( Spreek uit:: de kans op A is vijf is één-zesde; P staat voor probabilitas, probability,..= kans)

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "( Spreek uit:: de kans op A is vijf is één-zesde; P staat voor probabilitas, probability,..= kans)"

Transcriptie

1 Kansen en Tellen Kans Als je met een doelsteen ooit en het resultaat is dat de kant met vijf stippen oven lit, weet iedereen dat je zet dat de kans daarop één op zes is. In de wiskunde formuleren we dat als volt heel netjes: Experiment: ooien met een doelsteen Toevalsvariaele: A= het aantal stippen dat oven lit Moelijke waarden van de toevalsvariaele: 1, 2,3,4,5, of 6 We schrijven: P(A =5) = 6 1 ( Spreek uit:: de kans op A is vijf is één-zesde; P staat voor proailitas, proaility,..= kans) De verklarin is dat een (zoenaamde zuivere) doelsteen die eerlijk eooid (aselect) wordt, zes elijkwaardie uitkomsten heeft met alle dezelfde kans om op te treden. De kans op één van die uitkomsten zal dus één op zes zijn. Wat etekent deze kans nou precies? In ieder eval niet dat je ij zes keer ooien met een doelsteen één keer een vijf zal ooien! Wel dat als je héél vaak zou ooien oneveer één-zesde deel ervan een vijf zal opleveren. Wiskundien noemen dit de wet van de rote aantallen. Vaak is systematisch tellen nodi om kansen te epalen Vooreeld: Je ooit nu met twee doelstenen en telt het totale aantal oen. Hoe root is de kans op 8 oen? Antwoord: We doen het weer netjes: Experiment: ooien met twee doelstenen Toevalsvariaele: S = de som van het aantal stippen dat oven lit Moelijke waarden van de toevalsvariaele: 2, 3, 4, 5,.tot en met 12 Gevraad wordt:: P(S = 8 ) Let op: de elf moelijke uitkomsten zijn nu niet meer elijkwaardi. In totaal twee oen is uitzonderlijker dan ijvooreeld in totaal acht oen. We kunnen wel naar alle moelijkheden kijken ij het ooien met twee doelstenen. Voor de duidelijkheid noemen we de ene doelsteen rood en de andere wit. In het schema hieronder zie je alle moelijkheden: 1 van 6 Bosma, ,

2 Één van de moelijkheden die som is acht oplevert is als de witte doelsteen drie stippen oven eeft en de rode vijf. Goed zichtaar in dit schema is dat er in totaal 6 6 = 36 verschillende moelijkheden zijn, die wel alle elijkwaardi zijn en dus een kans van één op 36 heen om op te treden Bijvooreeld: P( wit =3 én rood = 5) =. Maar net zo oed: P( wit =1 én rood = 1) = Nu is het een kwestie van tellen hoeveel moelijkheden som = 8 oplevert: In de fiuur hiernaast tel je vijf moelijkheden. Dus de evraade kans is: 5 P(S = 8 ) = 36 Kansreel van Laplace We eruikten feitelijk de kansreel van Laplace: P( epaalde eeurtenis) = het aantal unstie uitkomsten het totaal aantal moelijke uitkomsten unstie uitkomst etekent hier: een uitkomst die valt onder de edoelde eeurtenis Wel moet elden dat alle uitkomsten elijkwaardi zijn, dat wil zeen dat ze allemaal een even rote kans heen om op te treden (Wiskundien noemen dat een symmetrische kansruimte ). productreel: Als je twee handelinen na elkaar verricht waarij je de eerste handelin op p manieren kunt uitvoeren en de tweede op q manieren dan is het aantal moelijkheden p q Je kunt het vaak zichtaar ma ken met een een oomdiaram of een weendiaram. Je hoeft het diaram niet altijd helemaal af te tekenen. Proleem 1 Hoeveel moelijke uitkomsten zijn er als je na elkaar ooit met a. twee munten? (oomdiaram). zes munten? (weendiaram) c. twee doelstenen? d. een munt en een doelsteen? e. twee munten en drie doelstenen? 2 van 6 Bosma, ,

3 Trekken met en zonder terulein Veel kans en telvraen kunnen vertaald worden naar een trekkin óf met terulein óf zonder terulein. Bij eide kun je een oomdiaram eruiken om de situatie te verduidelijken: Trekken met terulein: De oom hieronder staat voor een situatie waarin 5 keer etrokken wordt uit een vaas met twee knikkers met terulein. Neem ijvooreeld aan dat er een rode en een lauwe knikker in de vaas zit. r Dit eindpunt staat voor de route : r,, r,, r; de volorde van trekkin is hier dus: Rood, lauw, rood, lauw en tenslotte weer rood Dit eindpunt staat voor de route :,, r,, r Er zijn 2 5 = 32 eindpunten en dus ook 32 routes. We noemen deze oom een machtsoom. Trekken zonder terulein: De oom hieronder staat voor een situatie waarin 4 keer etrokken wordt uit een vaas met vier knikkers zonder terulein. Neem ijvooreeld aan dat er een rode, een lauwe, een ele en een witte knikker in de vaas zit. 3 van 6 Bosma, ,

4 r w Dit eindpunt staat voor de route : r, w,, ; de volorde van trekkin is hier dus: Rood, wit, eel en tenslotte lauw w Er zijn = 24 = 4! eindpunten en dus ook 24 routes. We noemen deze oom een faculteitsoom. Proleem 2 Op hoeveel manieren kun je de letters A, B, C en D ranschikken? Antwoord: Dat kan op ; we heen een korte schrijfwijze hiervoor: 4! ( spreek uit: 4-faculteit) In het alemeen: n! = het aantal manieren waarop je n verschillende dinen kunt ranschikken. Er zijn n! volordes. Proleem 2 Je ma elke letter van het alfaet eruiken en de woorden hoeven een etekenis te heen. a. Op hoeveel manieren kun je een woord van 2 verschillende letters maken? Antwoord: twee factoren. Op hoeveel manieren kun je een woord van 3 verschillende letters maken? Antwoord: drie factoren c. Op hoeveel manieren kun je een woord van 4 verschillende letters maken? Antwoord: In het alemeen: vier factoren 4 van 6 Bosma, ,

5 n (n 1) (n 2) L (n k + 1) : k factoren het aantal manieren waarop je k verschillende dinen kunt ranschikken als je kiest uit n. We zeen:het aantal "permutaties" van k uit n 1. Uitrekenen: Vaak zit er op een rekenmachine een knop: Het zit onder de npk knop Proleem 3 Nu doet de volorde niet ter zake. a. Op hoeveel manieren kun je 2 letters kiezen uit het alfaet? Antwoord: is nu te veel ; want elke cominatie van twee letters wordt duel 12 twee factoren eteld (ijvooreeld de twee letters a en z komen voor als de woorden az en za). We moeten delen door dus: 2 1. Op hoeveel manieren kun je 3 letters kiezen uit het alfaet? Antwoord: Nu komt elk drietal letters voor als woorden, dus in 6 verschillende permutaties dus: c. Op hoeveel manieren kun je 4 letters kiezen uit het alfaet? Antwoord: n (n 1) (n 2) L (n k + 1) = het aantal manieren waarop je een roep van k dinen k (k 1) (k 2) L 1 kunt kiezen uit n verschillende dinen. De ranschikkin is niet meer van elan. n Hiervoor wordt de notatie eruikt: "n oven k" = k We zeen: het aantal "cominaties" van k uit n. Het zit onder de nck knop. n n! Er eldt ook: = k k!( n k)! 1 Dit wordt ook wel het aantal variaties van k uit n enoemd. 5 van 6 Bosma, ,

6 Roosterwandelinen en de driehoek van Pascal De driehoek van Pascal in drie edaantes: som = 1 som = 2 som = 4 som = 8 som = 16 som = 32 Er zijn 56 verschillende roosterwandelinen van startpunt S naar punt P (zonder omween). S P Maar ook (als vooreeld): 1. Als je acht keer met een munt ooit zijn er 56 ranschikkinen met 5 keer munt en 3 keer kop 2. Er zijn in een ezin van acht kinderen 56 verschillende moelijkheden met 5 jonens en 3 meisjes 6 van 6 Bosma, ,

Hoofdstuk 4 - Zicht op toeval

Hoofdstuk 4 - Zicht op toeval Hoofdstuk - Zicht op toeval Hoofdstuk - Zicht op toeval Voorkennis V-a Bij de mannen is 00% 8, % kleurenlind. Bij de vrouwen is dit 00% = 0, %. 000 c Nee, je kunt hier niets over zeen want toeval speelt

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a 8 V-a Hoodstuk - Transormaties Voorkennis: Graieken en untievoorshriten ladzijde loninhoud in liter,,,,,,,,,, Van t tot t, dus seonden. loninhoud in liter O tijd in seonden 7 Moderne wiskunde 9e editie

Nadere informatie

Hoofdstuk 6 - Rekenen met kansen

Hoofdstuk 6 - Rekenen met kansen ladzijde V-a De kans dat de wijzer aanwijst is. De kans dat de wijzer een even etal aanwijst is. c De kans dat de wijzer een rood vlak aanwijst is 0%. d De kans dat de wijzer een rood vlak met een oneven

Nadere informatie

Hoofdstuk 2 - Transformaties

Hoofdstuk 2 - Transformaties Hoodstuk - Transormaties Moderne wiskunde 9e editie vwo B deel Voorkennis: Graieken en untievoorshriten ladzijde V-a, loninhoud in liter,,,,,,,,, tijd in seonden Van t tot t, dus seonden. loninhoud in

Nadere informatie

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 3: Het vaasmodel (deze les sluit aan bij de paragrafen 5, 6 en 7 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

8.0 Het Ketelrendement. Algemene inleiding:

8.0 Het Ketelrendement. Algemene inleiding: Prolemen 8.0 Het Ketelrendement Alemene inleidin: 8.1 Historie Toen oneveer 30 jaar eleden de eerste waterpijpketels oven de afvalverrandinsovens werden eouwd, estonden er no een speciaal voor dit doel

Nadere informatie

Tentamen Wiskunde A CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari 2015 13.30 16.30 uur Aantal opgaven: 7

Tentamen Wiskunde A CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari 2015 13.30 16.30 uur Aantal opgaven: 7 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 16 januari 2015 Tijd: 13.30 16.30 uur Aantal opaven: 7 Lees onderstaande aanwijzinen s.v.p. oed door voordat u met het tentamen beint.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a Hoofdstuk - Rekenen met kansen. Kansen erekenen ladzijde vaas A R W vaas B R W R W + P( één rode en één witte) = = =, P( RW) + P( WR) = + = + = =,. Het klopt dus. a Aantal mogelijkheden is =. Elk van

Nadere informatie

wiskundeleraar.nl

wiskundeleraar.nl 2015-2016 wiskundeleraar.nl 1. voorkennis Volgorde bij bewerkingen 1. haakjes 2. machtsverheffen. vermenigvuldigen en delen van links naar rechts 4. optellen en aftrekken van links naar rechts Voorbeeld

Nadere informatie

Hoofdstuk 5 - De binomiale verdeling

Hoofdstuk 5 - De binomiale verdeling Moderne wiskunde 9e editie Havo A deel Hoofdstuk - De inomiale verdeling ladzijde 0 a zoon dochter c DDZZZ; DZDZZ; DZZDZ; DZZZD; ZDDZZ; ZDZDZ; ZDZZD; ZZDDZ; ZZDZD; ZZZDD zoons A 0 dochters d e Het aantal

Nadere informatie

Examen VWO. Wiskunde B1 (nieuwe stijl)

Examen VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B1 (nieuwe stijl) Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensda 18 juni 13.30 16.30 uur 20 03 Voor dit eamen zijn maimaal 8 punten te behalen; het eamen bestaat uit 16 vraen.

Nadere informatie

of 1 op 3. Er zijn vijf balletjes met nummers eindigend op 5. De gevraagde kans is dan 5 =

of 1 op 3. Er zijn vijf balletjes met nummers eindigend op 5. De gevraagde kans is dan 5 = Hoofdstuk Kansen ladzijde 90 V-a Je zou 0 maal kop verwachten Het waargenomen aantal verschilt daarvan dus 0 0 en 00 c %;, %;, % d ls het aantal worpen groter wordt zal het percentage kop steeds dichter

Nadere informatie

Faculteit, Binomium van Newton en Driehoek van Pascal

Faculteit, Binomium van Newton en Driehoek van Pascal Faculteit, Binomium van Newton en Driehoek van Pascal 1 Faculteit Definitie van de faculteit Wisnet-hbo update aug. 2007 (spreek uit k-faculteit) is: k Dit geldt voor elk geheel getal k groter dan 0 en

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 22 Vookennis V-a aantal mannen 790 7,9 3,2 peentae 00 8 Naa vewahtin zijn 3 van deze 790 mannen kleuenlind. alle vouwen 000 00 kleuenlinde vouwen 4 0,004 0,4 V-2a V-3a 0,4% van de vouwen is kleuenlind.

Nadere informatie

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen:

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen: 4.0 Voorkennis Voorbeeld 1: Een bestuur bestaat uit 6 personen. Uit deze 6 personen wordt eerst een voorzitter, dan een secretaris en tot slot een penningmeester gekozen. Bereken het aantal manieren om

Nadere informatie

Bovenstaand schema kan je helpen bij het bepalen van het soort telprobleem en de berekening van het aantal mogelijkheden 2.

Bovenstaand schema kan je helpen bij het bepalen van het soort telprobleem en de berekening van het aantal mogelijkheden 2. Telproblemen voor 4 HAVO wiskunde A In het schoolexamen 2 van 4 HAVO wiskunde A zijn de opgaven over de telproblemen (hoofdstuk 4) erg slecht gemaakt. Dat moet beter kunnen, zou ik denken Ik bespreek hier

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof [PW] appendix D.1 kansrekening kansen: 1. Je gooit met een dobbelsteen. Wat is de kans dat je

Nadere informatie

Combinatoriek. Wisnet-hbo. update aug. 2007

Combinatoriek. Wisnet-hbo. update aug. 2007 Combinatoriek 1 Permutaties Wisnet-hbo update aug. 2007 Op hoeveel manieren kun je de volgorde van de vier verschillende letters van het woord BOEK op een rijtje zetten? De verschillende volgorden (permutaties)

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties Hoofdstuk - Machtsfuncties Voorkennis: Functies en symmetrie ladzijde 9 V-a Kies als vensterinstelling voor je GR ijvooreeld X en Y en voer in Y = X X + Je krijgt: + = 0, dan D = ( ) = en = = = + = of

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a c d e Hoofdstuk - De inomiale verdeling. Succes en mislukking ladzijde 9 zoon dochter DDZZZ; DZDZZ; DZZDZ; DZZZD; ZDDZZ; ZDZDZ; ZDZZD; ZZDDZ; ZZDZD; ZZZDD zoons A 0 dochters Het aantal mogelijkheden

Nadere informatie

H1 Haakjes wegwerken, ontbinden in factoren

H1 Haakjes wegwerken, ontbinden in factoren H1 Haakjes wegwerken, ontinden in factoren 1.1 Haakjes wegwerken In wiskundige uitdrukkingen komen vaak haakjes voor. In deze paragraaf komen de rekenregels aan de orde met etrekking tot het wegwerken

Nadere informatie

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang? 4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren

Nadere informatie

de Wageningse Methode Antwoorden H5 DE RUIMTE IN 1

de Wageningse Methode Antwoorden H5 DE RUIMTE IN 1 Hoofdstuk 5 DE RUIMTE IN 6 5. AANZICHTEN EN UITSLAGEN 3 a 7 a kuus ; ol ; c cilinder ; d kegel ; e vijfzijdige piramide ; f alk (vierzijdig prisma) ; g driezijdig prisma ; h zeszijdig prisma ; i alk (vierzijdig

Nadere informatie

Hoofdstuk 5 - Telproblemen

Hoofdstuk 5 - Telproblemen Hoofstuk 5 - Telprolemen lazije 130 V-1a + 5+ 4+ 3+ 2+ 1= 24 Steen 1 hooste aantal 1 2 3 4 5 1 1 2 3 4 5 2 2 2 3 4 5 Steen 2 3 3 3 3 4 5 4 4 4 4 4 5 5 5 5 5 5 5 Die tael is rie-imensionaal en past us niet

Nadere informatie

Het dichtsbijliggende tiental is 860. interval

Het dichtsbijliggende tiental is 860. interval Rekenen Nooro Uitevers v. Aronen Bij et satten van rooteen (lente, ewit, tijsuur, ) eruik je etallen, ie een enaerin zijn van e werkelijke waare en ie ani zijn om te ontouen o om mee te rekenen. Dit zijn

Nadere informatie

Hoofdstuk 7 - Periodieke functies

Hoofdstuk 7 - Periodieke functies Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ

Nadere informatie

Je kunt straks: uitleggen wat letterlijk en figuurlijk is vertellen dat de schrijver soms iets anders bedoelt dan wat er staat

Je kunt straks: uitleggen wat letterlijk en figuurlijk is vertellen dat de schrijver soms iets anders bedoelt dan wat er staat 2014 lok 2, week 4, les 1 Groep 7-8 Herstellen Wat ga je leren? Je kunt straks: uitleggen wat letterlijk en figuurlijk is vertellen dat de schrijver soms iets anders edoelt dan wat er staat Wat ga je doen?

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 3: Het vaasmodel (deze les sluit aan bij de paragrafen 5, 6 en 7 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Opgaven voor Kansrekening

Opgaven voor Kansrekening Wiskunde 1 voor kunstmatige intelligentie Opgaven voor Kansrekening Opgave 1. Een oneerlijke dobbelsteen is zo gemaakt dat 3 drie keer zo vaak valt als 4 en 2 twee keer zo vaak als 5. Verder vallen 1,

Nadere informatie

Symmetrie en oppervlakte

Symmetrie en oppervlakte Symmetrie en oppervlakte 1 a loo 4 /d 6 1 212 1 313 414 c loo 1: 180 loo 2: 180 loo 3: 90 loo 4: 90 d alle loo s zijn puntsymmetrisch 7 a 2 a lijnsymmetrisch draaisymmetrisch puntsymmetrisch A B nee C

Nadere informatie

Hoofdstuk 6 Matrices toepassen

Hoofdstuk 6 Matrices toepassen Hoofdstuk Matries toepassen Moderne wiskunde e editie vwo D deel Lesliematries ladijde a Van de dieren in de leeftijdsgroep van - jaar komen er, in de leeftijdsgroep - jaar Van de dieren in de leeftijdsgroep

Nadere informatie

8 A vijfzijdig prisma ; B kubus ; C vierzijdige piramide. 10 b de laatste. 11 a Bijvoorbeeld: c = 6 cm a,b. 13 b

8 A vijfzijdig prisma ; B kubus ; C vierzijdige piramide. 10 b de laatste. 11 a Bijvoorbeeld: c = 6 cm a,b. 13 b 5.1 NZIN N UISLN 2 8 vijfzijdig prisma ; B kuus ; vierzijdige piramide 9 3 a voor oven zij 10 de laatste 1:200 c 11 a Bijvooreeld: voor oven c 1 2 3 = 6 cm 3 12 a, d nne heeft gelijk. In het zij-en oevnaanzicht

Nadere informatie

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren Overzicht Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen Cursusjaar 2009 Peter de Waal Departement Informatica Voorwaardelijke kans Rekenregels Onafhankelijkheid Voorwaardelijke Onafhankelijkheid

Nadere informatie

Opgaven voor Kansrekening

Opgaven voor Kansrekening Opgaven voor Kansrekening Opgave 1. Je hebt 4 verschillende wiskunde boeken, 6 psychologie boeken en 2 letterkundige boeken. Hoeveel manieren zijn er om deze twaalf boeken op een boord te plaatsen als:

Nadere informatie

Rekenrijk. Antwoordenboek. Reken-wiskundemethode voor het basisonderwijs. Derde editie. Noordhoff Uitgevers

Rekenrijk. Antwoordenboek. Reken-wiskundemethode voor het basisonderwijs. Derde editie. Noordhoff Uitgevers Reken-wiskundemethode voor het basisonderwijs Rekenrijk Antwoordenboek Derde editie a auteurs Joop Bokhove Ceciel Borhouts Arlette Buter Keimpe Kuipers Ans Veltman auteur 'Meer' Elja Swart eindauteur Ko

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening ij hoofdstuk a Zij krijgt 8 67 8 960, euro. 6 Dat zijn 0, 87 06 64 kiezers. c Je het dan 0 4, 7 gram asterdsuiker nodig. 8 d In een jaar zitten 600 4 6 = 6 000 seconden. Er sterven per jaar

Nadere informatie

Opgaven voor Kansrekening - Oplossingen

Opgaven voor Kansrekening - Oplossingen Wiskunde voor kunstmatige intelligentie Opgaven voor Kansrekening - Opgave. Een oneerlijke dobbelsteen is zo gemaakt dat drie keer zo vaak valt als 4 en twee keer zo vaak als 5. Verder vallen,, en even

Nadere informatie

DE STELLING VAN NAPOLEON

DE STELLING VAN NAPOLEON www.raves.nl ton@raves.nl DE STELLING VAN NAPOLEON LUIDT: Als men aan de drie zijden van een willekeurige driehoek ABC gelijkzijdige driehoeken legt dan vormen de zwaartepunten van die drie gelijkzijdige

Nadere informatie

Paper 2 Bijlage 1: Lesplan (volgens MDA); Wil Baars

Paper 2 Bijlage 1: Lesplan (volgens MDA); Wil Baars Paper 2 Bijlage 1: Lesplan (volgens MDA); Wil Baars-10630996. Docent: Wil Baars Les: 1 Klas:4VWO Aantal leerlingen:21 Lesonderwerp Het vaasmodel: introductie Beginsituatie De leerling weet dat het aantal

Nadere informatie

Blok 2 - Vaardigheden

Blok 2 - Vaardigheden B-1a Blok - Vaardigheden Blok - Vaardigheden Extra oefening - Basis De getallen 16 en 16 6 ijn asolute aantallen. De percentages ijn relatieve aantallen. c aantal mensen 16 6 000 16 60 9 686 percentage

Nadere informatie

Samenvatting Tentamenstof. Statistiek 1 - Vakgedeelte

Samenvatting Tentamenstof. Statistiek 1 - Vakgedeelte Samenvatting Tentamenstof Statistiek 1 - Vakgedeelte Naam: Thomas Sluyter Nummer: 1018808 Jaar / Klas: 1e jaar Docent Wiskunde, deeltijd Datum: 14 oktober, 2007 Voorwoord Het eerstejaars vak Statistiek

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Kansrekening en Statistiek p.1 Overzicht Kansrekening en Statistiek - Geschiedenis - Loterij - Toetsen

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 1: Wegendiagrammen, bomen en geordende grepen (deze les sluit aan bij de paragrafen 1 en 2 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Binomiale verdelingen

Binomiale verdelingen Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Functies. Verdieping. 6N-3p 2010-2011 gghm

Functies. Verdieping. 6N-3p 2010-2011 gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de ijehorende grafiek. Je mag de GRM hierij geruiken. Y f ( x) x X

Nadere informatie

Extra oefening bij hoofdstuk 1

Extra oefening bij hoofdstuk 1 Extra oefening ij hoofdstuk a Zij krijgt 8 67 8 960, euro. 6 Dat zijn 0, 87 06 64 kiezers. c Je het dan 0 4, 7 gram asterdsuiker nodig. 8 d In een jaar zitten 600 4 6 = 6 000 seconden. Er sterven per jaar

Nadere informatie

Welk plaatje past bij de tekst?

Welk plaatje past bij de tekst? 2014 lok 1, week 6, les 1 Groep 5-6 Welk plaatje past ij de tekst? Wat ga je leren? Je kunt straks: uitleggen waarom het handig is dat je tijdens het lezen plaatjes maakt in je hoofd vertellen hoe de plaatjes

Nadere informatie

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456 Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =

Nadere informatie

9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a

9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a 6.0 INTRO De uitkomsten zijn allemaal. c (n+)(n ) (n +)(n ) = d - - = -0,75 -,75 = De uitkomsten zijn allemaal c n + (n+) (n+) = d + 6 4 4 4 = 6 4 = 6. REKENEN a ( + 5) = 8 = 64 = 8 + 5 = 6 + 5 = ( + 5

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe stijl) Correctievoorschrift VWO Voorereidend Wetenschappelijk Onderwijs 0 0 Tijdvak Inzenden scores Uiterlijk op 0 mei de scores van de alfaetisch eerste tien kandidaten per school op

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk - Funties en de rekenmahine Voorkennis: Funties ladzijde V-a De formule is T = + 00, d Je moet oplossen + 00, d = dus dan geldt 00, d = en dan is d = : 00, 77 m V-a f( ) = = 0en f( ) = ( ) (

Nadere informatie

Hoofdstuk 3 - Verdelingen

Hoofdstuk 3 - Verdelingen Hoofdstuk - Verdelingen ladzijde 8 V-a De gemiddelde sore is ( 7 + 7 8 + 9 + + 8 ) : 0 = 0,8. Je kunt het ook invoeren op de rekenmahine. TI 8/8: L: 7, 8, 9, 0,..,7, 8 en L:, 7,..., -Var Stats L,L geeft

Nadere informatie

college 4: Kansrekening

college 4: Kansrekening college 4: Kansrekening Deelgebied van de statistiek Doel: Kansen berekenen voor het waarnemen van bepaalde uitkomsten Kansrekening 1. Volgordeproblemen Permutaties Variaties Combinaties 2. Kans 3. Voorwaardelijke

Nadere informatie

Stevin vwo deel 1 Uitwerkingen hoofdstuk 1 Bewegen (31-08-2012) Pagina 1 van 20. b 12 3 5 7 c

Stevin vwo deel 1 Uitwerkingen hoofdstuk 1 Bewegen (31-08-2012) Pagina 1 van 20. b 12 3 5 7 c Stevin vwo deel 1 Uitwerkingen hoofdstuk 1 Bewegen (31-08-01) Pagina 1 van 0 0 a Opgaven 1.1 Meten van tijden en afstanden x = 1,66.. = 1,7 45 7,5 y = = 73,3.. = 73 4,6 6,3 π z = = 0,515.. = 0,5 38,4 1,7

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds 4. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

De stelling van Pythagoras

De stelling van Pythagoras De stelling van Pythagoras Inhoud Inhoud... 1 Inleiding... 3 De stelling van Pythagoras... 3.1 De stelling van Pythagoras... 3. De omgekeerde stelling van Pythagoras... 3.3 Bewijs van de stelling van Pythagoras...

Nadere informatie

c P( X 1249 of X 1751 µ = 1500 en σ = 100) = 1 P(1249 X 1751)

c P( X 1249 of X 1751 µ = 1500 en σ = 100) = 1 P(1249 X 1751) Uitwerkingen Wiskunde A Netwerk VWO 6 Hoofdstuk 5 Toetsen www.uitwerkingensite.nl Hoofdstuk 5 Toetsen Kern Het principe van een toets a Nee, de waarneming,% wijkt erg sterk af van de verwachte,5%. Ja,,6%

Nadere informatie

Lesbrief Hypergeometrische verdeling

Lesbrief Hypergeometrische verdeling Lesbrief Hypergeometrische verdeling 010 Willem van Ravenstein If I am given a formula, and I am ignorant of its meaning, it cannot teach me anything, but if I already know it what does the formula teach

Nadere informatie

Havo A deel 1 Uitwerkingen Moderne wiskunde 033,

Havo A deel 1 Uitwerkingen Moderne wiskunde 033, Havo A deel Uitwerkingen Moderne wiskunde Vaardigheden ladzijde + 9 0 0 7 9 8 d e 0 f 0 g 7 h i j k a 0 l 0 7 0 9 8 0 0 7 7 8 8 0 8 7 0 0 9 0 0 0 7, 9 0, 778 9 0, 0 0 d 0, 09 88 a 9 ladzijde a P(minder

Nadere informatie

De intrinsieke tijd in het Isotachenmodel

De intrinsieke tijd in het Isotachenmodel dr.ir. E.J. den aan Deltare De intrinieke tijd in het Iotahenmodel Inleidin Dit artikel ehrijft het a,,-iotahenmodel in termen an de intrinieke tijd in laat an met de kruinelheid. Daardoor zijn de iotahen

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 990-99: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een offiiële foreign oordinator voor de welekende AHSME-ompetitie (Amerian High Shool Mathematis Examination - USA en Canada)

Nadere informatie

1 Antwoorden tussenvragen

1 Antwoorden tussenvragen 1 Antwoorden tussenvragen 1.1 Een vooreeld van reht in ojetieve zin zijn ijvooreeld de regels van het urgerlijk proesreht zoals die zijn opgenomen in het Wetoek van Burgerlijke Rehtsvordering. Een vooreeld

Nadere informatie

VWO Wiskunde D Combinatoriek en Rekenregels

VWO Wiskunde D Combinatoriek en Rekenregels VWO Wiskunde D Combinatoriek en Rekenregels Combinatoriek en rekenregels Inhoudsopgave Wegendiagrammen en bomen Geordende grepen 7 3 Roosters 4 Ongeordende grepen 6 5 Het vaasmodel 6 Combinatorische vraagstukken

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 2: Roosters en ongeordende grepen (deze les sluit aan bij de paragrafen 3 en 4 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Wat doe ik als ik het niet meer snap?

Wat doe ik als ik het niet meer snap? 2014 lok 2, week 4, les 1 Groep 5-6 Wat doe ik als ik het niet meer snap? Wat ga je leren? Je kunt straks: de etekenis van een onekend woord zoeken in de tekst Wat ga je doen? Je gaat een tekst lezen over

Nadere informatie

Voorbeeld theorie examen

Voorbeeld theorie examen Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht

Nadere informatie

Pedagogisch beleidsplan. For happy kids!

Pedagogisch beleidsplan. For happy kids! Pedaoisch beleidsplan Inhoudsopave B 1. Voorwoord blz. 3 2. Beripsbepalin blz. 3 3. Alemene visie blz. 4 4. Kindbeeld blz. 5 5. Pedaoische visie blz. 5 6. Werkwijze astouderbureau blz. 8 7. Wet-en reelevin

Nadere informatie

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen?

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen? 1. Iemand heeft thuis 12 CD s in een rekje waar er precies 12 inpassen. a. Op hoeveel manieren kan hij ze in het rekje leggen. b. Hij wil er 2 weggeven aan zijn vriendin, hoeveel mogelijkheden? c. Hij

Nadere informatie

Leerstof voortentamen wiskunde A. 1. Het voortentamen wiskunde A

Leerstof voortentamen wiskunde A. 1. Het voortentamen wiskunde A Leerstof voortentamen wiskunde A In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde A op havo niveau te beginnen met het voortentamen van juli 2016. Deze specificatie

Nadere informatie

In een bos lopen 10 kabouters. De lieve fee heeft 3 mutsjes gebreid. Ze kiest drie kabouters om een mutsje op het hoofdje te zetten.

In een bos lopen 10 kabouters. De lieve fee heeft 3 mutsjes gebreid. Ze kiest drie kabouters om een mutsje op het hoofdje te zetten. VMBO Wiskunde Periodetoets Combinatoriek 10/12/2010 Deze toets bestaat uit 7 opgaven. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Er zijn maximaal 26 punten te behalen. Antwoorden

Nadere informatie

Hieronder zie je hoe dat gaat. Opgave 3. Tel het aantal routes in de volgende onvolledige roosters van linksboven naar rechtsonder.

Hieronder zie je hoe dat gaat. Opgave 3. Tel het aantal routes in de volgende onvolledige roosters van linksboven naar rechtsonder. Groepsopdracht 1: Volledige en onvolledige roosters Voor een volledig rooster kun je de driehoek van Pascal gebruiken om te weten te komen hoeveel routes er van A naar B zijn. Bij onvolledige roosters

Nadere informatie

Formulekaart VWO wiskunde B

Formulekaart VWO wiskunde B Formulekrt VWO wiskude B Verelijkie + + c = 0 + D = of met D = 4c D = 0, D > 0 = c = = c / = c > 0, c > 0, > 0 lo l = lo = = > 0, > 0, lo l lo = = > 0, > 0, e = = l > 0 l = = e > 0 Mchte e loritme = /

Nadere informatie

Symmetrie en oppervlakte

Symmetrie en oppervlakte Symmetrie en oppervlakte Hoofdstuk 5 1 a logoen4 /d 1 1 1 313 414 c logo 1: 180 logo : 180 logo 3: 90 logo 4: 90 d alle logo s zijn puntsymmetrisch 6 a a lijnsymmetrisch draaisymmetrisch puntsymmetrisch

Nadere informatie

BIJLAGE G VERSPREIDING ZOETWATERNEVEL LANGS DE IJSSELMEERDIJK

BIJLAGE G VERSPREIDING ZOETWATERNEVEL LANGS DE IJSSELMEERDIJK BIJLAGE G VERSPREIDING ZOETWATERNEVEL LANGS DE IJSSELMEERDIJK VERSPREIDING ZOETWATERNEVEL LANGS DE IJSSELMEERDIJK Inleiding Deze tekst evat een eoordeling van de effecten van de plaatsing van windturines

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds 4. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

Langs het Spaarne rijden soms wel 8 fietsers naast elkaar. Dat is best asociaal, zeker daar ze ook nog in een extreem langzaam tempo fietsen.

Langs het Spaarne rijden soms wel 8 fietsers naast elkaar. Dat is best asociaal, zeker daar ze ook nog in een extreem langzaam tempo fietsen. VMBO Wiskunde Periode Combinatoriek oktober 2010 Deze toets bestaat uit 15 opgaven. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Er zijn maximaal 31 punten te behalen. Antwoorden

Nadere informatie

Nederlands. Luisteren. Voor 1F Deel 1 van 2

Nederlands. Luisteren. Voor 1F Deel 1 van 2 Nederlands Luisteren Voor 1F Deel 1 van 2 Colofon Uitgeverij: Edu Actief.v. 0522-235235 info@edu-actief.nl www.edu-actief.nl Auteur: Mieke Lens Inhoudelijke redactie: Ina Berlet Titel: Nederlands Luisteren

Nadere informatie

In de tekst komen moeilijke woorden voor. In stap 4 achterhalen de kinderen de betekenis hiervan.

In de tekst komen moeilijke woorden voor. In stap 4 achterhalen de kinderen de betekenis hiervan. HANDLEIDING lok 3, week 3, les 2 groep 5-6 achtergrondinformatie Leesstrategie alle leesstrategieën Lesdoelen De kinderen kunnen: de tekst ekijken voordat ze gaan lezen (stap 1 t/m 3) edenken wat ze moeten

Nadere informatie

Groep 8 Tips bij werkboekje B

Groep 8 Tips bij werkboekje B Groep 8 Tips bij werkboekje B Lampencodes en getallen (1) Werkblad 1 Bij de tweede vraag Elk signaal met drie lampen kan worden uitgebreid tot een signaal met vier lampen, bijvoorbeeld door er één lamp

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: MEER DAN 0 JAAR ERVARING Dit document estt uit twee delen: de voorereidende opgven en een overzicht met lgerïsche vrdigheden. Mk de volgende opgven het liefst voorin

Nadere informatie

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1 H5 Ruimtelijke figuren in het plat VWO 5.0 INTRO a een vierkant ; een lijnstuk ; een vierkant Bijvooreeld zo: Het laagste punt is het midden van het grondvlak. Snij van een kurk aan weerszijden een stuk

Nadere informatie

EERSTE AFGELEIDE TWEEDE AFGELEIDE

EERSTE AFGELEIDE TWEEDE AFGELEIDE Lesrief EERSTE AFGELEIDE etreme waarden raaklijn normaal TWEEDE AFGELEIDE uigpunten 6/7Np GGHM03 Inleiding Met ehulp van de grafische rekenmachine kun je snel zien of de grafiek daalt of stijgt. Het horizontaal

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht

Nadere informatie

Eenvoudige breuken. update juli 2007 WISNET-HBO

Eenvoudige breuken. update juli 2007 WISNET-HBO Eenvoudige reuken update juli 2007 WISNET-HBO De edoeling van deze les is het repeteren met pen en papier van het werken met reuken. Steeds wordt ij geruik van letters verondersteld dat de noemers van

Nadere informatie

DRIEHOEKSGETALLEN GETALLENRIJEN AFLEVERING 3. som

DRIEHOEKSGETALLEN GETALLENRIJEN AFLEVERING 3. som GETALLENRIJEN AFLEVERING In deze jaargang van Pythagoras staan getallenrijen centraal. Deze aflevering gaat over de rij,, 6, 0,, 2,... Dit zijn de zogeheten driehoeksgetallen. Ze vormen een interessante

Nadere informatie

Hoofdstuk 9 - Ruimtemeetkunde

Hoofdstuk 9 - Ruimtemeetkunde oderne wiskunde 9e editie vwo deel 2 Voorkennis: wee soorten tekeningen ladzijde 254 V-1a d wee lijnen zijn evenwijdig als ze elkaar nooit snijden, hoe ver je de lijnen ook doortrekt. In werkelijkheid

Nadere informatie

wizkid 2016 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan

wizkid 2016 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.sanderspuzzelboeken.nl www.schoolsupport.nl www.blinkuitgevers.nl www.idpremiums.nl

Nadere informatie

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) =

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) = 2.1 Kansen [1] Voorbeeld 1: Als je gooit met twee dobbelstenen zijn er in totaal 6 6 = 36 mogelijke uitkomsten. Deze staan in het rooster hiernaast. De gebeurtenis som is 6 komt vijf keer voor. Het aantal

Nadere informatie

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c Hoofdstuk 8, Statistische maten 1 Hoofdstuk 8 Statistische maten Kern 1 Centrum- en spreidingsmaten 1 a Partij is een kwalitatieve variaele, kindertal een kwantitatieve, discrete variaele.,c d kindertal

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 4: Rekenregels (deze les sluit aan bij de paragraaf 8 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 2: Roosters en ongeordende grepen (deze les sluit aan bij de paragrafen 3 en 4 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

PROJECT. schaalrekenen. aardrijkskunde en wiskunde 1 vmbo-t/havo. naam. klas

PROJECT. schaalrekenen. aardrijkskunde en wiskunde 1 vmbo-t/havo. naam. klas schaalrekenen PROJECT aardrijkskunde en wiskunde 1 vmo-t/havo naam klas Auteurs Femke Trap José Spaan Bonhoeffer College, Castricum 2006 EPN, Houten, The Netherlands. Behoudens de in of krachtens de Auteurswet

Nadere informatie

Laplace Experimenteel Intuïtie Axiomatisch. Het kansbegrip. W. Oele. 27 januari 2014. W. Oele Het kansbegrip

Laplace Experimenteel Intuïtie Axiomatisch. Het kansbegrip. W. Oele. 27 januari 2014. W. Oele Het kansbegrip 27 januari 2014 Deze les Kanstheorie volgens Laplace Experimentele kanstheorie Axiomatische kanstheorie Intuïtie Kanstheorie volgens Laplace (1749-1827) De kans op een gebeurtenis wordt verkregen door

Nadere informatie

Khaqani Academy, versie 1.0 rev. mei 2016 Uitgave Khaqani Academy 2016

Khaqani Academy, versie 1.0 rev. mei 2016 Uitgave Khaqani Academy 2016 Khaqani Aademy, versie.0 rev. mei 206 Uitgave Khaqani Aademy 206 Niets uit deze uitgave mag worden overgenomen in welke vorm dan ook zonder toestemming van de rehtheenden. Voor informatie kunt u zih wenden

Nadere informatie