auwkeurige iformatie) 3. Obekede parameter θ. Betrouwbaarheidsiterval voor ee populatiegemiddelde μ met bekede variatie Veroderstellig dat geked is e μ iet is iet realistisch ekel voor educatieve doeleide.. Percetiele uit de stadaardormale dichtheid P(Z z α ) α met Z ~ N(0,) P(Z z α ) α P ( zα Z zα) α.. Opstelle va ee betrouwbaarheidsiterval X ~ N (μ, ) Z X μ ~ N(0,) 9

12 P ( P ( zα P (+zα zα X μ P (X + zα zα α ) X μ zα ) α μ X zα ) α μ X zα ) α Betrouwbaarheidsiterval voor μ: formularium p.0 [X zα ; X + zα ]..3 Breedte va ee betrouwbaarheidsiterval (B) Hoe breder het iterval, hoe betrouwbaarder: B (X + zα ) (X zα ) zα B eemt toe als daalt B eemt toe als α stijgt, dus als α daalt B eemt toe als stijgt..4 Foutemarge (b) b B zα zα.3 Betrouwbaarheidsiterval voor ee populatiegemiddelde μ met obekede variatie moet geschat worde aa de had va de steekproefvariatie S Probleem: betrouwbaarheidsiterval (uit vorige paragraaf) ka iet zomaar gebruikt worde T X μ S ~ N(0,) maar wel ~ t.3. Studet t-verdelig T ~ t afgeleid door W.S. Gosset T Z met X ~ χ e met Z ~ N(0,) X formularium p.9 0

13 Hoe groter wordt, hoe meer de t-verdelig op de stadaardormale verdelig lijkt De t-verdelig is symmetrisch: t α ; t α ; o Het 0 de percetiel: t 0,90 ; o Het 90 ste percetiel: t 0,0 ; 8, Toepassig va de t-verdelig bij de costructie va betrouwbaarheidsitervalle T X μ S X μ beide lede dele door S X μ oemer wortel vrij make door te vermeigvuldige met S X μ teller is stadaardormaal verdeeld S X μ ( )S ( ) zodat: X μ S ( )S met ~ χ ~ t Betrouwbaarheidsiterval: formularium p.0 P ( tα ; X μ S tα ; ) α

14 P ( tα ; S X μ tα ; S ) α P (+tα ; S μ X tα ; S ) α P (X + tα ; S μ X tα ; S ) α [X tα ; S ; X + tα ; S ].4 Betrouwbaarheidsiterval voor ee populatieproportie π.4. Ee eerste itervalschatter gebaseerd op de ormale verdelig Wilso score iterval Beste iterval, maar complexer P ~ N (π ; π( π) ) via de CLS P ( zα P ( (P π) π( π) P π π( π) zα ) α zα α Stadaardisere aar N(0,) ) Alle waarde va π die voldoe aa de ogelijkheid vorme het betrouwbaarheidsiterval ( + zα ) π (P + zα ) π + P 0 ogelijkheid aders schrijve Oder- e bovegres va het betrouwbaarheidsiterval zij de ulpute D b 4ac (P + zα 4 P + 4P zα zα + zα (4P + zα 4P ) Nulpute b ± D a ) 4 ( + zα ) P 4 4 P 4P zα (P + zα ) ± z α (4P + z α 4P ) ( + z α ) Betrouwbaarheidsiterval: formularium p.

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6 HOOFDSTUK III SCHATTEN VAN PARAMETERS Schatters e Betrouwbaarheidsitervalle 3. HET GEMIDDELDE VAN EEN NV Steekproef uit ee ormaal verdeelde populatie De kasveraderlijke X, X, X 3,..., X zij N(µ, σ) verdeeld

Nadere informatie

Hoofdstuk 9 : Steekproefstatistieken. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 9 : Steekproefstatistieken. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 9 : Steekproefstatistieke Marix Va Daele MarixVaDaele@UGetbe Vakgroep Toegepaste Wiskude e Iformatica Uiversiteit Get Steekproefstatistieke p 1/20 Schattige Waeer uit ee steekproef de waarde

Nadere informatie

Schatters en betrouwbaarheidsintervallen

Schatters en betrouwbaarheidsintervallen Statistiek voor Iformatiekude, 006 Les 3 Schatters e betrouwbaarheidsitervalle I de vorige les hebbe we era gekeke hoe we bijvoorbeeld het gemiddelde e de variatie va ee populatie kue schatte, door deze

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 5: Wet van de grote aantallen en Centrale limietstelling

Opgeloste Oefeningen Hoofdstuk 5: Wet van de grote aantallen en Centrale limietstelling Opgeloste Oefeige Hoofdstuk 5: Wet va de grote aatalle e Cetrale limietstellig 5.. Ee toevalsveraderlijke X is oisso-verdeeld met parameter λ = 00. Bepaal ee odergres voor de waarschijlijkheid (75 X 5).

Nadere informatie

Statistiek = leuk + zinvol

Statistiek = leuk + zinvol Statistiek = leuk + zivol Doel 1: Doel : Doel 3: zie titel ee statistisch oderzoek kue beoordele ee statistisch oderzoek kue opzette ee probleem vertale i stadaardmethode gegeves verzamele, verwerke via

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1. Ee ieuwe aam voor ee gekede grootheid...2

Nadere informatie

G0N34a Statistiek: Examen 7 juni 2010 (review)

G0N34a Statistiek: Examen 7 juni 2010 (review) G0N34a Statistiek: Exame 7 jui 00 review Vraag Beoordeel de volgede uitsprake. Als ee uitspraak iet juist is of ovolledig, leg da uit waarom e verbeter de uitspraak.. Bij het teste va hypotheses is de

Nadere informatie

Statistiek. (relatieve) frequenties: histogram cumulatieve (relatieve) frequenties: cumulatief frequentiepolygoon of ogief

Statistiek. (relatieve) frequenties: histogram cumulatieve (relatieve) frequenties: cumulatief frequentiepolygoon of ogief Samevattig statistiek Academiejaar 006-007 Statistiek 4 examevrage: - tabel aavulle met spreidigs- e cetrummate - poisso- e biomiale verdelig Deel Beschrijvede statistiek Soorte variabele Kwalitatief:

Nadere informatie

Hoofdstuk 4: Aanvullende Begrippen (Extra Oefeningen)

Hoofdstuk 4: Aanvullende Begrippen (Extra Oefeningen) Hoofdstuk 4: Aavullede Begrippe (Extra Oefeige) 9. Veroderstel dat X e Y ormaal verdeeld zij met resp. gemiddelde waarde µ X e µ Y e met dezelfde variatie 2. Wat is da de distributie va X Y? Bepaal de

Nadere informatie

Betrouwbaarheid. Betrouwbaarheidsinterval

Betrouwbaarheid. Betrouwbaarheidsinterval Betrouwbaarheid Ee simulatie beoogt éé of i.h.a. twee of meerdere sceario s te evaluere e te vergelijke, bij Mote Carlo (MC) simulatie voor ee groot aatal istelwaarde, voor éé of meerdere parameters. Hierbij

Nadere informatie

Help! Statistiek! Overzicht. Voorbeeld: bloeddruk. Interpretatie van het 95%-BI. Interpretatie van 95%-BI (2) Meest voorkomende vorm van het BI

Help! Statistiek! Overzicht. Voorbeeld: bloeddruk. Interpretatie van het 95%-BI. Interpretatie van 95%-BI (2) Meest voorkomende vorm van het BI Help! Statistiek! Overzicht Doel: Iformere over statistiek i kliisch oderzoek. Tijd: Derde woesdag i de maad, -3 uur 8 maart: Betrouwbaarheidsitervalle 5 april: Herhaald mete met twee mate 0 mei: Statistiek

Nadere informatie

Antwoorden bij Inleiding in de Statistiek

Antwoorden bij Inleiding in de Statistiek Atwoorde bij Ileidig i de Statistiek Hoofdstuk. model: bi(, p), p [0, ], schattig: /.2 (i) i bloeddrukveraderig i e persoo i treatmet groep, Y j bloeddrukveraderig j e persoo i cotrolegroep, model:,...,,

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodelle e ormaal verdeelde steekproefgroothede 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1.

Nadere informatie

Set 3 Inleveropgaven Kansrekening (2WS20)

Set 3 Inleveropgaven Kansrekening (2WS20) 1 Techische Uiversiteit Eihove Faculteit Wiskue e Iformatica Set 3 Ileveropgave Kasrekeig (2WS20) 2014-2015 1. (Flesjes ie uit e ba sprige) Aa ee lopee ba wore bierflesjes gevul. Helaas gaat er zo u e

Nadere informatie

Statistiek Voor studenten Bouwkunde College 2

Statistiek Voor studenten Bouwkunde College 2 Statistiek Voor studete Bouwkude College Numerieke samevattige va data Dataverdelig, meetfoute, uitbijters e scatterplots Programma voor vadaag Terugblik op college Numeriek samevatte va data Normale beaderig

Nadere informatie

Cursus Theoretische Biologie. Onderdeel Statistiek

Cursus Theoretische Biologie. Onderdeel Statistiek Cursus Theoretische Biologie Oderdeel Statistiek J.J.M. Bedaux Oktober 2000 1 THEORETISCHE BIOLOGIE, ONDERDEEL STATISTIEK 1 Theorie 1 Parameterschattig We begie met ee voorbeeld. I Wiskude e Modelbouw

Nadere informatie

Statistiek Voor studenten Bouwkunde College 6

Statistiek Voor studenten Bouwkunde College 6 Statistiek Voor studete Bouwkude College 6 extrapolatie va steekproef aar populatie Programma voor vadaag Terugblik Populatie e steekproef: extrapolatiestap Represetativiteit, (o)zuiverheid Populatiepercetage

Nadere informatie

WenS eerste kans Permutatiecode 0

WenS eerste kans Permutatiecode 0 Aatekeige op de vrageblade zij NIET TOEGELATEN. Je mag gebruik make va schrijfgerief e ee eevoudige rekemachie; alle adere materiaal blijft achteri. Leg je studetekaart duidelijk zichtbaar op je bak. Klap

Nadere informatie

WenS eerste kans Permutatiecode 0

WenS eerste kans Permutatiecode 0 WeS eerste kas 203 204 Permutatiecode 0 Aatekeige op de vrageblade zij NIET TOEGELATEN. Je mag gebruik make va schrijfgerief e ee eevoudige rekemachie; alle adere materiaal blijft achteri. Gee GSM s toegelate:

Nadere informatie

Steekproeftrekking Onderzoekspopulatie Steekproef

Steekproeftrekking Onderzoekspopulatie Steekproef Steekproeftrekkig I dit artikel worde twee begrippe beschreve die va belag zij voor het uitvoere va ee oderzoek. Het gaat om de populatie va het oderzoek e de steekproef. Voor wat betreft steekproeve lichte

Nadere informatie

SAMENVATTING HOOFDSTUK 1. Eigenschappen gebeurtenissen. uitkomsten kan hebben. A = AB A B. 3. (Regels van de Morgan)

SAMENVATTING HOOFDSTUK 1. Eigenschappen gebeurtenissen. uitkomsten kan hebben. A = AB A B. 3. (Regels van de Morgan) SAMENVATTING HOOFDSTUK Toevalsexperimet: experimet, dat meerdere uitkomste ka hebbe Uitkomsteruimte: S = {uitkomste} Gebeurteis A : deelverzamelig vas : A S A e B sluite elkaar uit als A B = A,A 2,...

Nadere informatie

De standaardafwijking die deze verdeling bepaalt is gegeven door

De standaardafwijking die deze verdeling bepaalt is gegeven door RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE VWO CM T311-VCM-H911 Voor elk oderdeel is aagegeve hoeveel pute kue worde behaald. Atwoorde moete altijd zij voorzie va ee berekeig, toelichtig of argumetatie. MAX:

Nadere informatie

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek.

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek. 006 Wolters-Noordhoff bv Groige/Houte De steekproefomvag Ee toelichtig op het belag e het berekee va de steekproefomvag i marktoderzoek. Ihoud 1 Ileidig Eerst ekele defiities 3 Steekproefomvag e respose

Nadere informatie

1. Meetniveaus en Notatie

1. Meetniveaus en Notatie 1. Meetiveaus e Notatie Meetiveaus Oderzoek wordt gedaa met het verzamele va iformatie over éé of meer variabele. Ee variabele wordt gemete ee va de volgede 4 meetiveaus (va laag aar hoog) : Er wordt oderscheid

Nadere informatie

figuur 2.50 Microscoop

figuur 2.50 Microscoop 07-01-2005 10:20 Pagia 1 Microscoop Ileidig Ee microscoop is bedoeld om kleie voorwerpe beter te kue zie, zie figuur 2.50. De bolle les dicht bij het oog (het oculair) heeft ee grote diameter. De bolle

Nadere informatie

Eindexamen wiskunde A vwo 2010 - I

Eindexamen wiskunde A vwo 2010 - I Eidexame wiskude A vwo - I Beoordeligsmodel Maratholoopsters maximumscore 3 uur, 43 miute e 3 secode is 98 secode De selheid is 495 98 (m/s) Het atwoord: 4,3 (m/s) maximumscore 3 Uit x = 5 volgt v 4,4

Nadere informatie

OPLOSSINGEN KANSREKENEN STATISTIEK. voor ingenieurs. Katholieke Universiteit Leuven Academiejaar

OPLOSSINGEN KANSREKENEN STATISTIEK. voor ingenieurs. Katholieke Universiteit Leuven Academiejaar OPLOSSINGEN KANSREKENEN EN STATISTIEK voor igeieurs Katholieke Uiversiteit Leuve Academiejaar 00-0 H Beschrijvede Statistiek MKZ..4 d. De steekproefomvag is te klei om dit met zekerheid te besluite. Je

Nadere informatie

12 Kansrekening. 12.1 Kansruimten WIS12 1

12 Kansrekening. 12.1 Kansruimten WIS12 1 WIS12 1 12 Kasrekeig 12.1 Kasruimte Kasmaat Ee experimet is ee hadelig of serie hadelige met ee of meer mogelijke resultate uitkomste geoemd). De uitkomsteruimte, die we steeds zulle aageve met Ω, is de

Nadere informatie

7. Betrouwbaarheidsintervallen voor proporties

7. Betrouwbaarheidsintervallen voor proporties VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 7. Betrouwbaarheidsitervalle voor proporties Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg

Nadere informatie

familie verdelingen van alle waardes van θ Binomiaal X~Bin(n,θ) π " (k)=p(x=k)= ( ) θ) 1 θ (-) μ " =nθ σ & " =nθ(1-θ) X=# successen in n pogingen

familie verdelingen van alle waardes van θ Binomiaal X~Bin(n,θ) π  (k)=p(x=k)= ( ) θ) 1 θ (-) μ  =nθ σ &  =nθ(1-θ) X=# successen in n pogingen . Statistische modellerig Stappepla:. Succes?. Wat geregistreerd? 3. meerdere successe per eeheid? à Aatal successe? Max. #? JA Bi θ NEE Poisso λ JA: cotiu: Poisso of Exp λ à wachttijd? Komma? JA Exp λ

Nadere informatie

Betrouwbaarheidsintervallen en het testen van hypothesen

Betrouwbaarheidsintervallen en het testen van hypothesen Cahiers T 3 Europe Vlaadere r. 8 Betrouwbaarheidsitervalle e het teste va hypothese Va steekproef aar populatie Guido Herweyers Betrouwbaarheidsitervalle e het teste va hypothese Va steekproef aar populatie

Nadere informatie

Samenvatting. Inleiding Statistiek - Collegejaar

Samenvatting. Inleiding Statistiek - Collegejaar Samevattig Ileidig Statistiek - Collegejaar 2012-2013 Mathematical Statistics ad Data Aalysis, 3-rd editio. Joh A. Rice Hoofdstuk 7 paragraaf 1, 2, 3 e 5. Hoofdstuk 8 e paragraaf 1, 2 e 3 va Hoofdstuk

Nadere informatie

Betrouwbaarheid van een steekproefresultaat m.b.t. de hele populatie

Betrouwbaarheid van een steekproefresultaat m.b.t. de hele populatie Betrouwbaarheid va ee steekproefresultaat m.b.t. de hele populatie Verschillede steekproeve uit eezelfde populatie levere verschillede (steekproef) resultate op. Dit overmijdelijke verschijsel oeme we

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame HAVO 2013 tijdvak 2 woesdag 19 jui 13.30-16.30 uur wiskude A Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 21 vrage. Voor dit exame zij maximaal 80 pute te behale. Voor elk vraagummer

Nadere informatie

FORMULARIUM: STATISTIEK

FORMULARIUM: STATISTIEK FORMULARIUM: STATISTIEK VARIABELE STEEKPROEF x,x,...,x POPULATIE X Dichtheid relatieve frequetie: f j kas met kasregels P(G C ) = P(G) P(G G ) = P(G ) + P(G ) P(G G ) P(G \ G ) = P(G ) P(G ) als G G voorwaardelijke

Nadere informatie

9. Testen van meetresultaten.

9. Testen van meetresultaten. Uitwerkige hoofdstuk 9 9. Teste va meetresultate. Opgave 9. Teste va het uit de steekproef geschatte gemiddelde t.o.v. µ a x 4,5 kg e -,0 kg 5 b t ( µ x) 5 4,5, -,0 c,5 % d v 5 4 tabel: t kritisch,78.

Nadere informatie

PARADOXEN 9 Dr. Luc Gheysens

PARADOXEN 9 Dr. Luc Gheysens PARADOXEN 9 Dr Luc Gheyses LIMIETEN, AFGELEIDEN EN INTEGRALEN: ENKELE MERKWAARDIGE VERHALEN Ileidig: verhale over ifiitesimale Ee ifiitesimaal (of ifiitesimaal kleie waarde) is ee object dat mi of meer

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

1 Ileidig De vraag is of de spelers i het spel Fatasie 24 (ee variat va observatie roulette), gespeeld i casio YYY te ZZZ, ivloed kue hebbe op de kasb

1 Ileidig De vraag is of de spelers i het spel Fatasie 24 (ee variat va observatie roulette), gespeeld i casio YYY te ZZZ, ivloed kue hebbe op de kasb Behedigheid bij Fatasie 24? R.D. Gill, C.G.M. Oudshoor 4 maart 1997 Samevattig Dit artikel is ee aagepaste versie va ee verslag wat geschreve is.a.v. ee oderzoek voor ee casio. Dit oderzoek gig over de

Nadere informatie

Ongelijkheden. IMO trainingsweekend 2013

Ongelijkheden. IMO trainingsweekend 2013 Ogelijkhede IMO traiigsweeked 0 Deze tekst probeert de basis aa te brege voor het bewijze va ogelijkhede op de IMO. Het is de bedoelig om te bewijze dat ee bepaalde grootheid (ee uitdrukkig met ee aatal

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

Toelichting bij Opbrengstgegevens VAVO 2011-2013

Toelichting bij Opbrengstgegevens VAVO 2011-2013 Toelichtig bij Opbregstgegeves VAVO 2011-2013 Ihoud Ileidig Aatal deelemers exame Kegetalle toezicht exames CE-cijfer alle vakke CE-cijfer alle vakke - tred SE-cijfer mius CE cijfer alle vakke Percetage

Nadere informatie

Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc)

Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc) . Ileidig: Complexe getalle I de wiskude stelt zich het probleem dat iet bestaat voor de reële getalle of dat de vergelijkig x + 0 gee reële ulpute heeft. Om dit euvel op te losse werd het getal i igevoerd

Nadere informatie

Eindexamen wiskunde B1 vwo 2007-I

Eindexamen wiskunde B1 vwo 2007-I Eidexame wiskude B vwo 007-I havovwo.l Podiumverlichtig Ee podium is 6 meter diep. Midde bove het podium hagt ee balk met tl-buize. De verlichtigssterkte op het podium is het kleist aa de rad, bijvoorbeeld

Nadere informatie

Stochastische loadflow. Beschrijving model belasting.

Stochastische loadflow. Beschrijving model belasting. Stochastische loadflow. eschrijvig model belastig. 95 pmo 5-- Phase to Phase V Utrechtseweg 3 Postbus 68 AC Arhem T: 6 356 38 F: 6 356 36 36 www.phasetophase.l 95 pmo INHOUD Ileidig...3 eschrijvig belastig...

Nadere informatie

werkcollege 6 - D&P9: Estimation Using a Single Sample

werkcollege 6 - D&P9: Estimation Using a Single Sample cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties

Nadere informatie

Hoofdstuk 1 - Rijen ) = bladzijde ; voor x = 11 is y = = 55. te rekenen omdat die ook met hele stappen toeneemt.

Hoofdstuk 1 - Rijen ) = bladzijde ; voor x = 11 is y = = 55. te rekenen omdat die ook met hele stappen toeneemt. Hoofdstuk - Rije bladzijde V-a Als x steeds met toeeemt, da eemt y met toe. b Voor x is y + 5 ; voor x is y + 55. c De waarde va x eemt met hele stappe toe. De waarde va y is da makkelijk uit te rekee

Nadere informatie

Schoenen voor diabetes en reuma

Schoenen voor diabetes en reuma Schoee voor diabetes e reuma Comfortschoee gemaakt voor de extra kwetsbare voet Officieel gee vergoedig via zorgverzekeraar. Echter bij ekele zorgverzekeraars is door middel va idividuele aavraag vergoedig

Nadere informatie

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100...

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100... Opgave OPGAVE 1 a. Itereer met F( ) = e als startwaarde 1 e 1. 16 1............... 16 1............... b. Stel de bae grafisch voor i ee tijdgrafiek. c. Formuleer het gedrag va deze bae. (belagrijk is

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2008-II

Eindexamen wiskunde A1-2 vwo 2008-II Groepsfoto s Alle mese kippere met hu oge. Daardoor staa op groepsfoto s vaak ekele persoe met geslote oge. Sveso e Bares hebbe oderzocht hoeveel foto s je moet make va ee groep va persoe om 99% kas te

Nadere informatie

Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa Inleiding. Studiemateriaal

Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa Inleiding. Studiemateriaal Algemee iformatie http://www.wi.tue.l/wsk/oderwijs/s95 College e istructies College: woesdag uur - HG6.96 Istructies maadag uur 5-6 HG6.09 Auditorium oodgebouw, uit Opdrachte: opgave uit boek e dictaat

Nadere informatie

Appendix A: De rij van Fibonacci

Appendix A: De rij van Fibonacci ppedix : De rij va Fiboacci Het expliciete voorschrift va de rij va Fiboacci We otere het het e Fiboaccigetal met F De rij va Fiboacci wordt gegeve door: F F F F 4 F F 6 F 7 F De volgede afleidig is gebaseerd

Nadere informatie

χ 2 -toets voor homogeniteit χ 2 -toets voor goodness-of-fit ten slotte

χ 2 -toets voor homogeniteit χ 2 -toets voor goodness-of-fit ten slotte toetsede statistiek week 1: kase e radom variabele week 2: de steekproeveverdelig week 3: schatte e toetse: de z-toets week 4: het toetse va gemiddelde: de t-toets week 5: het toetse va variaties: de F-toets

Nadere informatie

Werktekst 1: Een bos beheren

Werktekst 1: Een bos beheren Werktekst : Ee bos behere Berekeige met rije op het basisscherm Op ee perceel staa 3000 kerstbome. Ee boomkweker moet beslisse hoeveel bome er jaarlijks gekapt kue worde e hoeveel ieuwe aaplat er odig

Nadere informatie

1ste bach TEW. Statistiek 1. Prof. Ellen Vandervieren. uickprinter Koningstraat 13 2000 Antwerpen. www.quickprinter.be 116 4,00

1ste bach TEW. Statistiek 1. Prof. Ellen Vandervieren. uickprinter Koningstraat 13 2000 Antwerpen. www.quickprinter.be 116 4,00 1ste bach TEW Statistiek 1 Prof. Elle Vaderviere Q www.quickpriter.be uickpriter Koigstraat 13 2000 Atwerpe 116 4,00 Nieuw!!! Olie samevattige kope via www.quickpritershop.be Hoofdstuk 1: Wat is statistiek?

Nadere informatie

We kennen in de wiskunde de volgende getallenverzamelingen:

We kennen in de wiskunde de volgende getallenverzamelingen: Masteropleidig Fiacial Plaig Kwatitatieve Methode Relevate wiskude We kee i de wiskude de volgede getalleverzamelige: De atuurlijke getalle: N = {0,,,,4, } De gehele getalle: Z = {, -,-,-,0,,,, } (egels:

Nadere informatie

SOCIALE STATISTIEK (deel 2)

SOCIALE STATISTIEK (deel 2) SOCIALE STATISTIEK (deel 2) D. Vanpaemel KU Leuven D. Vanpaemel (KU Leuven) SOCIALE STATISTIEK (deel 2) 1 / 57 Hoofdstuk 5: Schatters en hun verdeling 5.1 Steekproefgemiddelde als toevalsvariabele D. Vanpaemel

Nadere informatie

Statistiek Voor studenten Bouwkunde College 8

Statistiek Voor studenten Bouwkunde College 8 Statistiek Voor studete Bouwkude College herhalig e ekele voorbeelde Programma voor vadaag Uitgebreide terugblik (per deel Is 0% va de Nederladers likshadig? Hoe checke we of ee theorie klopt? Aalyse va

Nadere informatie

Periodiciteit bij breuken

Periodiciteit bij breuken Periodiciteit bij breuke Keuzeodracht voor wiskude Ee verdieede odracht over eriodieke decimale getalle, riemgetalle Voorkeis: omrekee va ee breuk i ee decimale vorm Ileidig I deze odracht leer je dat

Nadere informatie

Schoenen voor diabetes en reuma

Schoenen voor diabetes en reuma Schoee voor diabetes e reuma Comfortschoee gemaakt voor de extra kwetsbare voet Officieel gee vergoedig via zorgverzekeraar. Echter bij ekele zorgverzekeraars is door middel va idividuele aavraag vergoedig

Nadere informatie

Hoofdstuk 1 Rijen en webgrafieken

Hoofdstuk 1 Rijen en webgrafieken Hoofdstuk Rije e wegrafieke Voorkeis: Rije ladzijde V-a u 7 + v +, c De vergelijkig 7 + +, oplosse geeft, e dus 8. Ze hee eide 8 rode gelope. V- u, u met u V-a u + ( ) + + s u + u + u +... + u + + 8 +

Nadere informatie

Trigonometrische functies

Trigonometrische functies Trigoometrische fucties Ileidig De meest gebruikelijke defiitie va de trigoometrische fucties cos e si berust op meetkudige cocepte (cirkel, hoek, driehoeke etc.) die buite het bestek va de aalyse valle.

Nadere informatie

7.1 Recursieve formules [1]

7.1 Recursieve formules [1] 7.1 Recursieve formules [1] Voorbeeld: 8, 12, 16, 20, 24, is ee getallerij. De getalle i de rij zij de terme. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is de vijfde term (u

Nadere informatie

Rijen. 6N5p

Rijen. 6N5p Rije 6N5p 0-03 Rije Ileidig I de wiskude werke we vaak met formules e/of fucties die elke mogelijke waarde aa kue eme. Als bijvoorbeeld f( x) = 5x + 5x 3, da ku je voor x (bija) elke waarde ivulle e ka

Nadere informatie

Deel A. Breuken vergelijken 4 ----- 12

Deel A. Breuken vergelijken 4 ----- 12 Deel A Breuke vergelijke - - 0 Breuke e brokke (). Kleur va elke figuur deel. Doe het zo auwkeurig mogelijk.. Kleur va elke figuur deel. Doe het telkes aders.. Kleur steeds het deel dat is aagegeve. -

Nadere informatie

Uitwerkingen opdrachten en opgaven

Uitwerkingen opdrachten en opgaven Uitwerkige opdrachte e opgave Statistiek i Busiess voor gevorderde Rob Erve, Zwolle 4. Ihoudsopgave Uitwerkige hoofdstuk... Uitwerkige hoofdstuk 5 Uitwerkige hoofdstuk 3..3 Uitwerkige hoofdstuk 4..7 Uitwerkige

Nadere informatie

Artikel. Regenboog. Uitgave Auteur.

Artikel. Regenboog. Uitgave Auteur. Artikel Regeboog Uitgave 206- Auteur HC jy886@teleet.be De eerste overtuigede verklarig va de regeboog werd i 704 door Isaac Newto beschreve i zij boek Optics. Newto toode aa dat wit licht ee megelig is

Nadere informatie

6 Het inwendig product

6 Het inwendig product 6 Het iwedig prdct Te algebra e meetkde gescheide vakke ware, was h vrtgag lagzaam e h t beperkt Maar sids beide vakke zij vereigd, hebbe ze elkaar derlig versterkt e zij ze gezamelijk pgetrkke aar perfectie

Nadere informatie

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl Kastheorie 2de bachelor wiskude Vrije Uiversiteit Brussel U. Eimahl Academiejaar 2011/2012 Ihoudsopgave 1 Kasruimte 1 1.1 Toevallige experimete................................. 1 1.2 De axioma s va Kolmogorov.............................

Nadere informatie

Waarschijnlijkheidsrekening en Statistiek

Waarschijnlijkheidsrekening en Statistiek Vrije Uiversiteit Brussel Faculteit Toegepaste Weteschappe Waarschijlijkheidsrekeig e Statistiek S. Caeepeel e P. de Groe Syllabus bij de cursus Waarschijlijkheidsrekeig e Statistiek Tweede Kadidatuur

Nadere informatie

1. Symmetrische Functies

1. Symmetrische Functies Algebra III 1 1. Symmetrische Fucties permutatios sot la metaphysique des équatios Lagrage*, 1771 I dit hoofdstuk bestudere we de ivariate va de werkig va de symmetrische groep S op polyoomrige i variabele.

Nadere informatie

Overlevingstafels en longitudinale analyse

Overlevingstafels en longitudinale analyse 9 Overlevigstafels e logitudiale aalyse Survival-aalyse / Duurmodelle Thaya Carolia, Léader Kuivehove e Ja va der Laa Statistische Methode () De Haag/Heerle, Verklarig va tekes. = gegeves otbreke * = voorlopig

Nadere informatie

8 want 5,8 2 = 33,64 > 33 5 want 7,5 2 = 56,25 > 56,2 5 want 2,5 2 = 6,25.

8 want 5,8 2 = 33,64 > 33 5 want 7,5 2 = 56,25 > 56,2 5 want 2,5 2 = 6,25. Hoofdstuk WORTELS. ZIJDE EN OPPERVLAKTE VAN EEN VIERKANT a z a 9 + + + + 9 Lagzamer a Nee Hij doet alsof de oppervlakte gelijkmatig toeeemt. Je moet als zijde eme. z 0, 0, z a a 0,09 0,9 z a 0 / 00 0,

Nadere informatie

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak Lesbrief 5 Recurreties e ogelijkhede Recursief gedefiieerde rije Er zij getallerije {a } die voldoe aa ee recurrete betrekkig va de vorm a +k = f(a +k ;a +k ;:::;a ) voor = ; ;:::, waardoor de + k-de term

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Rijen

Uitwerkingen bij 1_0 Voorkennis: Rijen Uitwerkige ij _0 Voorkeis: Rije V_ a U = 7 + U = +,5 7 + = +,5 0,5 = 4 = 8 Na 8 rode krijge ze elk,-. V_ U() =, 06 U( ) met U(0) = 500 e U() het eidedrag a jaar. V_ a u 458 8 r u 8 9 4 = = = dus 5 u5 8

Nadere informatie

1. Recursievergelijkingen van de 1 e orde

1. Recursievergelijkingen van de 1 e orde Recursievergelijkige va de e orde Rekekudige rije Het voorschrift va ee rekekudige rij ka gegeve wordt met de volgede recursievergelijkig: u = u + b Idie we deze vergelijkig i de vorm u = u u = b otere

Nadere informatie

2.6 De Fourierintegraal

2.6 De Fourierintegraal 2.6 De Fourieritegraal We vertrekke va de Fourierreeks i complexe vorm: voor g : [ π,π] C kue we schrijve met g(t) α e it, α 1 Z π g(t)e it dt. 2π π We herschrijve deze formules eerst voor ee fuctie f

Nadere informatie

1) Complexe getallen - definitie

1) Complexe getallen - definitie Complexe getalle ) Complexe getalle - defiitie a) Meetkudige betekeis va het getal i Als je ee reëel getal met ee ader reëel getal vermeigvuldigt, wordt zij afstad tot de oorsprog met dit getal vermeigvuldigd

Nadere informatie

Videoles Discrete dynamische modellen

Videoles Discrete dynamische modellen Videoles Discrete dyamische modelle Discrete dyamische modelle Orietatie Algebraisch Algebraisch/ umeriek Numeriek Maak de volgede rijtjes af: Puzzele met rijtjes a. 2 4 6 8 10 - b. 1 2 4 8 16 - c. 1 2

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Praktische opdracht: Complexe getallen en de Julia-verzameling

Praktische opdracht: Complexe getallen en de Julia-verzameling Praktische opdracht: Complexe getalle e de Julia-verzamelig Auteur: Wiebe K. Goodijk, Zerike College Hare Beodigde Voorkeis: 1 = i Het complexe vlak. Notatie: z = a + bi of z = r(cosϕ + i si ϕ) Regel va

Nadere informatie

Levende Statistiek, een module voor VWO wiskunde D

Levende Statistiek, een module voor VWO wiskunde D Op het Stedelijk Gymasium te Leide is de module Levede Statistiek uitgeprobeerd, Ee verslag va Jacob va Eeghe e Liesbeth de Wreede. Levede Statistiek, ee module voor VWO wiskude D Statistiek is typisch

Nadere informatie

DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED

DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED Prof. ir. P. Ampe, Prof. dr. ir. A. De Wulf, ig. J. De Corte. 1. Ileidig e probleemstellig. Sedert deceia gebruike schatters zowel i België

Nadere informatie

Functies, Rijen, Continuïteit en Limieten

Functies, Rijen, Continuïteit en Limieten Fucties, Rije, Cotiuïteit e Limiete Fucties, Rije, 2-0 Cotiuïteit e Limiete Fucties, Rije, Cotiuïteit e Limiete Ihoud 1. Fucties Defiitie e kemerke / bewerkige op fucties Reële fucties va éé reële veraderlijke

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 9. Toetsen van hypothesen. Werktekst voor de leerling. Prof. dr.

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 9. Toetsen van hypothesen. Werktekst voor de leerling. Prof. dr. VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 9. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg DEEL. Basisideeë.... Hoe extreem mag

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Inleiding Experimentele Fysica (3NA10 of 3AA10) Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Inleiding Experimentele Fysica (3NA10 of 3AA10) Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) TECHISCHE UIVERSITEIT EIDHOVE Tetame Ileidig Experimetele Fysica (3A10 of 3AA10) Tetame OGO Fysisch Experimetere voor mior AP (3M10) d.d. 0 jauari 010 va 9:00 1:00 uur Vul de presetiekaart i blokletters

Nadere informatie

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl) wiskude A, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 04 Tijdvak izede scores Verwerk de scores va de alfabetisch eerste vijf kadidate per school i het programma Wolf

Nadere informatie

Waarschijnlijkheidsrekening en Statistiek

Waarschijnlijkheidsrekening en Statistiek Vrije Uiversiteit Brussel Faculteit Weteschappe Waarschijlijkheidsrekeig e Statistiek P. de Groe Syllabus voor het college i Waarschijlijkheidsrekeig e Statistiek i de Tweede Kadidature Weteschappe, Iformatica,

Nadere informatie

Proeftentamen IBK1LOG01

Proeftentamen IBK1LOG01 Proeftetame IBK1LOG01 Opgave 1 ( 20 pute) Beatwoord de oderstaade vrage met waar of iet waar: 1.De bereikbaarheid va iformatie over ee product bij ee iteretwikel is ee voorbeeld va pre-trasactie elemet

Nadere informatie

Statistische aspecten van lozingseisen. Icastat. Statistisch Adviesbureau

Statistische aspecten van lozingseisen. Icastat. Statistisch Adviesbureau Statistische aspecte va lozigseise Icastat Statistisch Adviesbureau mei 003 Statistische aspecte va lozigseise Opdrachtgever: RIZA / CIW-4 Auteur: drs. Paul K. Baggelaar mei 003 Icastat Statistisch Adviesbureau

Nadere informatie

p(1 p) 0,16(1 0,16) 0,0164 n Het gevraagde 95%-betrouwbaarheidsinterval is: [ p 2, p 2 ] [0,16 2 0,0164;0,16 2 0,0164] [0,1272;0,1928]

p(1 p) 0,16(1 0,16) 0,0164 n Het gevraagde 95%-betrouwbaarheidsinterval is: [ p 2, p 2 ] [0,16 2 0,0164;0,16 2 0,0164] [0,1272;0,1928] Diagostische toets hoofdstuk 10 1a) Gevraagd: 95% betrouwbaarheidsiterval voor proporties, dus berekee de 80 steekproefproportie = p 0,16 Dat geeft: 500 p(1 p) 0,16(1 0,16) 0,0164 500 Het gevraagde 95%-betrouwbaarheidsiterval

Nadere informatie

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten Hoofdstuk 4 Compressore Doelstellige 1. Wete dat i het geval va compressore rekeig moet gehoude worde met thermische effecte 2. Wete dat er ee gres is aa het verhoge va de druk va ee gas 3. Wete welke

Nadere informatie

Machtsfuncties en wortelfuncties. Introductie 177. Leerkern 178

Machtsfuncties en wortelfuncties. Introductie 177. Leerkern 178 Ope Ihoud Uiversiteit leereeheid 6 Wiskude voor ilieuweteschappe Machtsfucties e wortelfucties Itroductie 77 Leerker 7 Machtsfucties et ee atuurlijk getal als epoet 7 Machtsfucties et ee egatief geheel

Nadere informatie

Buren en overlast. waar je thuis bent...

Buren en overlast. waar je thuis bent... Bure e overlast waar je thuis bet... Goed wooklimaat HEEMwoe vidt het belagrijk dat bewoers prettig woe i ee fije buurt. De meeste buurtbewoers kue het goed met elkaar vide. Soms gaat het sameleve i ee

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

Kwaliteit van de persoonsgegevens. Resultaten Gemeente Alpen aan den Rijn

Kwaliteit van de persoonsgegevens. Resultaten Gemeente Alpen aan den Rijn Kwaliteit va de persoosgegeves Resultate Gemeete Alpe aa de Rij Klik Ted om Dicks, de titelstijl Hek-Ja va Wieseekker het model te bewerke Ageda Doel va het oderzoek Irichtig va het oderzoek Resultate

Nadere informatie

Auteur(s): F. Goudswaard, H. Oonk Titel: De kruk...waar? Jaargang: 3 Jaartal: 1985 Nummer: 3 Oorspronkelijke paginanummers:

Auteur(s): F. Goudswaard, H. Oonk Titel: De kruk...waar? Jaargang: 3 Jaartal: 1985 Nummer: 3 Oorspronkelijke paginanummers: Auteur(s):. Goudswaard, H. Ook Titel: De kruk...waar? Jaargag: 3 Jaartal: 198 Nummer: 3 Oorsprokelijke pagiaummers: 98-109 Dit artikel is oorsprokelijk verschee i Haags Tijdschrift voor ysiotherapie, va

Nadere informatie

Onderafdeling oer Wiskunde

Onderafdeling oer Wiskunde Oderafdelig oer Wiskude e Iformatica. ; ' ' ''. -...-. ' ',,',, -\ I.~.,, ti ' ', i I ~ ' '."; ' :,- ' ' ' ' I,-,,,',,., Vrilagstu~ke, l:)ij \ '.,._, ',, :, ~a~re.ke.ig.e.r ~tati$tjek ~~8,i,cf'v6ör wsk-~~

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Steekproefkarakteristieken en betrouwbare uitspraken

Steekproefkarakteristieken en betrouwbare uitspraken Steekpoefkaakteistieke e betouwbae uitspake Steekpoefkaakteistieke. De ities Ee steekpoef uit X s W (; ) is ee ij X ; X ; :::; X zo dat de X i zij oafhakelijk; de X i hebbe dezelfde vedelig als X. Belagijke

Nadere informatie