Set 3 Inleveropgaven Kansrekening (2WS20)

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Set 3 Inleveropgaven Kansrekening (2WS20)"

Transcriptie

1 1 Techische Uiversiteit Eihove Faculteit Wiskue e Iformatica Set 3 Ileveropgave Kasrekeig (2WS20) (Flesjes ie uit e ba sprige) Aa ee lopee ba wore bierflesjes gevul. Helaas gaat er zo u e a iets mis, e valt er ee flesje va e ba. Uit recete gegeves blijkt at er gemiel 3 flesjes per ag va e ba valle. (a) (20 pute) Wat is ee geschikt moel om het aatal gevalle flesjes te beschrijve? Als we ook zoue wete at er per ag flesse over e ba gaa, wat is a ee geschikt moel voor het aatal gevalle flesse per ag? Waarom maakt het i e praktijk weiig uit welk va eze twee moelle je gebruikt? (b) (10 pute) Geef ee zo goe mogelijke beaerig va e kas at er i ee maa va 20 werkage 55 flesse of mier seuvele oor gebruik te make va e cetrale limiet stellig. 2. (20 pute) (Cetrale limiet stellig revisite) Stel U 1,..., U zij uiform op [0, 1] e U +1,..., U 2 zij uiform op [0, 2]. Alle raom variabele zij oafhakelijk. Hoe moet ik a e b kieze zoaig at U U 2 a b Z, waarbij covergetie i verelig weergeeft e Z ee staaar ormale verelig? Waarom mag je e cetrale limiet stellig toepasse? 3. (Voetbalplaatjes) Ee supermarkt eelt voetbalplaatjes uit. Er is ee totaal va plaatjes ie alle met gelijke kas voorkome. (a) (10 pute) Wat is het verwachte aatal plaatjes at je krijgt voorat je alle plaatjes compleet hebt? Wat is e variatie hierva? (b) (10 pute) Laat zie at als heel groot is, at a het aatal voetbalplaatjes X at je krijgt voorat je alle plaatjes compleet hebt, voloet aa Hier is X log 1. covergetie i verelig. [Hit: gebruik e Chebychev ogelijkhei.] 4. (a) (10 pute) Bewijs at voor ee raom variabele X met verwachtigswaare µ = E[X] e E[X 4 ] < gelt at ( X µ > r) E[(X µ)4 ] r 4. (b) (20 pute) Stel X heeft ee staaar ormale verelig. Laat zie at e Chebychev ogelijkhei geeft at ( X > r) 1/r 2. Voor welke waare va r is e afschattig uit (c) beter a e Chebychev ogelijkhei?

2 2 Atwoore e putetellig Het maximaal aatal te behale pute is 100, vereel zoals aagegeve. De atwoore moete heler uitgeleg zij, met het oeme va e gebruikte resultate. Bij e atwoore is uielijk aagegeve voor welk eelresultaat je hoeveel pute krijgt. 1. (Flesjes ie uit e ba sprige) Aa ee lopee ba wore bierflesjes gevul. Helaas gaat er zo u e a iets mis, e valt er ee flesje va e ba. Uit recete gegeves blijkt at er gemiel 3 flesjes per ag va e ba valle. (a) (20 pute) Wat is ee geschikt moel om het aatal gevalle flesjes te beschrijve? Als we ook zoue wete at er per ag flesse over e ba gaa, wat is a ee geschikt moel voor het aatal gevalle flesse per ag? Waarom maakt het i e praktijk weiig uit welk va eze twee moelle je gebruikt? Atwoor: We zij op zoek aar ee iscrete verelig, ie e waare k = 0, 1, 2,... aa ka eme (3pt). We hebbe i het eerste geval gee iformatie over het aatal gevule flesjes per ag. De oissoverelig is aarom geschikt (4pt), omat eze wort gebruikt bij het telle va het aatal gebeurteisse. I eze situatie gaat het amelijk om het omvalle va flesjes geuree ee bepaale tijsperioe. De verwachtigwaare is gelijk aa e parameter λ va e oissoverelig, us λ = 3 (2pt). Met e extra iformatie at er per ag flesjes over e ba gaa is e biomiale verelig geschikt (4pt), omat het omvalle va ee flesje hier als ee succes i ee reeks va oafhakelijke experimete ka wore gezie. De bijbehoree parameters zij = e p = 3/ (2pt). Het maakt i e praktijk weiig uit welk va e twee moelle we kieze, omat e biomiaalverelig met parameters e p voor grote sterk lijkt op ee oissoverelig met parameter λ = p = 3 (5pt). (b) (10 pute) Geef ee zo goe mogelijke beaerig va e kas at er i ee maa va 20 werkage 55 flesse of mier seuvele oor gebruik te make va e cetrale limiet stellig. Atwoor: Laat X i het aatal gevalle flesse op werkag i zij. We moge aaeme at het aatal flesse at seuvelt op verschillee age oafhakelijk e gelijk vereel is (2pt) volges ee gemeeschappelijk verelig X, ie biomiaal vereel is met parameters = e p = 3/ Y = 20 X i is a het totaal aatal geseuvele flesse. Vauit e CLS wete we at (2pt) 20 X i 20 EX 20VarX ogeveer staaar ormaal vereel is. Met e waare (2pt) EX = p = 3 e VarX = p(1 p) = = , beaere we vervolges e gevraage kas (4pt) (Y 55) = Y 20 3 Φ ( /500 ) Φ( )

3 3 2. (Cetrale limietstellig revisite) Stel U 1,..., U zij uiform op [0, 1] e U +1,..., U 2 zij uiform op [0, 2]. Alle raom variabele zij oafhakelijk. Hoe moet ik a e b kieze zoaig at U U 2 a b Z, waarbij covergetie i verelig weergeeft e Z ee staaar ormale verelig? Waarom mag je e cetrale limiet stellig toepasse? Atwoor: Merk op at (3pt) U U 2 = (U i + U +i ), e efiieer V i = U i + U +i for i = 1,...,. Omat U 1,..., U 2 oafhakelijk zij, zij alle V i oafhakelijk (3pt). Boveie zij V 1,..., V ietiek vereel (3pt), e EV 1 = EU 1 + EU +1 = = 3 2, Var V 1 = Var U 1 + Var U +1 = = (4 pt) Omat e V i s ee eiige variatie hebbe (2pt), moge we e CLS toepasse op V i. Hieruit volgt at V i EV 1 Var V1 = V i Z. We moete us a = 3/2 e b = 5/12 (5 pt) moete kieze om e juiste covergetie te krijge. 3. (Voetbalplaatjes) (a) (10 pute) Wat is het verwachte aatal plaatjes at je krijgt voorat je alle plaatjes compleet hebt? Wat is e variatie hierva? Atwoor: Laat Y i het aatal plaatjes zij at je krijgt tusse het vie va het (i 1) e plaatje at je og iet ha e het i e. Het is uielijk at Y 1 = 1, omat het eerste plaatje at je krijgt, altij ee ieuwe is. Vervolges is e kas at je volgee gekrege plaatje ee ieuwe is ( 1)/, e het aatal trekkige tot het vie va het tweee ieuwe plaatje is us geometrisch vereel met succeskas ( 1)/. Dit iterere vie we at Y i geometrisch vereel is met parameter ( i + 1)/ (3pt) e het totaal aatal beoige trekkige om e set compleet te krijge is (2pt) X = Y i. De verwachtigswaare is (2pt) [ ] EX = E Y i = De variatie is (2pt) ( ) Var X = Var Y i = Var Y i = EY i = i + 1 = 1 k. ( ) 2 i 1 i + 1 = waarbij we hebbe gebruikt at e Y i s oafhakelijk zij (1pt). k k 2 = [ ( ) ] 2, k k

4 4 (b) (10 pute) Laat zie at als heel groot is, at a het aatal voetbalplaatjes X at je krijgt voorat je alle plaatjes compleet hebt, voloet aa Hier is X log 1. covergetie i verelig. [Hit: gebruik e Chebychev ogelijkhei.] Atwoor: De covergetie i verelig gevraag i e opracht is equivalet met e limiet ( ) X log 1 > x 0, als voor alle x > 0 (2pt). Merk op at EX log = (1/k) log 1, als vauit e eigeschappe va e harmoische reeks (2pt). Met behulp va e riehoeksogelijkhei vie we eerst ( ) ( X log 1 > x X log EX ) log + EX log 1 > x ( X = log EX ) log > x EX log 1 (2pt). Noem α = EX /( log ) 1. Da vie we met Chebychev s ogelijkhei (2pt) ( X log EX ) log > x α VarX 2 log 2 1 (x α ) 2, waar we voloee groot eme at α < x. Nu vie we at (2pt) VarX 2 log 2 = 2 1/k2 1/k 2 log 2 = 1/k2 log 2 1/k log 2 π2 /6 log 2. [Geef ook pute voor ee aere correcte bovegres ie aar 0 covergeert voor.] Samevatte volgt hieruit at ( ) X log 1 > x voor e alle x > 0. π2 /6 log 2 [Als e stuet heeft geoteer, ( X log EX ) log > x 1 (x α ) 2 0, VarX x 2 2 log 2, om vervolges aa beie kate e limiet te eme, geef a 5 pute i totaal.]

5 5 4. (a) (10 pute) Bewijs at voor ee raom variabele X met verwachtigswaare µ = E[X] e E[X 4 ] < gelt at ( X µ > r) E[(X µ)4 ] r 4. Atwoor: Omat r > 0 e e fucties f(x) = x e f(x) = x 4 mootoo zij voor x 0, gelt (2pt) ( X µ > r) = ( X µ 4 > r 4 ). (1) Door vervolges Markov s ogelijkhei (Y > a) E[Y ]/a (2pt) toe te passe op Y = X µ 4 e a = r 4 (6pt), volgt het resultaat. Achtereevolges leest it; ( X µ > r) = ( X µ 4 > r 4 ) = (Y > a) E[Y ] a = E[ X µ 4 ] r 4. (2) (b) (20 pute) Stel X heeft ee staaar ormale verelig. Laat zie at e Chebychev ogelijkhei geeft at ( X > r) 1/r 2. Voor welke waare va r is e afschattig uit (c) beter a e Chebychev ogelijkhei? Atwoor: Omat µ = 0 e σ 2 = 1, geeft Chebyshev s ogelijkhei omielijk at (2pt) De ogelijkhei i (a) is beter waeer (4pt) ( X > r) = ( X µ > r) σ2 r 2 = 1 r 2. (3) E[ X µ 4 ] r 4 = E[ X 4 ] r 4 1 r 2, (4) m.a.w. waeer r E[ X 4 ]. Omat X e staaar ormaal verelig heeft, kue we het viere momet expliciet uitrekee of opzoeke (2pt), E[ X 4 ] = 1 2π x 4 e x2 /2 x = 3. (5) We cocluere at e ogelijkhei i (a) us beter is voor r 3 (2pt). [Ee berekeig ka b.v. met partiele itegratie, fg = fg f g. Kies f(x) = x 3, g (x) = xe x2 /2, zoat f (x) = 3x 2, g(x) = (1/2)e x2 /2. Dit geeft E[ X 4 ] = 2 x 4 e x2 /2 x = 1 x 3 e x2 /2 + 3 x 2 e x2 /2 x = 3, (6) 2π 2π 0 2π 0 waarbij we izie at e eerste term ul is, e we i e tweee term het tweee momet va e staaar ormaalverelig herkee (E[X 2 ] = E[X 2 ] E[X] 2 = 1 0 = 1).] 0

Opgeloste Oefeningen Hoofdstuk 5: Wet van de grote aantallen en Centrale limietstelling

Opgeloste Oefeningen Hoofdstuk 5: Wet van de grote aantallen en Centrale limietstelling Opgeloste Oefeige Hoofdstuk 5: Wet va de grote aatalle e Cetrale limietstellig 5.. Ee toevalsveraderlijke X is oisso-verdeeld met parameter λ = 00. Bepaal ee odergres voor de waarschijlijkheid (75 X 5).

Nadere informatie

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6 HOOFDSTUK III SCHATTEN VAN PARAMETERS Schatters e Betrouwbaarheidsitervalle 3. HET GEMIDDELDE VAN EEN NV Steekproef uit ee ormaal verdeelde populatie De kasveraderlijke X, X, X 3,..., X zij N(µ, σ) verdeeld

Nadere informatie

Convergentie, divergentie en limieten van rijen

Convergentie, divergentie en limieten van rijen Covergetie, divergetie e limiete va rije TI-spire e rije 7N5p GGHM 22-23 Eigeschappe rekekudige rij b = begiwaarde v = verschil tusse twee opeevolgede terme recursieve formule: u = u + v met u = b directe

Nadere informatie

Hoofdstuk 4: Aanvullende Begrippen (Extra Oefeningen)

Hoofdstuk 4: Aanvullende Begrippen (Extra Oefeningen) Hoofdstuk 4: Aavullede Begrippe (Extra Oefeige) 9. Veroderstel dat X e Y ormaal verdeeld zij met resp. gemiddelde waarde µ X e µ Y e met dezelfde variatie 2. Wat is da de distributie va X Y? Bepaal de

Nadere informatie

Betrouwbaarheid. Betrouwbaarheidsinterval

Betrouwbaarheid. Betrouwbaarheidsinterval Betrouwbaarheid Ee simulatie beoogt éé of i.h.a. twee of meerdere sceario s te evaluere e te vergelijke, bij Mote Carlo (MC) simulatie voor ee groot aatal istelwaarde, voor éé of meerdere parameters. Hierbij

Nadere informatie

Hoofdstuk 9 : Steekproefstatistieken. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 9 : Steekproefstatistieken. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 9 : Steekproefstatistieke Marix Va Daele MarixVaDaele@UGetbe Vakgroep Toegepaste Wiskude e Iformatica Uiversiteit Get Steekproefstatistieke p 1/20 Schattige Waeer uit ee steekproef de waarde

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame HAVO 2013 tijdvak 2 woesdag 19 jui 13.30-16.30 uur wiskude A Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 21 vrage. Voor dit exame zij maximaal 80 pute te behale. Voor elk vraagummer

Nadere informatie

Praktische opdracht: Complexe getallen en de Julia-verzameling

Praktische opdracht: Complexe getallen en de Julia-verzameling Praktische opdracht: Complexe getalle e de Julia-verzamelig Auteur: Wiebe K. Goodijk, Zerike College Hare Beodigde Voorkeis: 1 = i Het complexe vlak. Notatie: z = a + bi of z = r(cosϕ + i si ϕ) Regel va

Nadere informatie

Chakra analyse. Ontspan je Body, Mind & Soul Online programma. Sabine van Dijk

Chakra analyse. Ontspan je Body, Mind & Soul Online programma. Sabine van Dijk Chakra aalyse Otspa je Boy, Mi & Soul Olie programma Sabie va Dijk Chakra aalyse Chakra is ee Saskriet woor at `wiel` of schijf beteket. Ee Chakra is ee eergiecetrum at leveskracht opeemt, otvagt e weer

Nadere informatie

Ongelijkheden. IMO trainingsweekend 2013

Ongelijkheden. IMO trainingsweekend 2013 Ogelijkhede IMO traiigsweeked 0 Deze tekst probeert de basis aa te brege voor het bewijze va ogelijkhede op de IMO. Het is de bedoelig om te bewijze dat ee bepaalde grootheid (ee uitdrukkig met ee aatal

Nadere informatie

Samenvatting. Fouriertheorie en distributies. Fourier en Schwartz. De warmtevergelijking. De exacte benadering

Samenvatting. Fouriertheorie en distributies. Fourier en Schwartz. De warmtevergelijking. De exacte benadering Samevattig Fouriertheorie e distributies De exacte beaderig Ileidig 2 De warmtevergelijkig Ja Wiegerick Korteweg - de Vries Istituut voor Wiskude Uiversiteit va Amsterdam 27 september 22 3 Oplossig door

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1. Ee ieuwe aam voor ee gekede grootheid...2

Nadere informatie

Hoofdstuk 1 Rijen en webgrafieken

Hoofdstuk 1 Rijen en webgrafieken Hoofdstuk Rije e wegrafieke Voorkeis: Rije ladzijde V-a u 7 + v +, c De vergelijkig 7 + +, oplosse geeft, e dus 8. Ze hee eide 8 rode gelope. V- u, u met u V-a u + ( ) + + s u + u + u +... + u + + 8 +

Nadere informatie

C. von Schwartzenberg 1/8. 1b Bij situatie II is er sprake van een evenredig verband. bij p = 12,50 hoort q = 6500. W is evenredig met S,

C. von Schwartzenberg 1/8. 1b Bij situatie II is er sprake van een evenredig verband. bij p = 12,50 hoort q = 6500. W is evenredig met S, G&R havo A eel C vo Schwarzeberg 1/8 1a Bij I wor y vier keer zo klei (us he viere eel) ; bij II wor y (precies als ) ook vier keer zo groo 1b Bij siuaie II is er sprake va ee evereig verba a (rech)evereig

Nadere informatie

12 Kansrekening. 12.1 Kansruimten WIS12 1

12 Kansrekening. 12.1 Kansruimten WIS12 1 WIS12 1 12 Kasrekeig 12.1 Kasruimte Kasmaat Ee experimet is ee hadelig of serie hadelige met ee of meer mogelijke resultate uitkomste geoemd). De uitkomsteruimte, die we steeds zulle aageve met Ω, is de

Nadere informatie

Handout limietstellingen Kansrekening 2WS20

Handout limietstellingen Kansrekening 2WS20 1 Hanout limietstellingen Kansrekening WS0 Remco van er Hofsta 6 januari 015 Samenvatting In eze han out bespreken we een aantal limietstellingen en hun bewijzen. In meer etail, behanelen we e volgene

Nadere informatie

Functies, Rijen, Continuïteit en Limieten

Functies, Rijen, Continuïteit en Limieten Fucties, Rije, Cotiuïteit e Limiete Fucties, Rije, 2-0 Cotiuïteit e Limiete Fucties, Rije, Cotiuïteit e Limiete Ihoud 1. Fucties Defiitie e kemerke / bewerkige op fucties Reële fucties va éé reële veraderlijke

Nadere informatie

Periodiciteit bij breuken

Periodiciteit bij breuken Periodiciteit bij breuke Keuzeodracht voor wiskude Ee verdieede odracht over eriodieke decimale getalle, riemgetalle Voorkeis: omrekee va ee breuk i ee decimale vorm Ileidig I deze odracht leer je dat

Nadere informatie

WenS eerste kans Permutatiecode 0

WenS eerste kans Permutatiecode 0 Aatekeige op de vrageblade zij NIET TOEGELATEN. Je mag gebruik make va schrijfgerief e ee eevoudige rekemachie; alle adere materiaal blijft achteri. Leg je studetekaart duidelijk zichtbaar op je bak. Klap

Nadere informatie

Antwoorden bij Inleiding in de Statistiek

Antwoorden bij Inleiding in de Statistiek Atwoorde bij Ileidig i de Statistiek Hoofdstuk. model: bi(, p), p [0, ], schattig: /.2 (i) i bloeddrukveraderig i e persoo i treatmet groep, Y j bloeddrukveraderig j e persoo i cotrolegroep, model:,...,,

Nadere informatie

Stochastische loadflow. Beschrijving model belasting.

Stochastische loadflow. Beschrijving model belasting. Stochastische loadflow. eschrijvig model belastig. 95 pmo 5-- Phase to Phase V Utrechtseweg 3 Postbus 68 AC Arhem T: 6 356 38 F: 6 356 36 36 www.phasetophase.l 95 pmo INHOUD Ileidig...3 eschrijvig belastig...

Nadere informatie

Elektrificering van een (bestaande) fiets, wat globale berekeningen

Elektrificering van een (bestaande) fiets, wat globale berekeningen Elekrificerig va ee (besaae) fies, wa globale berekeige Hieroer heb ik ee algemee uileg geaa va wa berekeige ie va belag zij voor ee elekrificaie va ee fies. Voor e helerhei e uileg zij wa perceages e

Nadere informatie

2. Limiet van een rij : convergentie of divergentie

2. Limiet van een rij : convergentie of divergentie 2. Limiet va ee rij : covergetie of divergetie 2. Eigelijke of eidige limiet 2.. Voorbeeld I ee bos staa 4 bome. De diest bosbeheer zal jaarlijks 2% bome kappe e ieuwe aaplate. Zal het bos verdwije? Zal

Nadere informatie

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl) wiskude A, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 04 Tijdvak izede scores Verwerk de scores va de alfabetisch eerste vijf kadidate per school i het programma Wolf

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2008-II

Eindexamen wiskunde A1-2 vwo 2008-II Groepsfoto s Alle mese kippere met hu oge. Daardoor staa op groepsfoto s vaak ekele persoe met geslote oge. Sveso e Bares hebbe oderzocht hoeveel foto s je moet make va ee groep va persoe om 99% kas te

Nadere informatie

Hoe los ik het op, samen met Thuisvester? Ik heb een klacht

Hoe los ik het op, samen met Thuisvester? Ik heb een klacht Klachte? Hoe los ik het op, same met Thuisvester? Ik heb ee klacht Thuisvester doet haar uiterste best de beste service te verlee aa haar huurders. We vide ee goede relatie met oze klate erg belagrijk.

Nadere informatie

Toelichting bij Opbrengstgegevens VAVO 2011-2013

Toelichting bij Opbrengstgegevens VAVO 2011-2013 Toelichtig bij Opbregstgegeves VAVO 2011-2013 Ihoud Ileidig Aatal deelemers exame Kegetalle toezicht exames CE-cijfer alle vakke CE-cijfer alle vakke - tred SE-cijfer mius CE cijfer alle vakke Percetage

Nadere informatie

Hoofdstuk 1: Inleiding

Hoofdstuk 1: Inleiding Hoofstuk 1: Inleiing 1.1. Richtingsvelen. Zie Stewart, 9.2. 1.2. Oplossingen van enkele ifferentiaalvergelijkingen. Zelf oorlezen. 1.3. Classificatie van ifferentiaalvergelijkingen. Differentiaalvergelijkingen

Nadere informatie

Rijen. 6N5p

Rijen. 6N5p Rije 6N5p 0-03 Rije Ileidig I de wiskude werke we vaak met formules e/of fucties die elke mogelijke waarde aa kue eme. Als bijvoorbeeld f( x) = 5x + 5x 3, da ku je voor x (bija) elke waarde ivulle e ka

Nadere informatie

PARADOXEN 9 Dr. Luc Gheysens

PARADOXEN 9 Dr. Luc Gheysens PARADOXEN 9 Dr Luc Gheyses LIMIETEN, AFGELEIDEN EN INTEGRALEN: ENKELE MERKWAARDIGE VERHALEN Ileidig: verhale over ifiitesimale Ee ifiitesimaal (of ifiitesimaal kleie waarde) is ee object dat mi of meer

Nadere informatie

Statistiek Voor studenten Bouwkunde College 8

Statistiek Voor studenten Bouwkunde College 8 Statistiek Voor studete Bouwkude College herhalig e ekele voorbeelde Programma voor vadaag Uitgebreide terugblik (per deel Is 0% va de Nederladers likshadig? Hoe checke we of ee theorie klopt? Aalyse va

Nadere informatie

Q - Classic innovaties

Q - Classic innovaties Veiligheidskaste voor de opslag va gevaarlijke stoffe Veiligheidskaste met draaideure Q - Classic iovaties iovatie door Asecos Uw voordele: 6 3 4 1 Mobiliteit / flexibiliteit Geïtegeerde sokkel met vrije

Nadere informatie

A x A = C. von Schwartzenberg 1/14. Op [ 4, 1] is = 0,4. Op [ 2, 4] is = 4 8 = 12. De gemiddelde snelheid waarmee toeneemt op [4, 6] is y

A x A = C. von Schwartzenberg 1/14. Op [ 4, 1] is = 0,4. Op [ 2, 4] is = 4 8 = 12. De gemiddelde snelheid waarmee toeneemt op [4, 6] is y G&R vwo A eel Differetiëre C vo Schwartzeberg /4 a K 70 40 0 ( ) K 0,5 ( /kg) K,5 is e richtigscoëfficiët va e (groee) lij AB 0 b De gemiele selhee eme toe (e lij AB gaat stees steiler lope i e richtig

Nadere informatie

Rijen met de TI-nspire vii

Rijen met de TI-nspire vii Rije met de TI-spire vii De tore va Pisa Me laat ee bal valle vaaf de tore va Pisa(63m hoog) Na elke keer stuitere haalt de bal og ee vijfde va de voorgaade hoogte. Gevraagd zij: a) De hoogte a de e keer

Nadere informatie

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl Kastheorie 2de bachelor wiskude Vrije Uiversiteit Brussel U. Eimahl Academiejaar 2011/2012 Ihoudsopgave 1 Kasruimte 1 1.1 Toevallige experimete................................. 1 1.2 De axioma s va Kolmogorov.............................

Nadere informatie

HANDLEIDING CONDITIONELE ORDERS

HANDLEIDING CONDITIONELE ORDERS hadleidig coditioele orders HANDLEIDING CONDITIONELE ORDERS Ee coditioele order kut u vergelijke met ee istructie die u geeft aa uw wekkerradio: als het 7.30 uur is, wil ik dat de radio aagaat e ik gewekt

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodelle e ormaal verdeelde steekproefgroothede 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Inleiding Experimentele Fysica (3NA10 of 3AA10) Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen Inleiding Experimentele Fysica (3NA10 of 3AA10) Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) TECHISCHE UIVERSITEIT EIDHOVE Tetame Ileidig Experimetele Fysica (3A10 of 3AA10) Tetame OGO Fysisch Experimetere voor mior AP (3M10) d.d. 0 jauari 010 va 9:00 1:00 uur Vul de presetiekaart i blokletters

Nadere informatie

χ 2 -toets voor homogeniteit χ 2 -toets voor goodness-of-fit ten slotte

χ 2 -toets voor homogeniteit χ 2 -toets voor goodness-of-fit ten slotte toetsede statistiek week 1: kase e radom variabele week 2: de steekproeveverdelig week 3: schatte e toetse: de z-toets week 4: het toetse va gemiddelde: de t-toets week 5: het toetse va variaties: de F-toets

Nadere informatie

Eindexamen wiskunde A vwo 2010 - I

Eindexamen wiskunde A vwo 2010 - I Eidexame wiskude A vwo - I Beoordeligsmodel Maratholoopsters maximumscore 3 uur, 43 miute e 3 secode is 98 secode De selheid is 495 98 (m/s) Het atwoord: 4,3 (m/s) maximumscore 3 Uit x = 5 volgt v 4,4

Nadere informatie

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek.

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek. 006 Wolters-Noordhoff bv Groige/Houte De steekproefomvag Ee toelichtig op het belag e het berekee va de steekproefomvag i marktoderzoek. Ihoud 1 Ileidig Eerst ekele defiities 3 Steekproefomvag e respose

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

INFORMATIE OVER NAZORG VAN IMPLANTATEN

INFORMATIE OVER NAZORG VAN IMPLANTATEN INFORMATIE OVER NAZORG VAN IMPLANTATEN WAAR BESTAAT NAZORG UIT? U Strauma-implatate heeft ee of meer otbreke zij ee more ta of optie kieze e voor heeft het gekoze vervage voor va ee ta behalig e kieze

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 009 tijdvak wiskude B, Het correctievoorschrift bestaat uit: Regels voor de beoordelig Algemee regels Vakspecifieke regels Beoordeligsmodel 5 Izede scores Regels voor de beoordelig

Nadere informatie

www. POspiegel.nl Online Instrument voor CB Het Talent schooljaar februari DigiDoc

www. POspiegel.nl Online Instrument voor CB Het Talent schooljaar februari DigiDoc POspiegel.l Olie Istrumet voor CB Het Talet schooljaar 2009-2010 februari 2010 2010 DigiDoc www. Algemee Algemee. pagia 1 Eigeschappe Equête Nummer ENQ60536 Naam schooljaar 2009-2010 Istellig CB Het Talet

Nadere informatie

Bindend advies. Stichting Klachten en Geschillen Zorgverzekeringen. c. d. Partijen. : A te B, in deze vertegenwoordigd door C vs.

Bindend advies. Stichting Klachten en Geschillen Zorgverzekeringen. c. d. Partijen. : A te B, in deze vertegenwoordigd door C vs. c. d. Stichtig Zorgverzekerige f I- I J /' Bided advies Partije, Zaak Zaakummer Zittigsdatum : A te B, i deze vertegewoordigd door C vs. D te E : Hulpmiddelezorg, MOTOmed : 2006,02175 : 2 mei 2007 Geschillecommissie

Nadere informatie

Proeftentamen IBK1LOG01

Proeftentamen IBK1LOG01 Proeftetame IBK1LOG01 Opgave 1 ( 20 pute) Beatwoord de oderstaade vrage met waar of iet waar: 1.De bereikbaarheid va iformatie over ee product bij ee iteretwikel is ee voorbeeld va pre-trasactie elemet

Nadere informatie

RAADS IN FORMATIE BRIE F

RAADS IN FORMATIE BRIE F RAADS IN FORMATIE BRIE F gemeete WOERDEN Va: college va burgemeester e wethouders Datum: 1 december 2011 Portefeuillehouder(s): Titia Cosse Portefeuille(s): portefeuille Moumete e Archeologie Cotactpersoo:

Nadere informatie

Overlijden: uw rechten in Duitsland en Nederland

Overlijden: uw rechten in Duitsland en Nederland Regelige e voorzieige CODE 1.1.3.46 Overlijde: uw rechte i Duitslad e Nederlad brochure broe Bureau voor Duitse Zake, www.svb.l/bdz Ihoudsopgave Overlijde Uw rechte i Duitslad e Nederlad Deskudig e betrouwbaar

Nadere informatie

Werktekst 1: Een bos beheren

Werktekst 1: Een bos beheren Werktekst : Ee bos behere Berekeige met rije op het basisscherm Op ee perceel staa 3000 kerstbome. Ee boomkweker moet beslisse hoeveel bome er jaarlijks gekapt kue worde e hoeveel ieuwe aaplat er odig

Nadere informatie

Mexicaanse griep: A/H1N1 griep

Mexicaanse griep: A/H1N1 griep Mexicaase griep: A/H1N1 griep Wat is de Mexicaase griep? De zogeaamde Mexicaase of varkesgriep is ee ieuwe variat va het griepvirus, met ame A/H1N1. Weiig mese hebbe immuiteit voor dit virus. Hierdoor

Nadere informatie

Help! Statistiek! Overzicht. Voorbeeld: bloeddruk. Interpretatie van het 95%-BI. Interpretatie van 95%-BI (2) Meest voorkomende vorm van het BI

Help! Statistiek! Overzicht. Voorbeeld: bloeddruk. Interpretatie van het 95%-BI. Interpretatie van 95%-BI (2) Meest voorkomende vorm van het BI Help! Statistiek! Overzicht Doel: Iformere over statistiek i kliisch oderzoek. Tijd: Derde woesdag i de maad, -3 uur 8 maart: Betrouwbaarheidsitervalle 5 april: Herhaald mete met twee mate 0 mei: Statistiek

Nadere informatie

Evaluatie pilot ipad onder docenten

Evaluatie pilot ipad onder docenten Evaluatie pilot ipad oder docete Oderwerp equête Geëquêteerde Istellig Evaluatie pilot ipad Docete OSG Sigellad locatie Drachtster Lyceum Datum aamake equête 19-06-2012 Datum uitzette equête 21-06-2012

Nadere informatie

Alles wat u moet weten over asbest in en om uw woning

Alles wat u moet weten over asbest in en om uw woning Alles wat u moet wete over asbest i e om uw woig is meestal iet gevaarlijk. Maar waeer da wel? Dat kut u leze i deze folder. We legge uit wat asbest precies is, welke soorte er zij, welke gezodheidsrisico

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

Release Notes: IPROX-CMS 4.2

Release Notes: IPROX-CMS 4.2 Release Notes: IPROX-CMS 4.2 (april 2011) Ileidig IPROX-CMS 4.2 bet circa 50 wijzigige e fixes waar ee aatal omgrijk zij e ee grote impact hebbe op de implemetatie. Door IfoProjects zij moduletests, systeemtests,

Nadere informatie

Effectief document- en risicobeheer

Effectief document- en risicobeheer Tekee voor efficiecy Effectief documet- e risicobeheer Met KOVO s techisch iformatiecetrum (TIC) altijd toegag tot actuele tekeige e documete é voldoe aa de eise va wet- e regelgevig. Succesvol documetbeheer

Nadere informatie

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken.

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken. HET BELANG VAN KP HART Vrage Tijdes de voordracht op augustus 007 hebbe we de volgede vrage besproke. Hoe ku je izie dat ee vierkat, bij gegeve omtrek, de rechthoek met de maximale oppervlakte is? Hoe

Nadere informatie

Buren en overlast. waar je thuis bent...

Buren en overlast. waar je thuis bent... Bure e overlast waar je thuis bet... Goed wooklimaat HEEMwoe vidt het belagrijk dat bewoers prettig woe i ee fije buurt. De meeste buurtbewoers kue het goed met elkaar vide. Soms gaat het sameleve i ee

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur Eame VW 05 tijdvak doderdag 8 jui.0-6.0 uur wiskude B (pilot) Dit eame bestaat uit 7 vrage. Voor dit eame zij maimaal 79 pute te behale. Voor elk vraagummer staat hoeveel pute met ee goed atwoord behaald

Nadere informatie

Waar moet je aan denken? Verhuizen. Stap 1: Hoe zeg ik de huur op?

Waar moet je aan denken? Verhuizen. Stap 1: Hoe zeg ik de huur op? Verhuize Waar moet je aa deke? Verhuize Bij verhuize komt heel wat kijke. Naast het ipakke va spulle e doorgeve va adreswijzigige, is het ook belagrijk dat u same met Thuisvester ee aatal zake regelt.

Nadere informatie

figuur 2.50 Microscoop

figuur 2.50 Microscoop 07-01-2005 10:20 Pagia 1 Microscoop Ileidig Ee microscoop is bedoeld om kleie voorwerpe beter te kue zie, zie figuur 2.50. De bolle les dicht bij het oog (het oculair) heeft ee grote diameter. De bolle

Nadere informatie

7. Betrouwbaarheidsintervallen voor proporties

7. Betrouwbaarheidsintervallen voor proporties VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 7. Betrouwbaarheidsitervalle voor proporties Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskude B (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 0 Tijdvak Izede scores Uiterlijk op jui de scores va de alfabetisch eerste vijf kadidate per school op de daartoe

Nadere informatie

Combinatoriek. Nota s in samenwerking met Anja Struyf en Sabine Verboven (Universiteit Antwerpen)

Combinatoriek. Nota s in samenwerking met Anja Struyf en Sabine Verboven (Universiteit Antwerpen) 1 Combiatoriek Nota s i samewerkig met Aja Struyf e Sabie Verbove (Uiversiteit Atwerpe) I het dagelijkse leve worde we vaak gecofroteerd met vraagstukke waarva de oplossig het telle va het aatal elemete

Nadere informatie

Overzicht examenstof statistiek

Overzicht examenstof statistiek a De volwassen mannen in e wijk van e shoenenzaak. Steekproeflengte is. Aselet? Dat hangt ervan af! De mannen ie zijn winkel ezoeken hoeven geen afspiegeling te zijn van e mannen ie in zijn wijk wonen.

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 4 les 1

Wiskunde D Online uitwerking 4 VWO blok 4 les 1 Wiskune D Online uitwerking 4 VWO blok 4 les aragraaf. Opgave a et e stelling van thagoras volgt at (, ) ( ) + ( ) ( 3 ) + ( ) + 3 3 b De roosterpunten met afstan 3 tot liggen op e cirkel met als mielpunt

Nadere informatie

6 Het inwendig product

6 Het inwendig product 6 Het iwedig prdct Te algebra e meetkde gescheide vakke ware, was h vrtgag lagzaam e h t beperkt Maar sids beide vakke zij vereigd, hebbe ze elkaar derlig versterkt e zij ze gezamelijk pgetrkke aar perfectie

Nadere informatie

VAIO-Link Online Service Gids

VAIO-Link Online Service Gids VAIO-Lik Olie Service Gids "Wij behadele iedere idividuele klacht met zorg, aadacht e respect e we zorge ervoor dat iedere klat ee goed gevoel heeft over de ervarig die hij had of zal hebbe met het VAIO-Lik

Nadere informatie

Ja, ik wil. Trouwen in Vlaardingen

Ja, ik wil. Trouwen in Vlaardingen Ja, ik wil Trouwe i Vlaardige Ihoud Pagia 4 Locatie kieze Pagia 5 Tijdstip kieze Pagia 6 De plechtigheid Pagia 8 I odertrouw Pagia 9 Tot slot Pagia 11 Bijlage Gefeliciteerd met uw voorgeome huwelijk of

Nadere informatie

Wijzigingsformulier Ziektekostenverzekering

Wijzigingsformulier Ziektekostenverzekering De Amersfoortse Verzekerige Stadsrig 15, postbus 42 3800 AA Amersfoort Tel. (033) 464 29 11 Fax (033) 464 29 30 Wijzigigsformulier Ziektekosteverzekerig Gegevesverwerkig Bij deze wijzigig worde persoosgegeves

Nadere informatie

Opgave 5 Onderzoek aan β -straling

Opgave 5 Onderzoek aan β -straling Eidexame vwo atuurkude 214-I - havovwo.l Opgave 5 Oderzoek aa β -stralig Zoals beked bestaat β -stralig uit elektroe. Om ee oderzoek aa β -stralig te doe heeft Harald ee radioactieve bro met P-32 late

Nadere informatie

Enkele geselecteerde onderwerpen uit de maattheoretische kansrekening

Enkele geselecteerde onderwerpen uit de maattheoretische kansrekening Ekele geselecteerde oderwerpe uit de maattheoretische kasrekeig Vicet Hsu 24 juli 2014 Bachelorproject Wiskude Begeleidig: prof. dr. Roald Meester Korteweg-De Vries Istituut voor Wiskude Faculteit der

Nadere informatie

Statistiek. (relatieve) frequenties: histogram cumulatieve (relatieve) frequenties: cumulatief frequentiepolygoon of ogief

Statistiek. (relatieve) frequenties: histogram cumulatieve (relatieve) frequenties: cumulatief frequentiepolygoon of ogief Samevattig statistiek Academiejaar 006-007 Statistiek 4 examevrage: - tabel aavulle met spreidigs- e cetrummate - poisso- e biomiale verdelig Deel Beschrijvede statistiek Soorte variabele Kwalitatief:

Nadere informatie

Examen PC 2 onderdeel 4A

Examen PC 2 onderdeel 4A Exame PC 2 oderdeel 4A Istructieblad Betreft: exame: PC 2 oderdeel 4A leergag 3 oderdeel: Fiaciële Rekekude datum: 30 mei 2012 tijdsduur: 90 miute (09:30-11:00 uur) Deze aawijzige goed leze voor u met

Nadere informatie

7.1 Recursieve formules [1]

7.1 Recursieve formules [1] 7.1 Recursieve formules [1] Voorbeeld: 8, 12, 16, 20, 24, is ee getallerij. De getalle i de rij zij de terme. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is de vijfde term (u

Nadere informatie

1. Recursievergelijkingen van de 1 e orde

1. Recursievergelijkingen van de 1 e orde Recursievergelijkige va de e orde Rekekudige rije Het voorschrift va ee rekekudige rij ka gegeve wordt met de volgede recursievergelijkig: u = u + b Idie we deze vergelijkig i de vorm u = u u = b otere

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Spatial 360. Licht als accent. Zachte en uniforme lichtspreiding

Spatial 360. Licht als accent. Zachte en uniforme lichtspreiding Spatial 360 Licht als accet Zachte e uiforme lichtspreidig 10% va de lichtopbregst va de armature wordt gebruikt om wade e plafod aa te lichte Beperkte lumiatieverschille tusse armatuur, Spatial 360 TM

Nadere informatie

www.hbospiegel.nl Hogeschool Utrecht Enquete studenten op ROC Midden Nederland. Faculteit Educatie Online Evaluatie Instrument IO: Gitta.

www.hbospiegel.nl Hogeschool Utrecht Enquete studenten op ROC Midden Nederland. Faculteit Educatie Online Evaluatie Instrument IO: Gitta. Equete studete op ROC Midde Nederlad. Pagia 1 va 1 www.hbospiegel.l Olie Evaluatie Istrumet Hogeschool Utrecht Faculteit Educatie Equete studete op ROC Midde Nederlad. IO: Gitta.verhoeve juli 214 Alle

Nadere informatie

De maximale waarderingscijfers van de opgaven verhouden zich als 30:30:20:20 deel cijfer=score./10

De maximale waarderingscijfers van de opgaven verhouden zich als 30:30:20:20 deel cijfer=score./10 Universiteit Twente, Werktuigbouwkune Vak : Programmeren en Moelleren Datum : 0 oktober 20 Tij : 08.45-0.5 uur TOETS Deze eeltoets bestaat uit 4 opgaven. Geef niet alleen e antwooren maar toon ook e geane

Nadere informatie

Tabellenrapportage CQ-index Kraamzorg

Tabellenrapportage CQ-index Kraamzorg Tabellerapportage CQ-idex Kraamzorg Jauari 2011 Ihoud Pagia Algemee uitleg 1 Deelame e bevalmaad 1 De itake 2 3 Zorg tijdes de bevallig 3 4 Zorg tijdes de kraamperiode 4 10 Samewerkig e afstemmig 11 Algemee

Nadere informatie

MEDICAL SYSTEMS INNOVATE WITH CARE. inter VISUAL SYSTEMS

MEDICAL SYSTEMS INNOVATE WITH CARE. inter VISUAL SYSTEMS MEDICAL SYSTEMS INNOVATE WITH CARE inter VISUAL SYSTEMS MEDISCHE VISUALISATIE OPLOSSINGEN, ONZE ZORG! I multidiscipliaire teams tot de beste behadelplae kome; zoveel mogelijk miimaal ivasief operere voor

Nadere informatie

Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa Inleiding. Studiemateriaal

Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa. Statistiek 2 voor TeMa Inleiding. Studiemateriaal Algemee iformatie http://www.wi.tue.l/wsk/oderwijs/s95 College e istructies College: woesdag uur - HG6.96 Istructies maadag uur 5-6 HG6.09 Auditorium oodgebouw, uit Opdrachte: opgave uit boek e dictaat

Nadere informatie

Som 23 kan met 6665 en som 24 met Dus totaal gunstige uitkomsten.

Som 23 kan met 6665 en som 24 met Dus totaal gunstige uitkomsten. C vo Schwartzeberg / Som ka met! (op = maiere) (op! maiere) (op maier)! =, = e Dus totaal + + = 0 gustige uitkomste Dubbel oderstreept beteket: "iet allee" i de geoteerde volgorde a 8 P (som ) = P (som

Nadere informatie

Commissie Pensioenhervorming 2020-2040. Nota over de actuariële neutraliteit. Bijlage III

Commissie Pensioenhervorming 2020-2040. Nota over de actuariële neutraliteit. Bijlage III Commissie Pesioehervormig 00-040 Nota over de actuariële eutraliteit Bijlage III. I het kader va de ivoerig va ee «deeltijds pesioe» wordt de kwestie va de actuariële correctie va de uitkerige i geval

Nadere informatie

Committee / Commission ECON. Meeting of / Réunion du 31/08/2011 BUDGETARY AMENDMENTS / AMENDEMENTS BUDGÉTAIRES. Rapporteur: Olle LUDVIGSSON

Committee / Commission ECON. Meeting of / Réunion du 31/08/2011 BUDGETARY AMENDMENTS / AMENDEMENTS BUDGÉTAIRES. Rapporteur: Olle LUDVIGSSON Committee / Commissio ECON Meetig of / Réuio du 31/08/2011 BUDGETARY AMENDMENTS / AMENDEMENTS BUDGÉTAIRES Rapporteur: Olle LUDVIGSSON NL NL Otwerpamedemet 6802 === ECON/6802 === igedied door Commissie

Nadere informatie

Waarschijnlijkheidsrekening en Statistiek

Waarschijnlijkheidsrekening en Statistiek Vrije Uiversiteit Brussel Faculteit Toegepaste Weteschappe Waarschijlijkheidsrekeig e Statistiek S. Caeepeel e P. de Groe Syllabus bij de cursus Waarschijlijkheidsrekeig e Statistiek Tweede Kadidatuur

Nadere informatie

Kwaliteit van de persoonsgegevens. Resultaten Gemeente Alpen aan den Rijn

Kwaliteit van de persoonsgegevens. Resultaten Gemeente Alpen aan den Rijn Kwaliteit va de persoosgegeves Resultate Gemeete Alpe aa de Rij Klik Ted om Dicks, de titelstijl Hek-Ja va Wieseekker het model te bewerke Ageda Doel va het oderzoek Irichtig va het oderzoek Resultate

Nadere informatie

Onveilige bedrijven betalen méér

Onveilige bedrijven betalen méér SAFETY & ACCIDENT MANAGER, software voor ee prevetiebeleid zoder zorge! Oveilige bedrijve betale méér maager Beheer e opvolgig va risico s MANAGER Aagifte, opvolgig e statistiek va arbeidsogevalle Behere

Nadere informatie

1 Ileidig De vraag is of de spelers i het spel Fatasie 24 (ee variat va observatie roulette), gespeeld i casio YYY te ZZZ, ivloed kue hebbe op de kasb

1 Ileidig De vraag is of de spelers i het spel Fatasie 24 (ee variat va observatie roulette), gespeeld i casio YYY te ZZZ, ivloed kue hebbe op de kasb Behedigheid bij Fatasie 24? R.D. Gill, C.G.M. Oudshoor 4 maart 1997 Samevattig Dit artikel is ee aagepaste versie va ee verslag wat geschreve is.a.v. ee oderzoek voor ee casio. Dit oderzoek gig over de

Nadere informatie

Examen PC 2 onderdeel 4A

Examen PC 2 onderdeel 4A Exame PC 2 oderdeel 4A Istructieblad Betreft: exame: PC 2 oderdeel 4A leergag 1 oderdeel: Fiaciële Rekekude datum: 27 mei 2011 tijdsduur: 90 miute (10.00-11.30 uur) Deze aawijzige goed leze voor u met

Nadere informatie

Bruggen naar ingenieurswetenschappen

Bruggen naar ingenieurswetenschappen Brugge aar igeieursweteschappe Master i de igeieursweteschappe voor bachelors e masters i de idustriële weteschappe Faculteit Igeieursweteschappe Idustrieel igeieur Sta je graag met beide voete i de praktijk

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofstuk 6 - Nieuwe grafieken Hoofstuk 6 - Nieuwe grafieken Voorkennis V-a Van lijn k is het hellingsgetal en het startgetal en e formule is = +. Van lijn l is het hellingsgetal en het startgetal en e

Nadere informatie

Wijzigingsformulier Ziektekostenverzekering

Wijzigingsformulier Ziektekostenverzekering De Amersfoortse Verzekerige Stadsrig 15, postbus 42 3800 AA Amersfoort Tel. (033) 464 29 11 Fax (033) 464 29 30 Gegevesverwerkig Wijzigigsformulier Ziektekosteverzekerig Bij deze wijzigig worde persoosgegeves

Nadere informatie

DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED

DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED Prof. ir. P. Ampe, Prof. dr. ir. A. De Wulf, ig. J. De Corte. 1. Ileidig e probleemstellig. Sedert deceia gebruike schatters zowel i België

Nadere informatie

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten Hoofdstuk 4 Compressore Doelstellige 1. Wete dat i het geval va compressore rekeig moet gehoude worde met thermische effecte 2. Wete dat er ee gres is aa het verhoge va de druk va ee gas 3. Wete welke

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl) Wiskude B, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 0 Tijdvak Izede scores Uiterlijk op jui de scores va de alfabetisch eerste vijf kadidate per school op de daartoe

Nadere informatie

Blok 2 - Vaardigheden

Blok 2 - Vaardigheden Blok - Vaarigheen lazije a Het startgetal is en het hellingsgetal is De formule ie ij e lijn ast is y x De lijn k heeft het zelfe hellingsgetal als e lijn l, us De formule is y x+ 7 e Het hellingsgetal

Nadere informatie

One Office Voice Pack Vaste en mobiele telefonie in één pack

One Office Voice Pack Vaste en mobiele telefonie in één pack Uiek! Exteded Fleet Obeperkt belle aar alle Mobistar-ummers e vaste lije! Oe Office Voice Pack Vaste e mobiele telefoie i éé pack I alle vrijheid commuicere e zakedoe Mobistar biedt geïtegreerde oplossige

Nadere informatie