Samenvatting. Fouriertheorie en distributies. Fourier en Schwartz. De warmtevergelijking. De exacte benadering

Maat: px
Weergave met pagina beginnen:

Download "Samenvatting. Fouriertheorie en distributies. Fourier en Schwartz. De warmtevergelijking. De exacte benadering"

Transcriptie

1 Samevattig Fouriertheorie e distributies De exacte beaderig Ileidig 2 De warmtevergelijkig Ja Wiegerick Korteweg - de Vries Istituut voor Wiskude Uiversiteit va Amsterdam 27 september 22 3 Oplossig door Fourier 4 Kritiek op Fourier 5 Moder Stadput 6 Distributies 27 september 22 / 3 27 september 22 2 / 3 Fourier e Schwartz De warmtevergelijkig T t = C ( 2 T x T x 2 2 ) T x 2 x = (x, x ) Ω R, de plaats t t, de tijd T (x, t), de temperatuur ter plaatste x op tijdstip t C ee materiaalcostate Figuur: Jea Baptiste Joseph Fourier e Lauret Schwartz 27 september 22 3 / 3 27 september 22 4 / 3

2 afleidig -dimesie De totale hoeveelheid warmte te tijde t tusse x e x 2 is x2 x T (x, t) dx d x2 T (x, t) dx = ϕ(x 2, t) ϕ(x, t) dt x ϕ(x, t) is de selheid waarmee de warmte stroomt of warmteflux te x op tijdstip t Veroderstellig over de ϕ T (x + h, t) T (x, t) T (x, t) ϕ(x, t) = lim C = C h h x afleidig-2 d x2 ( T (x, t) T (x, t) dx = C (x 2, t) dt x x ) T (x, t) (x, t) x Gebruik f (b) f (a) = b a f (t) dt x2 d x2 ( ) d T (x, t) x2 2 T (x, t) T (x, t) dx = C dx = C x dt x dx x x x 2 dx Dit zal gelde voor ieder iterval (x, x 2 ), dus T (x, t) t ( 2 ) T (x, t) = C x 2 We eme vaaf u C = 27 september 22 5 / 3 27 september 22 6 / 3 Asatz Fourierreekse Stel het probleem goed: Medium: -dimesioale staaf (= R) Begiwaarde T (x, t ) ee periodieke fuctie Probeer f (x) = a m si mx Gok T (x, t) = a(t) si mx a (t) = m 2 a(t) Oplossig: a(t) = a m e m2 (t t ) f (x) = a si x + b cos x Oplossig: T (x, t) = a e 2t si x + b e 2t cos x f (x) = a si x + b cos x Oplossig: T (x, t) = a e 2t si x + b e 2t cos x Compoete met groot verdwije sel; T wordt sel costat 27 september 22 7 / 3 27 september 22 8 / 3

3 Fourier s Stellig Argumete vóór, Fourier coëfficiëte Stellig Iedere fuctie f met periode ka geschreve worde als f (x) = a si x + b cos x = lim M a si x + b cos x MAW f ka door trigoometrische polyome goed beaderd worde Dat beteket dat de warmtevergelijkig voor iedere periodieke begitemperatuur ka worde opgelost! cos x cos mx dx = cos x si mx dx =, cos x cos x dx =, m si x si mx dx =, m si x si x dx = π, Als je weet: f (x) va de vorm a si x + b cos x da a = π f (x) si x dx, b = π f (x) cos x dx 27 september 22 9 / 3 27 september 22 / 3 Fouriertheorie over C Fourier s Stellig complexe settig e imx = cos mx + i si mx cos mx = eimx + e imx 2 e imx = cos mx i si mx si mx = eimx e imx 2i Stellig (complexe Fourier) Zij f ee periodieke fuctie met periode. Da geldt f (x) = a si x + b cos x = (b ia ) als > 2 c [f ] = b als = (b + ia ) 2 als < = M c [f ]e ix, met = f (x)e ix dx f (x) = lim N c e ix, c = c [f ] = f (x)e ix dx, met Z 27 september 22 / 3 27 september 22 2 / 3

4 Voorbeeld Kritiek va tijdgeote Voorbeeld (Zaagtad) f (x) = x op (, π), f (π) = e periodiek met periode. c [f ] = xe ix dx = (x e ix i = ( ) i, c [f ] = f (x) = ( ) + ( ) i e ix = 2 π e ix ) i dx si x ( ) = Ee iet cotiue zaagtad ka toch ooit limiet va S N zij! 2 Waarom zou je de c kue uitrekee! 3 Als je c al ka uitrekee, waarom zou c e ix covergere? 27 september 22 3 / 3 27 september 22 4 / 3 eerste atwoorde Dirichlet Dat hagt erva af wat je met covergetie bedoelt 2 Helaas, uitrekee ka iet voor alle fucties 3 Als je c al ka uitrekee, is covergetie iet gegaradeerd Figuur: Joha Peter Gustav Lejeue Dirichlet 27 september 22 5 / 3 27 september 22 6 / 3

5 Dirichlet s Stellig Dirichlet Ker Stellig (Dirichlet) f periodiek, begresd e stuksgewijs mootoo, da Lemma e iα = si(n + /2)α. si(α/2) f (x) = lim N S N[f ] = lim N c [f ]e ix S N [f ] = si(n + /2)s f (x s) ds si(s/2) De Dirichlet ker is de fuctie si(n+/2)s si(s/2) Bewijs. Likerlid is meetkudige reeks met rede e iα ; e iα = (e iα ) e iα = e inα ei(2n+)α e iα = ei(n+/2)α e i(n+/2) e iα/2 e iα/2 = si(n + )α/2 si(α/2) 27 september 22 7 / 3 27 september 22 8 / 3 formule voor S N [f ] Lieaire algebra Bewijs va Dirichlet s formule. c [f ]e ix = = = = ( π ) f (t)e it dt e ix ( N f (t) f (t) e i(x t) ) dt si((n + /2)(x t)) dt si((x t)/2) si((n + /2)s) ds si(s/2) f (x s) V N = {f : f (t) = 2N + -dimesioale vectorruimte over C Orthogoale basis voor V N < f, g >= c [f ]e it, c C} B N = {e it : N N} met c [f ]c [g] = f (t)g(t) dt Afstad f tot g : d(f, g) = (< f g, f g >) /2 27 september 22 9 / 3 27 september 22 2 / 3

6 Oeidig veel dimesies L 2 -theorie V = {f : f cotiu, f (t) = -dimesioale vectorruimte over C Orthogoale basis voor V met < f, g >= B = {e it : Z} c [f ]e it, c C} c [f ]c [g] = f (t)g(t) dt Afstad f tot g : d(f, g) = (< f g, f g >) /2 Stellig ( Fourier L 2 ) Zij f ee periodieke fuctie met periode e Da geldt I de zi dat f (t) 2 dt <, i.e f L 2 [, π] f (x) = lim N S N[f ] = lim N c [f ]e ix d(f, S N [f ]) 2 = f (t) S N [f ](t) 2 dt 27 september 22 2 / 3 27 september / 3 Distributies, gegeeraliseerde fucties Differetiëre Voor ee goiometrisch polyoom f f (x) = c e ix vide we: f (j) (x) = (i) j c e ix Nu f oeidig vaak differetieerbaar f (x) = c e ix e: f (j) (x) = (i) j c [f ]e ix = c [f (j) ]e ix Figuur: Lauret Schwartz (Bija) iedere fuctie ka oeidig vaak gedifferetieerd worde Opgevat als gegeeraliseerde fuctie 27 september / 3 Lemma Als f periodiek e oeidig vaak differetieerbaar da c [f ] = c [f (j) ]/(i) j dus j C > Z geldt c [f ] C( + ) j 27 september / 3

7 oeidig vaak differetiëre De zaagtad Ook voor f L 2 [, π] kue we dit formeel doe f (x) = c e ix e f (j) (x) = (i) j c [f ]e ix = c [f (j) ]e ix Op (, π) is de zaagtad x = f (x) = ) + ( = f (x) = = f (j) (x) = ( ( ( ) i e ix = 2 si x ( ) = ) + ( ) + e ix ) + ( ) + (i) j e ix Ozi?? 27 september / 3 27 september / 3 fuctie=operator x R e y R : < y, x >= = x = T x (y) =< y, x > T x e x zij i -correspodetie f L 2 [, π] e g L 2 [, π] : < g, f >= = f = T f : L 2 [, π] C, T f (g) =< g, f > Ee lieaire operator; f f 2 da T f T f2 We teste f tege g Distributies Combieer < f, g >= c [f ]c [g] f oeidig vaak differetieerbaar, da j C > zodat c [f ] < C( + ) j voor f, g periodiek e differetieerbaar f (t)g(t) dt = ic [f ]c [g] = c [f ]ic [g] = f (t)g (t) dt < g, f > def = c [g]c [f ], g oeidig vaak differetieerbaar heeft betekeis als C, k met c [f ] < C k Als formeel f = h < g, f >=< g, h >= < g, h > ofwel T f [g] = T h (g) = T f (g ) We kue iedere fuctie i L 2 [, π] oeidig vaak differetiëre! 27 september / 3 27 september / 3

8 De zaagtad 2 Voor de zaagtad f moete we meeeme dat er iets gebeurt i π + 2k π. Neem g differetieerbaar. < g, f > = < g, f >= g (t)f (t)dt = g (t)t dt g (t)(t ) dt π ( = π ) g(t)t g(t)(t ) + g(t) dt = g(π) + g(t) dt π T f (g) = g(π) + g(t) dt f = + δ π δ π is de (periodieke) Dirac distributie: de operator g g(π) δ π = f = ( ) + e ix 27 september / 3 27 september 22 3 / 3

Fourierreeksen. Calculus II voor S, F, MNW. 14 november 2005

Fourierreeksen. Calculus II voor S, F, MNW. 14 november 2005 Fourierreekse Calculus II voor S, F, MNW. 14 ovember 2005 Deze tekst is gedeeltelijk gebaseerd op het Aalyse BWI I dictaat e op aatekeige va Alistair Vardy. 1 Ileidig Het is vaak belagrijk ee gegeve fuctie

Nadere informatie

2.6 De Fourierintegraal

2.6 De Fourierintegraal 2.6 De Fourieritegraal We vertrekke va de Fourierreeks i complexe vorm: voor g : [ π,π] C kue we schrijve met g(t) α e it, α 1 Z π g(t)e it dt. 2π π We herschrijve deze formules eerst voor ee fuctie f

Nadere informatie

Elementaire speciale functies

Elementaire speciale functies ANALYSE 1A, Ivoerig Elemetaire Speciale Fucties p.1 Elemetaire speciale fucties 1. Differetieerbaarheid zie syll. Calculus Ia, II.1.1 of Browder, Ch. 4). Zij I ee iterval, a ee iwedig put va I e f: I R

Nadere informatie

Oefeningen Analyse II

Oefeningen Analyse II ste Bachelor Igeieursweteschappe ste Bachelor Natuurkude/Wiskude Academiejaar 27-28 9 jui 28 Oefeige Aalyse II. Ee lichaam bove het xy-vlak met willekeurige hoogte wordt lags oder begresd door de cirkel

Nadere informatie

1. Gegeven is het polynoom P (z) = z 4 + 4z 3 + 6z 2 + 4z + 5 met z C.

1. Gegeven is het polynoom P (z) = z 4 + 4z 3 + 6z 2 + 4z + 5 met z C. Radboud Uiversiteit Tetame Calculus A NWI-WP5 ovember 7, 5.45 8.45 Het gebruik va ee rekemachie/gr, telefoo, boek, aatekeige e.d. is iet toegestaa. Geef precieze argumete e atwoorde. Zorg dat uw redeerige

Nadere informatie

Trigonometrische functies

Trigonometrische functies Trigoometrische fucties Ileidig De meest gebruikelijke defiitie va de trigoometrische fucties cos e si berust op meetkudige cocepte (cirkel, hoek, driehoeke etc.) die buite het bestek va de aalyse valle.

Nadere informatie

opgave Opgave Bepaal de convergentiestralen van de volgende machtreeksen: (n + 1)! n! = lim n = lim (n + 1)!/(2n + 2)! n!/(2n)!

opgave Opgave Bepaal de convergentiestralen van de volgende machtreeksen: (n + 1)! n! = lim n = lim (n + 1)!/(2n + 2)! n!/(2n)! opgave 7 7 Bepaal de covergetiestrale va de volgede machtreekse: a!z ; b! (! z ; c 3 z! ; d z! a Zij a!, da lim ( +!! ( +, dus R 0 b Zij a!, da (! lim ( +!/( +!!/(! ( + 0, dus R c Zij a 3, da! lim 3 +

Nadere informatie

n n n bedoelen we uiteraard dat n N : 0 f x divergeert naar + of.

n n n bedoelen we uiteraard dat n N : 0 f x divergeert naar + of. Limiete Defiities a Limiet voor a I het hoofdstuk ratioale fucties i het begi va dit schooljaar zage we reeds dat zulke fucties soms perforatiepute hebbe De fuctiewaarde i zo put bestaat iet, maar de grafiek

Nadere informatie

PARADOXEN 9 Dr. Luc Gheysens

PARADOXEN 9 Dr. Luc Gheysens PARADOXEN 9 Dr Luc Gheyses LIMIETEN, AFGELEIDEN EN INTEGRALEN: ENKELE MERKWAARDIGE VERHALEN Ileidig: verhale over ifiitesimale Ee ifiitesimaal (of ifiitesimaal kleie waarde) is ee object dat mi of meer

Nadere informatie

Rijen. 6N5p

Rijen. 6N5p Rije 6N5p 0-03 Rije Ileidig I de wiskude werke we vaak met formules e/of fucties die elke mogelijke waarde aa kue eme. Als bijvoorbeeld f( x) = 5x + 5x 3, da ku je voor x (bija) elke waarde ivulle e ka

Nadere informatie

De Approximatiestelling van Weierstraß

De Approximatiestelling van Weierstraß De Approximatiestellig va Weierstraß Korteweg-de Vries Istituut voor Wiskude Uiversiteit va Amsterdam Mastercourse 15 ovember 2005 Peter Spreij spreij@sciece.uva.l 1 Itroductie I deze mastercourse behadele

Nadere informatie

Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc)

Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc) . Ileidig: Complexe getalle I de wiskude stelt zich het probleem dat iet bestaat voor de reële getalle of dat de vergelijkig x + 0 gee reële ulpute heeft. Om dit euvel op te losse werd het getal i igevoerd

Nadere informatie

Analyse 2 - SAMENVATTING

Analyse 2 - SAMENVATTING Aalyse 2 - SAMENVATTING willem va ravestei ihoudsopgave 01. Rije, eigeschappe e stellige 02. Deelrije, Cauchy, meetkudige e telescopische rij 03. Coverget of diverget? 04. Altererede rije e het wortelcriterium

Nadere informatie

Equidistributie en ergodiciteit

Equidistributie en ergodiciteit Equidistributie e ergodiciteit Michiel Lieftik, Wouter Rieks, Mike Daas 9 december 207 Ileidig Beschouw ee situatie waari me ee grote verzamelig umerieke data tot zij beschikkig heeft Ee vraag die me zich

Nadere informatie

WPP 5.2: Analyse. Oplossing onderzoeksopdrachten

WPP 5.2: Analyse. Oplossing onderzoeksopdrachten WPP 5.: Aalyse oderzoeksopdrachte Oderzoeksopdracht leerboek bladzijde 0 Limiet va ee rij : defiities Beschouw de rij u :,,, 4,.... Bepaal de algemee term u. Via PC / GRT bepaal je de tabel e teke je

Nadere informatie

Convergentie, divergentie en limieten van rijen

Convergentie, divergentie en limieten van rijen Covergetie, divergetie e limiete va rije TI-spire e rije 7N5p GGHM 22-23 Eigeschappe rekekudige rij b = begiwaarde v = verschil tusse twee opeevolgede terme recursieve formule: u = u + v met u = b directe

Nadere informatie

Praktische opdracht: Complexe getallen en de Julia-verzameling

Praktische opdracht: Complexe getallen en de Julia-verzameling Praktische opdracht: Complexe getalle e de Julia-verzamelig Auteur: Wiebe K. Goodijk, Zerike College Hare Beodigde Voorkeis: 1 = i Het complexe vlak. Notatie: z = a + bi of z = r(cosϕ + i si ϕ) Regel va

Nadere informatie

Formularium Wiskunde

Formularium Wiskunde Formulrium Wiskude Te gebruike bij exme Ileidig tot de Hogere Wiskude Trscedete fucties. Goiometrische fucties t x = tg x = si x cos x cot x = cotg x = cos x si x sec x = cos x cosec x = si x cos( ± b)

Nadere informatie

Hoofdstuk 1 Rijen en webgrafieken

Hoofdstuk 1 Rijen en webgrafieken Hoofdstuk Rije e wegrafieke Voorkeis: Rije ladzijde V-a u 7 + v +, c De vergelijkig 7 + +, oplosse geeft, e dus 8. Ze hee eide 8 rode gelope. V- u, u met u V-a u + ( ) + + s u + u + u +... + u + + 8 +

Nadere informatie

2. Limiet van een rij : convergentie of divergentie

2. Limiet van een rij : convergentie of divergentie 2. Limiet va ee rij : covergetie of divergetie 2. Eigelijke of eidige limiet 2.. Voorbeeld I ee bos staa 4 bome. De diest bosbeheer zal jaarlijks 2% bome kappe e ieuwe aaplate. Zal het bos verdwije? Zal

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

Tentamen Optica. Uitwerkingen - 26 februari = n 1. = n 1

Tentamen Optica. Uitwerkingen - 26 februari = n 1. = n 1 Tetame Optica Uitwerkige - 6 februari 013 Cijfer = (totaal aatal pute+10)/6.4 Opgave 1 a) (3 p) Nee, dit is ee dikke les. Je mag de propagatie i de les iet verwaarloze. Dit is bijv. i te zie voor ee lichtstraal

Nadere informatie

1. Symmetrische Functies

1. Symmetrische Functies Algebra III 1 1. Symmetrische Fucties permutatios sot la metaphysique des équatios Lagrage*, 1771 I dit hoofdstuk bestudere we de ivariate va de werkig va de symmetrische groep S op polyoomrige i variabele.

Nadere informatie

4 Differentierekening en reeksen

4 Differentierekening en reeksen WIS4 4 Differetierekeig e reekse 4. Delt Differeties Differetierekeig bestudeert de differetie-opertor, gedefiieerd door f(x) = f(x + ) f(x) Vergelijk dit met differetilrekeig: de fgeleide-opertor D is

Nadere informatie

Faculteit der Exacte Wetenschappen Vrije Universiteit Wiskunde II (Deel 1) :30-15:30. f(x, y) = x(x 2 + y 2 1)

Faculteit der Exacte Wetenschappen Vrije Universiteit Wiskunde II (Deel 1) :30-15:30. f(x, y) = x(x 2 + y 2 1) Faculteit der Exacte Weteschappe Deeltetame Vrije Uiversiteit Wiskude II (Deel 6-- 3:3-5:3. Gegeve is de volgede fuctie: f(x, y x(x + y a. Bepaal de statioaire pute va f e geef va elk statioair put aa

Nadere informatie

Julian gooit 20 keer met een dobbelsteen. Bereken de kans dat hij precies 5 keer een zes gooit.

Julian gooit 20 keer met een dobbelsteen. Bereken de kans dat hij precies 5 keer een zes gooit. - Test Hfst D kasrekeig - Kase ofwel exact ofwel afgerod op decimale geve. ( x p) Tim gooit drie keer met ee gewoe dobbelstee. Na zij derde worp telt hij het aatal oge va de drie worpe bij elkaar op. Bereke

Nadere informatie

Set 3 Inleveropgaven Kansrekening (2WS20)

Set 3 Inleveropgaven Kansrekening (2WS20) 1 Techische Uiversiteit Eihove Faculteit Wiskue e Iformatica Set 3 Ileveropgave Kasrekeig (2WS20) 2014-2015 1. (Flesjes ie uit e ba sprige) Aa ee lopee ba wore bierflesjes gevul. Helaas gaat er zo u e

Nadere informatie

d 25, 35, 47 of27, 43, 69 b 2, 27, 10240, 100, e = 287 u( n) = 243 ( ) n

d 25, 35, 47 of27, 43, 69 b 2, 27, 10240, 100, e = 287 u( n) = 243 ( ) n Netwerk 4-5 vwo wiskude D Hoofdstuk 8 uitwerkige Hoofdstuk 8 Ker a 3, 37, 43 c 5, 3, 49 b, 3, d 5, 35, 47 of7, 43, 9 a,, 3, 5, 7 d 0,,,, 0 b, 7,, 3, 8 e 35, 35, 35, 35, 35 c 5, 0, 0, 40,80 f 0,, 8, 7,

Nadere informatie

Hoofdstuk 1 - Rijen ) = bladzijde ; voor x = 11 is y = = 55. te rekenen omdat die ook met hele stappen toeneemt.

Hoofdstuk 1 - Rijen ) = bladzijde ; voor x = 11 is y = = 55. te rekenen omdat die ook met hele stappen toeneemt. Hoofdstuk - Rije bladzijde V-a Als x steeds met toeeemt, da eemt y met toe. b Voor x is y + 5 ; voor x is y + 55. c De waarde va x eemt met hele stappe toe. De waarde va y is da makkelijk uit te rekee

Nadere informatie

Bass eenheden in ZG.

Bass eenheden in ZG. Bass eehede i ZG. 2 Hoofdstuk 1 Bass eehede 1.1 Cyclotoische eehede i Z(ɛ ) Als G ee abelse groep is, da zij de bicyclische eehede i ZG alleaal triviaal. We oete i die situatie dus op zoek gaa aar adere

Nadere informatie

10.6. Andere warmteproblemen. We hebben warmteproblemen bekeken van de vorm. 0 < x < L, t > 0. w(0, t) = 0, w(l, t) = 0, t 0. u(x, 0) = f(x), 0 x L,

10.6. Andere warmteproblemen. We hebben warmteproblemen bekeken van de vorm. 0 < x < L, t > 0. w(0, t) = 0, w(l, t) = 0, t 0. u(x, 0) = f(x), 0 x L, .6. Andere warmteproblem. We hebb warmteproblem bekek van de vorm α 2 u xx = u t, < x u(, t) =, u(, t) =, t u(x, ) = f(x), x, waarbij de temperatuur aan de beide uiteind constant bovdi gelijk is.

Nadere informatie

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100...

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100... Opgave OPGAVE 1 a. Itereer met F( ) = e als startwaarde 1 e 1. 16 1............... 16 1............... b. Stel de bae grafisch voor i ee tijdgrafiek. c. Formuleer het gedrag va deze bae. (belagrijk is

Nadere informatie

Lineaire algebra-b (2008)

Lineaire algebra-b (2008) Laatst veilig gesteld op: 7-Ja-009 6:34 Lieaire algebra-b 508 (008) Samevattig Dit is mij samevattig/hadleidig bij het vak lieaire algebra-b. Dit vak wordt gegeve uit stewart H7 e appedix H e Lay H5 e

Nadere informatie

WISKUNDE 5 PERIODEN DEEL B

WISKUNDE 5 PERIODEN DEEL B EUROPEES BACCALAUREAAT 2012 WISKUNDE 5 PERIODEN DATUM : 11 jui 2012, ochted DUUR VAN HET EXAMEN: 3 uur (180 miute) TOEGESTANE HULPMIDDELEN : Exame met techologisch hulpmiddel 1/6 NL VRAAG B1 ANALYSE Blz.

Nadere informatie

Studiehandleiding Calculus 2 voor SFM (Scheikunde, Farmo, MNW) deel 1

Studiehandleiding Calculus 2 voor SFM (Scheikunde, Farmo, MNW) deel 1 Studiehadleidig Calculus 2 voor SFM (Scheikude, Farmo, MNW) deel 1 docet deel 1 Joost Hulshof, docet deel 2 C.M. Quat kamerummer: R340, S 232 email: jhulshof@few.vu.l, quat@few.vu.l September 4, 2006 1

Nadere informatie

TOELATINGSEXAMEN ANALYSE BURGERLIJK INGENIEUR EN BURGERLIJK INGENIEUR ARCHTECT - 3 JULI 2003 BLZ 1/8

TOELATINGSEXAMEN ANALYSE BURGERLIJK INGENIEUR EN BURGERLIJK INGENIEUR ARCHTECT - 3 JULI 2003 BLZ 1/8 BURGERLIJK INGENIEUR ARCHTECT - 3 JULI 2003 BLZ 1/8 1. De functie f(x) = e kx + ax + b met a, b en k R en k < 0 heeft een schuine asymptoot y = x voor x + en voldoet aan de vergelijking Bepaal a, b en

Nadere informatie

wiskunde A pilot vwo 2017-II

wiskunde A pilot vwo 2017-II wiskude A pilot vwo 07-II Gewicht va diere maximumscore 4 Het opstelle va de vergelijkige 3, 7 = a b e 50 = a 000 b 3, 7 Uit de eerste vergelijkig volgt a = 3, 7 b = De tweede vergelijkig wordt hiermee

Nadere informatie

3 Meetkundige voorstelling van complexe getallen

3 Meetkundige voorstelling van complexe getallen 3 Meetkudige voorstellig va complexe getalle 31 Complexe getalle als pute va ee vlak Complexe getalle zij geïtroduceerd als pute va ee vlak tov ee orthoormaal assestelsel Ee dergelijk assestelsel is odig

Nadere informatie

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak Lesbrief 5 Recurreties e ogelijkhede Recursief gedefiieerde rije Er zij getallerije {a } die voldoe aa ee recurrete betrekkig va de vorm a +k = f(a +k ;a +k ;:::;a ) voor = ; ;:::, waardoor de + k-de term

Nadere informatie

INLEIDING FYSISCH-EXPERIMENTELE VAARDIGHEDEN (3A560) , ANTWOORDEN. en y m.b.v. y = n

INLEIDING FYSISCH-EXPERIMENTELE VAARDIGHEDEN (3A560) , ANTWOORDEN. en y m.b.v. y = n INLEIDING FYICH-EXEIENTELE VAADIGHEDEN (3A56 3-1-, ANTWOODEN OGAVE 1 (a y wordt bereked mb y ³ e y mb y Uit de laatste ergelijkig ide we y i ³ x1 1 + + x ³ x1 1 + + x ³ + j6i i j xj y + j6i i j xj Omdat

Nadere informatie

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl Kastheorie 2de bachelor wiskude Vrije Uiversiteit Brussel U. Eimahl Academiejaar 2011/2012 Ihoudsopgave 1 Kasruimte 1 1.1 Toevallige experimete................................. 1 1.2 De axioma s va Kolmogorov.............................

Nadere informatie

Functies, Rijen, Continuïteit en Limieten

Functies, Rijen, Continuïteit en Limieten Fucties, Rije, Cotiuïteit e Limiete Fucties, Rije, 2-0 Cotiuïteit e Limiete Fucties, Rije, Cotiuïteit e Limiete Ihoud 1. Fucties Defiitie e kemerke / bewerkige op fucties Reële fucties va éé reële veraderlijke

Nadere informatie

Bewijzen voor de AM-GM-ongelijkheid

Bewijzen voor de AM-GM-ongelijkheid Bewijze voor de AM-GM-ogelijkheid Prime Ee beroemde olympiadeogelijkheid is de ogelijkheid tusse het rekekudig gemiddelde (AM, arithmetic mea) e het meetkudig gemiddelde (GM, geometric mea). Voor ee gegeve

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur Eame VW 05 tijdvak doderdag 8 jui.0-6.0 uur wiskude B (pilot) Dit eame bestaat uit 7 vrage. Voor dit eame zij maimaal 79 pute te behale. Voor elk vraagummer staat hoeveel pute met ee goed atwoord behaald

Nadere informatie

1. Hebben de volgende rijen een limiet, en zo ja, bepaal die dan: (i) u n = sin(πn) (d) u n = cos(2πn) (l) u n = log n

1. Hebben de volgende rijen een limiet, en zo ja, bepaal die dan: (i) u n = sin(πn) (d) u n = cos(2πn) (l) u n = log n Hoofdstuk 1 Limiet va ee rij 1.1 Basis 1. Hebbe de volgede rije ee iet, e zo ja, bepaal die da: (a) 1,, 3, 4, 5, 6, 7, 8,... (b) 1, 4, 9, 16, 5, 36, 49,... (c) 1, 8, 7, 64, 15,... (d) u = ( 1) (e) u =

Nadere informatie

Reeksen. Convergente reeksen

Reeksen. Convergente reeksen Reekse Reekse Defiitie, otatie e voorbeelde Defiitie: Eereeks is ee koppel ( ) {u } l, {s } l met s = u k = u l + u l+ + u l+2 +...+ u + u k=l u l = s l, u = s s, = l +, l +2,... {u } l oemt me de termerij,

Nadere informatie

wiskunde B pilot vwo 2015-II

wiskunde B pilot vwo 2015-II Formules Goiometrie si( t u) sitcosu costsiu si( t u) sitcosu costsiu cos( t u) costcosu sitsiu cos( t u) costcosu sitsiu si( t) sitcost cos( t) cos t si t cos t si t - - Het achtste deel p het domei [

Nadere informatie

Polynomen groep 2. Trainingsweek, juni Complexe nulpunten. Een polynoom is van de vorm P (x) = n

Polynomen groep 2. Trainingsweek, juni Complexe nulpunten. Een polynoom is van de vorm P (x) = n Polyome groep 2 Traiigsweek, jui 2009 Complexe ulpute Ee polyoom is va de vorm P (x) = i=0 a ix i, met coëfficiëte a 0, a 1,..., a, die uit ee gegeve verzamelig kome (meestal Z of R). Als alle coëfficiëte

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D020. Datum: Vrijdag 26 maart 2004. Tijd: 14.00 17.00 uur. Plaats: MA 1.41 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf

Nadere informatie

Opgave 1 Zij θ R, n 1 en X 1, X 2,..., X n onafhankelijk, identiek verdeelde stochasten met kansdichtheidsfunctie. f θ (x) =

Opgave 1 Zij θ R, n 1 en X 1, X 2,..., X n onafhankelijk, identiek verdeelde stochasten met kansdichtheidsfunctie. f θ (x) = Opgave 1 Zij θ R, 1 e X 1, X 2,..., X oafhakelijk, idetiek verdeelde stochaste met kasdichtheidsfuctie { 1 als x (θ 2, θ + 2) f θ (x) = als x (θ 2, θ + 2). a pt) Bepaal E(X 1 ) e V ar(x 1 ). ANTWOORD:

Nadere informatie

Videoles Discrete dynamische modellen

Videoles Discrete dynamische modellen Videoles Discrete dyamische modelle Discrete dyamische modelle Orietatie Algebraisch Algebraisch/ umeriek Numeriek Maak de volgede rijtjes af: Puzzele met rijtjes a. 2 4 6 8 10 - b. 1 2 4 8 16 - c. 1 2

Nadere informatie

Ontwikkeling van het functiebegrip in: Wiskunde als Wetenschap

Ontwikkeling van het functiebegrip in: Wiskunde als Wetenschap Ontwikkeling van het functiebegrip in: Wiskunde als Wetenschap Tom Koornwinder thk@science.uva.nl Korteweg-de Vries Instituut, UvA Ontwikkeling van het functiebegrip p.1/13 Moderne definitie van een functie

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken.

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken. HET BELANG VAN KP HART Vrage Tijdes de voordracht op augustus 007 hebbe we de volgede vrage besproke. Hoe ku je izie dat ee vierkat, bij gegeve omtrek, de rechthoek met de maximale oppervlakte is? Hoe

Nadere informatie

Spelen met vormen. Tim Neefjes Bryan Tong Minh

Spelen met vormen. Tim Neefjes Bryan Tong Minh Spele met vorme Tim Neefjes Brya Tog Mih Ileidig Toe ee plei i Stockholm, Sergel s Square aa heraaleg toe was stode de architecte voor ee probleem. Het was ee rechthoekig plei e i het midde moest ee wikelcetrum

Nadere informatie

WI1708TH Analyse 3. College 5 23 februari Challenge the future

WI1708TH Analyse 3. College 5 23 februari Challenge the future WI1708TH Analyse 3 College 5 23 februari 2015 1 Programma Vandaag Richtingsafgeleide (14.6) Gradiënt (14.6) Maximalisatie richtingsafgeleide (14.6) Raakvlak voor niveauoppervlakken (14.6) 2 Richtingsafgeleide

Nadere informatie

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl Kastheorie 2de bachelor wiskude Vrije Uiversiteit Brussel U. Eimahl Academiejaar 208/209 Ihoudsopgave Kasruimte. Toevallige experimete..................................2 De axioma s va Kolmogorov.............................

Nadere informatie

Nieuwe wiskunde tweede fase Profiel N&T Freudenthal instituut. Eindeloze Regelmaat

Nieuwe wiskunde tweede fase Profiel N&T Freudenthal instituut. Eindeloze Regelmaat Nieuwe wiskude tweede fase Profiel N&T Freudethal istituut Eideloze Regelmaat Eideloze Regelmaat Project: Wiskude voor de tweede fase Profiel: N&T Domei: Voortgezette Aalyse Klas: VWO 6 Staat: Herziee

Nadere informatie

Eindexamen wiskunde B1 vwo 2007-I

Eindexamen wiskunde B1 vwo 2007-I Eidexame wiskude B vwo 007-I havovwo.l Podiumverlichtig Ee podium is 6 meter diep. Midde bove het podium hagt ee balk met tl-buize. De verlichtigssterkte op het podium is het kleist aa de rad, bijvoorbeeld

Nadere informatie

Hoofdstuk 9 : Steekproefstatistieken. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 9 : Steekproefstatistieken. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 9 : Steekproefstatistieke Marix Va Daele MarixVaDaele@UGetbe Vakgroep Toegepaste Wiskude e Iformatica Uiversiteit Get Steekproefstatistieke p 1/20 Schattige Waeer uit ee steekproef de waarde

Nadere informatie

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx )

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx ) .4. Ev onev functies. E functie f heet ev als voor elke x in het domein van f ook x tot dat domein behoort f( x) = f(x) voor alle x in het domein van f. En e functie f heet onev als voor elke x in het

Nadere informatie

Uitwerkingen toets 11 juni 2011

Uitwerkingen toets 11 juni 2011 Uitwerkige toets 11 jui 2011 Opgave 1. Laat 2 e k 1 gehele getalle zij. I ee lad zij stede e tusse elk paar stede is ee busverbidig i twee richtige. Laat A e B twee verschillede stede zij. Bewijs dat het

Nadere informatie

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking 1. Wat is iteratie? Iteratie is het steeds herhale va eezelfde proces, verwerkig op het bekome resultaat. INPUT Verwerkig OUTPUT Idie de verwerkig gebeurt met ee (reële) fuctie geldt voor ee startwaarde

Nadere informatie

De speler die begint mag in zijn eerste beurt niet alle stenen pakken.

De speler die begint mag in zijn eerste beurt niet alle stenen pakken. Nim Het spel: Op tafel ligt ee stapel stee (meer da éé). Twee spelers eme om beurte stee va de stapel. De speler die begit mag i zij eerste beurt iet alle stee pakke. De speler die aa de beurt is mag iet

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

Periodiciteit bij breuken

Periodiciteit bij breuken Periodiciteit bij breuke Keuzeodracht voor wiskude Ee verdieede odracht over eriodieke decimale getalle, riemgetalle Voorkeis: omrekee va ee breuk i ee decimale vorm Ileidig I deze odracht leer je dat

Nadere informatie

Beoordelingsmodel VWO wiskunde B II. Een rij. Voor de limiet geldt: u 2 u. 2u u = 1. Dit schrijven als un. De (enige) oplossing: u = 1

Beoordelingsmodel VWO wiskunde B II. Een rij. Voor de limiet geldt: u 2 u. 2u u = 1. Dit schrijven als un. De (enige) oplossing: u = 1 Beoordeligsmodel VWO wiskude B 009-II Vraag Atwoord Scores Ee rij maximumscore Voor de limiet geldt: u u u u Dit schrijve als u u+ 0 De (eige) oplossig: u maximumscore 5 vervage door i u + u + + + Dit

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie week 4.8, maandag Faculteit EWI TU Delft Delft, 6 juni, 2016 1 / 33 Outline 1 Maximum-modulusprincipe Lemma van Schwarz 2 2 / 33 Maximum-modulusprincipe Lemma van Schwarz Maximum-modulusprincipe Stelling

Nadere informatie

Aanvullingen van de Wiskunde. S. Caenepeel

Aanvullingen van de Wiskunde. S. Caenepeel Aavullige va de Wiskude S. Caeepeel Syllabus 131 bij 1009383BNR Aavullige va de Wiskude Derde Bachelor Igeieursweteschappe Electroica e Iformatietechologie, Derde Bachelor Fysica 2017 Ihoudsopgave 1 Eerste

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

NETWERK B2 UITWERKINGEN VOOR HET VWO. HOOFDSTUK 10 CONVERGENTIE Kern 1 LIMIETEN. u 2 u 1. u 3. u 4. u 5. u 7

NETWERK B2 UITWERKINGEN VOOR HET VWO. HOOFDSTUK 10 CONVERGENTIE Kern 1 LIMIETEN. u 2 u 1. u 3. u 4. u 5. u 7 UITWERKINGEN VOOR HET VWO NETWERK B a) 7 log 7 7 log 7 7 b) 7 a) Niet b) Wel c) Niet ) HOOFDSTUK CONVERGENTIE Ker LIMIETEN Hee f t Ci j f ers log 7 7 log 7 7 77 ) µ Hee f t Ci j f ers a) µ ; µ ; ; µ ;

Nadere informatie

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek.

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek. 006 Wolters-Noordhoff bv Groige/Houte De steekproefomvag Ee toelichtig op het belag e het berekee va de steekproefomvag i marktoderzoek. Ihoud 1 Ileidig Eerst ekele defiities 3 Steekproefomvag e respose

Nadere informatie

Eindexamen wiskunde B vwo II

Eindexamen wiskunde B vwo II Beoordeligsmodel Sijde met ee hoogtelij maximumscore 4 BRC PRQ ; overstaade hoeke PRQ 90 QPR ; hoekesom driehoek Boog AC is costat, dus APC is costat; costate hoek QPR ( APC) is costat, dus BRC is costat

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eideame wiskude B vwo 200 - II Sijde met ee hoogtelij Op ee cirkel kieze we drie vaste pute, B e C, waarbij lijstuk B gee middellij is e put C op de kortste cirkelboog B ligt. Ee put doorloopt dat deel

Nadere informatie

De Stelling van Lamperti

De Stelling van Lamperti Y.A. Peeters De Stellig va Lamperti Bachelorscriptie, 24 jui 2015 Begeleider: Dr. M.F.E. de Jeu Mathematisch Istituut, Uiversiteit Leide Ihoudsopgave 1 Voorwoord 2 2 Ileidig 3 2.1 Hoofdstellig.............................

Nadere informatie

Ongelijkheden groep 2

Ongelijkheden groep 2 Ogelijkhede groep 2 Jese e Muirhead Traiigsweek 8 13 jui 2009 1 Jese Defiitie covex) Zij f : R R ee fuctie. We oeme f covex op [a, b] als voor elke x, y [a, b] geldt de koorde met eidpute x, fx)) e y,

Nadere informatie

Fourieranalyse. J. Hulshof November 17, 2011

Fourieranalyse. J. Hulshof November 17, 2011 Fourieranalyse J. Hulshof November 7, 0 Inleiding. Dit onderwerp begint met het inzicht dat π-periodieke (reele of complexe) functies f(x) met x IR te schrijven zijn als sommen van de standaard π-periodieke

Nadere informatie

Dus n n (a + b) n = a n + a n 1 b + heet een binomiaalcoëfficiënt (uitspraak n boven k ). Newton vond de

Dus n n (a + b) n = a n + a n 1 b + heet een binomiaalcoëfficiënt (uitspraak n boven k ). Newton vond de CONTINUE WISKUNDE: BINOMIUM VAN NEWTON EN RECURRENTE BETREKKINGEN Het Biomium va Newto Het Biomium va Newto is ee uitdruig voor a + b), waarbij a e b willeeurige getalle zij, e ee atuurlij getal I deze

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differtiaalvergelijking Fourierreeks Partiële differtiaalvergelijking zijn vergelijking waarin e onbekde functie van twee of meer variabel z n partiële afgeleide(n) voorkom. Dit in

Nadere informatie

2.1 De normale verdeling

2.1 De normale verdeling Les 2 Steekproeve We zulle i deze les bekijke, hoe we gegeves va ee populatie zoals het gemiddelde e de spreidig kue schatte, zoder aar elk idividu va de populatie te kijke. Het idee hierbij is, i plaats

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differentiaalvergelijkingen en Fourierreeksen Partiële differentiaalvergelijkingen zijn vergelijkingen waarin een onbekende functie van twee of meer variabelen en z n partiële afgeleide(n)

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Rijen

Uitwerkingen bij 1_0 Voorkennis: Rijen Uitwerkige ij _0 Voorkeis: Rije V_ a U = 7 + U = +,5 7 + = +,5 0,5 = 4 = 8 Na 8 rode krijge ze elk,-. V_ U() =, 06 U( ) met U(0) = 500 e U() het eidedrag a jaar. V_ a u 458 8 r u 8 9 4 = = = dus 5 u5 8

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.9, maandag K. P. Hart Faculteit EWI TU Delft Delft, 13 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 41 Outline III.6 The Residue Theorem 1 III.6 The

Nadere informatie

6 Het inwendig product

6 Het inwendig product 6 Het iwedig prdct Te algebra e meetkde gescheide vakke ware, was h vrtgag lagzaam e h t beperkt Maar sids beide vakke zij vereigd, hebbe ze elkaar derlig versterkt e zij ze gezamelijk pgetrkke aar perfectie

Nadere informatie

Vrije Universiteit Brussel Faculteit Toegepaste Wetenschappen T ENE BRA S. Numerieke Analyse. S. Caenepeel

Vrije Universiteit Brussel Faculteit Toegepaste Wetenschappen T ENE BRA S. Numerieke Analyse. S. Caenepeel VRIJE UNIVERSITEIT BRUSSEL Vrije Uiversiteit Brussel Faculteit Toegepaste Weteschappe SCI EN T I A V INCERE T ENE BRA S Numerieke Aalyse S. Caeepeel Syllabus bij de cursus Numerieke Aalyse (later Numerieke

Nadere informatie

Ongelijkheden. IMO trainingsweekend 2013

Ongelijkheden. IMO trainingsweekend 2013 Ogelijkhede IMO traiigsweeked 0 Deze tekst probeert de basis aa te brege voor het bewijze va ogelijkhede op de IMO. Het is de bedoelig om te bewijze dat ee bepaalde grootheid (ee uitdrukkig met ee aatal

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eidexame wiskude B vwo 200 - II Formules Vlakke meetkude Verwijzige aar defiities e stellige die bij ee bewijs moge worde gebruikt zoder adere toelichtig. Hoeke, lije e afstade: gestrekte hoek, rechte

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 5: Wet van de grote aantallen en Centrale limietstelling

Opgeloste Oefeningen Hoofdstuk 5: Wet van de grote aantallen en Centrale limietstelling Opgeloste Oefeige Hoofdstuk 5: Wet va de grote aatalle e Cetrale limietstellig 5.. Ee toevalsveraderlijke X is oisso-verdeeld met parameter λ = 00. Bepaal ee odergres voor de waarschijlijkheid (75 X 5).

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

Eindexamen wiskunde A vwo 2010 - I

Eindexamen wiskunde A vwo 2010 - I Eidexame wiskude A vwo - I Beoordeligsmodel Maratholoopsters maximumscore 3 uur, 43 miute e 3 secode is 98 secode De selheid is 495 98 (m/s) Het atwoord: 4,3 (m/s) maximumscore 3 Uit x = 5 volgt v 4,4

Nadere informatie

De wiskunde achter de GR

De wiskunde achter de GR Domei Keuzeoderwerpe vwo B,D De wiskude achter de GR Ihoud 1.1 Biair rekee 1. Taylor beaderige 1.3 Nulpute, sijpute 1.4 Itegrale beadere 1.5 Overzicht I opdracht va: Stichtig Math4all Math4all, Deveter

Nadere informatie

1) Complexe getallen - definitie

1) Complexe getallen - definitie Complexe getalle ) Complexe getalle - defiitie a) Meetkudige betekeis va het getal i Als je ee reëel getal met ee ader reëel getal vermeigvuldigt, wordt zij afstad tot de oorsprog met dit getal vermeigvuldigd

Nadere informatie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie Hoofdstuk : Randwaardeproblemen en Sturm-Liouville theorie.. Tweepunts randwaardeproblemen. Bij het oplossen van partiële differentiaalvergelijkingen met behulp van de methode van scheiden van variabelen

Nadere informatie

Lineaire Algebra en Voortgezette Analyse

Lineaire Algebra en Voortgezette Analyse Lieaire Algebra e Voortgezette Aalyse Rise Poortiga Lieaire Algebra e Voortgezette Aalyse 01 Rise Poortiga ISBN 978908181518 NUR 918 http://www.risepoortiga.l Niets uit deze uitgave mag worde verveelvoudigd,

Nadere informatie

Eindexamen wiskunde A1 vwo 2008-II

Eindexamen wiskunde A1 vwo 2008-II Eidexame wiskude A vwo 008-II Beoordeligsmodel Cotrole bij ieuwbouw maximumscore 4 I 00 ware er (ogeveer) 7 000 ieuwbouwwoige I 004 ware er (ogeveer) 4 800 ieuwbouwwoige De toeame is 7000 4800 00% (: de

Nadere informatie

Oefeningen Wiskundige Analyse I

Oefeningen Wiskundige Analyse I Oneigenlijke integralen Oefeningen Wiskundige Analyse I. Voor welke waarden van de reële parameters α en β is de oneigenlijke integraal x α ( + x β ) dx convergent? divergent? 2. Voor welke waarden van

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame HAVO 2013 tijdvak 2 woesdag 19 jui 13.30-16.30 uur wiskude A Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 21 vrage. Voor dit exame zij maximaal 80 pute te behale. Voor elk vraagummer

Nadere informatie

wiskunde A pilot vwo 2016-I

wiskunde A pilot vwo 2016-I wiskude A pilot vwo 06-I Aalscholvers e vis maximumscore 3 De viscosumptie per dag is 30 0 0,36 + 696 0, 85 ( 788 (kg)) I de maad jui is dit 30 788 (kg) Het atwoord: 38 000 ( 38 duized) (kg) Als ee kadidaat

Nadere informatie

Klassieke en Kwantummechanica (EE1P11)

Klassieke en Kwantummechanica (EE1P11) Deeltetame : Kwatummechaica Woesdag 9 ovember 016, 9.00 11.00 uur; TN-TZ 4.5 TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechiek, Wiskude e Iformatica Oleidig Elektrotechiek Aawijzige: Er zij ogave

Nadere informatie

Een meetkundige constructie van de som van een meetkundige rij

Een meetkundige constructie van de som van een meetkundige rij Ee meetkudige costructie va de som va ee meetkudige rij [ Dick Kliges ] Iets verder da Euclides deed Er wordt door sommige og wel ees gedacht dat Euclides (hij leefde rod 300 v. Chr.) allee over meetkude

Nadere informatie