Vergelijkingen en hun oplossingen
|
|
- Camiel de Backer
- 2 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Vergelijkingen en hun oplossingen + 3 = 5 is een voorbeeld van een wiskundige vergelijking: er komt een = teken in voor, en een onbekende of variabele: in dit geval de letter. Alleen als we voor de variabele het getal 2 invullen klopt het resultaat: = 5. Je zou het getal 2 daarom `de waarmaker' van de vergelijking kunnen noemen. In plaats van `de waarmaker' spreken we over de oplossing. Het getal 2 is dus de oplossing van de vergelijking + 3 = 5. Je kunt ook zeggen: = 2 is de oplossing van de vergelijking + 3 = 5. a. 4 is de oplossing van de vergelijking 5 a = 20. Waar of niet waar b. y = 5 is de oplossing van de vergelijking y + 5 = 5. Waar of niet waar Nagaan of een getal een oplossing is van een vergelijking Is = 5 een oplossing van de vergelijking = 7 Om dat na te gaan, hoef je het getal 5 alleen maar in te vullen voor de variabele. Je krijgt dan: = 7 en dat is waar. Let op de betekenis van 3: 3 = 3 = 3 = 3 maal. Dus = 5 is een oplossing van de vergelijking = 7. In plaats van invullen gebruikt men ook wel het woord substitueren. Is = -2 een oplossing van de vergelijking 4 + = Om dat na te gaan substitueer je het getal -2 voor de variabele (op twee plaatsen!). Je krijgt dan: = Is dat waar Nee, want de linker kant geeft 2 als resultaat (want = 2) en de rechter kant geeft 4 als resultaat (want = 4). Dus = -2 is geen oplossing van de vergelijking. 2. a. Is p = 0 een oplossing van de vergelijking 2p + 50 = p b. Is s = -3 een oplossing van de vergelijking 0-5s = 28 + s c. Is = 0 een oplossing van 2 +0 = Eerstegraads vergelijkingen systematisch oplossen Alle vergelijkingen hierboven waren eerstegraads vergelijkingen (er kwamen geen vormen in voor zoals 2,. 5 ). Ook in het vervolg van dit onderdeel zullen we alleen kijken naar eerstegraads vergelijkingen (en eerstegraads ongelijkheden). Een eerstegraads vergelijking heeft meestal één oplossing. Als je de oplossing van een eerstegraads vergelijking wilt vinden, dan is het verstandig om de vergelijking op een systematische manier op te lossen. We leggen deze methode uit met het zogenaamde weegschaalmodel.
2 De balansweegschaal Hiernaast zie je een balansweegschaal waarmee tot in de vijftiger jaren van de vorige eeuw ook in Nederland vaak werd gewogen. Het principe is je vast wel duidelijk. Het oplossen van (eerstegraads-) vergelijkingen leggen we uit met het zogenaamde weegschaalmodel. In het linkerschaaltje van de weegschaal hieronder liggen 3 kogeltjes met alle een gelijk maar nog onbekend gewicht van gram. Daarnaast liggen er ook nog 3 één-grams kogeltjes. In het rechterschaaltje ligt één zo n -grams kogeltje en zeven ééngrams kogeltjes. Als we links en rechts maar hetzelfde doen: hetzelfde of er bij leggen óf met hetzelfde vermenigvuldigen of door hetzelfde delen, blijft de weegschaal in evenwicht ( dus wiskundig het =-teken gelden). We vinden dat het gewicht twee gram moet zijn door de volgende stappen: Één - gramskogeltje Één - gramskogeltje Drie - gramskogeltjes Drie - gramskogeltjes Delen door 2 Delen door 2 In de veel bondiger wiskundige notatie:
3 3 + 3 = = 7. 2 = = 2 Door de gevonden oplossing in de oorspronkelijke vergelijking in te vullen, controleer je of de gevonden oplossing correct is: = En jawel: 9 = 9 De essentie bij het oplossen.is dus dat je bij elke stap aan twee kanten van het = teken het zelfde doet: je telt aan de linker kant een getal op en aan de rechter kant tel je hetzelfde getal op. Of je vermenigvuldigt aan de linker kant met een getal en aan de rechter kant vermenigvuldig je met het zelfde getal. In plaats van optellen kan je ook aftrekken, in plaats van vermenigvuldigen kan je ook delen. Nog een voorbeeld zal het verduidelijken: Los op: = 3-5 Oplossing ( bedenk en schrijf er eventueel zelf de ondernomen acties bij): = = = = = -8 = -4 Overigens worden de tweede en vierde regel vaak niet opgeschreven. Ook valt het je hopelijk op dat de ondernomen acties worden ingegeven door de gedachte: Hoe kom ik zo snel mogelijk in de situatie van: een getal = een getal Ook hier weer: om na te gaan of = -4 inderdaad de oplossing is van de vergelijking = 3-5, kan je weer substitueren. Je krijgt dan: = Klopt dit Ja, want de linker kant is gelijk aan -7 en de rechter kant óók. Dus = -4 is de oplossing van de vergelijking. 3. Kan je de oplossing ook vinden als je begint met aan beide kanten 3 af te trekken 4. Los op: a. 3 = 2 + b. 5p = 2 p c. 6t + 4 =3t 2 d a = -7 Let op: bij delen kan je (natuurlijk) niet delen door 0
4 5. Los op: a. 3 5 = 0 b. -3q 5 = c. + 3 = 3 d. + + =4 Eerst haakjes wegwerken Bij vergelijkingen met haakjes is het meestal handig om eerst de haakjes weg te werken. Een voorbeeld: Je gebruikt: a (b + c ) = ab + ac Los op: 3 ( + 2 ) = Los op: a. 2 ( - ) = b. 4 ( y ) = y c. -3 ( 2 ) = 3 d. 2 ( p ) = 2 ( p + l ) 3 ( + 2 ) = = = = = = 8 = 4½ 7. Los op: a. 5(k + l ) + 2k = 5k 4 b. 8( + 2 ) = 3 + c. 4(t + 3 ) - 2(t + 4) = 5t 26 d. 2( - ) + = 2 Ongelijkheden In een wiskundige ongelijkheid komt er geen gelijkheids-teken maar een ongelijkheidsteken voor. Daar zijn vier vormen van: > : betekent groter dan < : kleiner dan ( eventuele hint: je kunt er een < (k) van maken) : kleiner dan of gelijk aan : groter dan of gelijk aan Het oplossen van eerstegraads ongelijkheden kan je op twee manieren uitvoeren: Methode Deze methode is dezelfde als de oplossingsmethode van vergelijkingen zoals hierboven uitgevoerd; we doen het aan de hand van hetzelfde voorbeeld maar nu is het een ongelijkheid.
5 Los op: We zoeken nu dus waarden voor waarbij kleiner dan of gelijk is aan Ga maar na: een kleiner dan 2 is bijvoorbeeld 0 en als je 0 invult voor krijg je: en inderdaad is: 0 7 Je ziet dat de oplossingsmethode gelijk is aan die van eerstegraads vergelijkingen. Let op: Er in één addertje onder het gras: bij vermenigvuldigen met of delen door een negatief getal klapt het teken om. Kijk maar naar het volgende: Vanzelfsprekend geldt bijvoorbeeld: maar: Nee, dat klopt niet, wel geldt: Voorbeeld: Los op: We hebben de actie-pijlen nu weggelaten Het teken klapt om! Wat is er in de handige eerste stap gedaan Methode 2 ( Als je nog niet bekend bent met de grafische rekenmachine (GR) moet je eerst dat onderdeel bestuderen!) Methode 2 ga je in de toekomst bij het oplossen van alle andere ongelijkheden ook gebruiken. Ze bestaat uit twee stappen en maakt bij de tweede stap gebruik van de GR
6 Nogmaals ons eerste voorbeeld: Los op: Stap : Los eerst de bijbehorende vergelijking op; hier dus: = + 7 Dat leverde op: =2 Stap 2: Voor het oplossen van de ongelijkheid: gebruiken we de GR: Voer het linkerlid van de ongelijkheid (dat wil zeggen de vorm links van het ongelijkheidsteken) als Y en het rechterlid als Y2 op je GR in. Kies bij WINDOW voor Xmin en Xma waarden rond de oplossing van de vergelijking ( in ons voorbeeld bijvoorbeeld -5 resp. 5; handig is vaak om ook = 0 in beeld te hebben; dan zie je namelijk ook de y-as ) en kies vervolgens in het ZOOM-menu voor ZoomFit. Nu krijg je het volgende plaatje: Hierin kan je wat je weet erbij schrijven: y 2 =+7 y =3+3 2 We willen weten voor welke de grafiek van y = 3+3 gelijk valt met of onder de grafiek van y = +7 ligt; dat lees je makkelijk af uit de figuur: y 2 =+7 y =3+3 2 De oplossing is dus: 2
7 9. Los op: a < 4 b. 2 5 > c. < 0 d. 6-8 > 3-2 e. - 5 < f. 3(a+) + > 5(a+2) Antwoorden:. a. p = 6 b. waar c. niet waar 2. a. Nee b. Ja c. Ja 3. a. Ja 4. a. = b. p = c. t = -2 d. a = a. = 5 b. q = -2 c. = 0 d. = 2 e. a < a. = b. y = c. = 0 d. geen oplossing 7. a. k = -4 b. = -3 c. t = 0 d. elk getal is oplossing 8. links en rechts met twee vermenigvuldigd 9. a. < 4 b. > 5 c. > 0 d. < e. < 6
Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4
Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen
5.1 Lineaire formules [1]
5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
3.1 Kwadratische functies[1]
3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige
4.1 Negatieve getallen vermenigvuldigen [1]
4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats
1.1 Lineaire vergelijkingen [1]
1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
x 2x x 4x x 1x x 8x x x 12 = 0 G&R vwo B deel 1 1 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/25
C. von Schwartzenberg 1/ 1 I, II, IV en V zijn tweedegraadsvergelijkingen. (de hoogste macht van is steeds ; te zien na wegwerken haakjes?) (III is een eerstegraadsvergelijking en VI is een derdegraadsvergelijking)
Rekenvaardigheden voor klas 3 en 4 VWO
Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)
Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A.
Wiskunde voor het hoger onderwijs deel A Errata 00 Noordhoff Uitgevers Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Hoofdstuk. 4 Op blz. in het Theorieboek staat halverwege de
Hoofdstuk 2: Grafieken en formules
Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde
Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A
. Bereken zonder rekenmachine: + d. + 0 + 6 6 6 Hogeschool Rotterdam Voorbeeldeamen Wiskunde A 6 6 Oplossingen. Bereken zonder rekenmachine: + 6 b. + 6 0 + 9. Bereken zonder rekenmachine: 9 9 d.. Een supermarkt
kwadratische vergelijkingen
kwadratische vergelijkingen In deze paragraaf: 'exact berekenen van oplossingen', 'typen kwadratische vergelijkingen' en 'de abc-formule en de discriminant'. de abc-formule Voor een tweedegraads vergelijking
Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)
1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht
1.1 Tweedegraadsvergelijkingen [1]
1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2
Lineaire formules.
www.betales.nl In de wiskunde horen bij grafieken bepaalde formules waarmee deze grafiek getekend kan worden. Lineaire formules zijn formules die in een grafiek een reeks van punten oplevert die op een
Controle Vul in de vergelijking voor x het antwoord -7 in. Er komt dan te staan: -7 + 2 = 5.
1. Wat is een eerstegraads vergelijking? Een voorbeeld van een vergelijking is + 2 =. Een vergelijking herken je aan het = teken. Wat vóór het = teken staat noemen we het linker lid (de linkerkant) en
. noemer noemer Voorbeelden: 1 Breuken vereenvoudigen Schrijf de volgende breuken als één breuk en zo eenvoudig mogelijk: 4 1 x e.
Tips: Maak de volgende opgaven het liefst voorin in één van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een som niet lukt, werk hem dan uit tot waar je kunt en ga verder met de volgende
1.3 Rekenen met pijlen
14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij
Breuken met letters WISNET-HBO. update juli 2013
Breuken met letters WISNET-HBO update juli 2013 De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers
Uitwerkingen Rekenen met cijfers en letters
Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................
3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
Formules grafieken en tabellen
Formules grafieken en tabellen Formules invoeren Met kom je op het formule-invoerscherm. Reeds ingevoerde formules wis je met C. Krijg je niet een scherm waarop Y, Y,... te zien zijn kies dan bij eerst
Rekenen aan wortels Werkblad =
Rekenen aan wortels Werkblad 546121 = Vooraf De vragen en opdrachten in dit werkblad die vooraf gegaan worden door, moeten schriftelijk worden beantwoord. Daarbij moet altijd duidelijk zijn hoe de antwoorden
7.1 Ongelijkheden [1]
7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij
1 Rekenen met gehele getallen
1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9
Berekeningen op het basisscherm
Berekeningen op het basisscherm Het basisscherm Zet de grafische rekenmachine (GR) aan met. Je komt op het basisscherm waarop je de cursor ziet knipperen. Berekeningen maak je op het basisscherm. Van een
1.1 Rekenen met letters [1]
1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren
Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten.
Theorie lineair verband Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. In het dagelijks leven wordt vaak gebruik gemaakt van
breuken 1.0 Inleiding 1.1 Natuurlijke getallen
1 Natuurlijke getallen, breuken 1.0 Inleiding Dit hoofdstuk begint in paragraaf 1.1 met het rekenen met de getallen 0, 1, 2,, enzovoort. Dat heb je op de lagere school ook geleerd, alleen wordt er nu wat
2.1 Lineaire formules [1]
2.1 Lineaire formules [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte
Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014
Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes
1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12
Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal
x 3x x 7x x 2x x 5x x 4x G&R havo B deel 1 3 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/12 TOETS VOORKENNIS
G&R havo B deel Vergelijkingen en ongelijkheden C. von Schwartzenberg / a x = x =. b x = x x =. c d x (x ) 0 x = 0 =. 9. e f x 0 x ( x ) 0. x x = x x ( x )( x + ). TOETS VOORKENNIS a ( x + ) = x c x e
H. 8 Kwadratische vergelijking / kwadratische functie
H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische
3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.
92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,
Vergelijkingen met breuken
Vergelijkingen met breuken WISNET-HBO update juli 2013 De bedoeling van deze les is het doorwerken van begin tot einde met behulp van pen en papier. 1 Oplossen van gebroken vergelijkingen Kijk ook nog
Te kennen leerstof wiskunde voor het toelatingsexamen graduaten. Lea De Bie lea.debie@cvoleuven.be
Te kennen leerstof wiskunde voor het toelatingsexamen graduaten Lea De Bie lea.debie@cvoleuven.be SOORTEN GETALLEN (Dit hoofdstukje geldt als inleiding en is geen te kennen leerstof). Natuurlijke getallen
5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2
Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30
Voorkennis getallenverzamelingen en algebra. Introductie 213. Leerkern 214
Open Inhoud Universiteit Appendix A Wiskunde voor milieuwetenschappen Voorkennis getallenverzamelingen en algebra Introductie Leerkern Natuurlijke getallen Gehele getallen 8 Rationele getallen Machten
Machten, exponenten en logaritmen
Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde
WISNET-HBO. update aug. 2011
Basiskennis van machten WISNET-HBO update aug. 0 Inleiding Deze les doorwerken met pen en papier! We noemen de uitdrukking a 4 (spreek uit: a tot de vierde macht) een macht van a (in dit geval de vierde
16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3
Hoofdstuk 6 HAAKJES VWO 6.0 INTRO 6. TREK AF VAN 8 a b De uitkomsten zijn allemaal. c (n + )(n ) (n + )(n ) = d - - = -0,75 -,75 = b De uitkomsten zijn allemaal. c n + (n + ) (n + ) = + 6 4 4 = 6 4 = d
Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014
Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes
Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag
Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken
VIDEO 4 4. MODULUSVERGELIJKINGEN
VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook
3.1 Haakjes wegwerken [1]
3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben
Samenvatting Wiskunde B
Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen
OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl
OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare
REKENVAARDIGHEID BRUGKLAS
REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling
Practicum hoogtemeting 3 e klas havo/vwo
Deel (benaderbaar object) Om de hoogte van een bepaald object te berekenen hebben we geleerd dat je dat kunt doen als je in staat bent om een rechthoekige driehoek te bedenken waarvan je één zijde kunt
Hoofdstuk 1: Basisvaardigheden
Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen
1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling
Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil
HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....
HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan
EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.
EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.
WERKBOEK REKENVAARDIGHEID. Voeding en Diëtetiek
WERKBOEK REKENVAARDIGHEID Voeding en Diëtetiek 11 INHOUDSOPGAVE ACHTERGROND 3 1. Elementaire bewerkingen 4 2. Voorrangsregels (bewerkingsvolgorde) 8 3. Bewerkingen met machten 11 4. Rekenen met breuken
Rekenen met cijfers en letters
Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),
Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1
Lineaire verbanden 4 HAVO wiskunde A getal en ruimte deel 0. voorkennis Letterrekenen Regels: a(b + c ) = a b + ac (a + b )c = a c + bc (a + b )(c + d ) = a c + a d + b c + bd Vergelijkingen oplossen Je
Checklist Wiskunde B HAVO HML
Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten
opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename
Algebra Anders Parabolen uitwerkingen 1 Versie DD 014 1 Parabolen herkennen opdracht 1. x - -1 0 1 3 y 4 1 0 1 4 9-3 -1 + 1 + 3 +5 toename tt + + + + a) + b) De toename is steeds een nieuwe rand. De randen
Producten, machten en ontbinden in factoren
Joke Smit College Producten, machten en ontbinden in factoren Voor cursisten uit de volgende klassen: alle Havo en VWO klassen (wiskunde, wiskunde A en wiskunde B) Wat kun je oefenen? 1. Het uitrekenen
Berekeningen op het basisscherm
Berekeningen op het basisscherm Het basisscherm Zet de grafische rekenmachine (GR) aan met [ON]. Je komt op het basisscherm waarop je de cursor ziet knipperen. Berekeningen maak je op het basisscherm.
Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde
Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden
F3 Formules: Formule rechte lijn opstellen 1/3
F3 Formules: Formule rechte lijn opstellen 1/3 Inleiding Bij Module F1 heb je geleerd dat Formule, Verhaal, Tabel, Grafiek en Vergelijking altijd bij elkaar horen. Bij Module F2 heb je geleerd wat een
7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10
B M De getallenlijn 0 + = = + = = Nee 0 0 = 9 = 0 6 = = 9 = 6 = 6 = = C a b a b 0 = 0 0 = 0 a b < 0 ; a b < 0 ; a > b ; b > a = = = = C Nee, hij loopt steeds maar verder. < x H x < x < x < x + + = x +
Samenvattingen 5HAVO Wiskunde A.
Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband
Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo
Bijlage 7 Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Deze vragen kunnen gebruikt worden om aan het eind van klas 3 havo/vwo na te gaan in hoeverre leerlingen in staat zijn te
Goed aan wiskunde doen
Goed aan wiskunde doen Enkele tips Associatie K.U.Leuven Tim Neijens Katrien D haeseleer Annemie Vermeyen Maart 2011 Waarom? Dit document somt de belangrijkste aandachtspunten op als je een wiskundeopgave
klas 3 havo Checklist HAVO klas 3.pdf
Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de
Correctievoorschrift HAVO
Correctievoorschrift HAVO 008 tijdvak wiskunde B, Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor
6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden
6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p
deel B Vergroten en oppervlakte
Vergroten en verkleinen - wiskunde deel B Vergroten en oppervlakte Als je een figuur door een fotokopieerapparaat laat vergroten dan worden alle afmetingen in de figuur met dezelfde factor vermenigvuldigd.
Antwoordmodel - Kwadraten en wortels
Antwoordmodel - Kwadraten en wortels Schrijf je antwoorden zo volledig mogelijk op. Tenzij anders aangegeven mag je je rekenmachine niet gebruiken. Sommige vragen zijn alleen voor het vwo, dit staat aangegeven.
Rekenen met verhoudingen
Rekenen met verhoudingen Groep 6, 7 Achtergrond Leerlingen moeten niet alleen met de verhoudingstabel kunnen werken wanneer die al klaar staat in het rekenboek, ze moeten ook zelf een verhoudingstabel
2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13
REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.
Ruitjes vertellen de waarheid
Ruitjes vertellen de waarheid Opdracht 1 Van fouten kun je leren Van fouten kun je leren, jazeker. Vooral als je héél goed weet wat er fout ging. Vandaag leer je handige formules begrijpen door kijken
16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3
Hoofdstuk 16 HAAKJES VWO 16.0 INTRO 16.2 TREK AF VAN 8 a 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 1111d 1 2-2 2-1 2= -0,75-3,75 = 3 2 b De uitkomsten zijn allemaal 2. c n 2 +
Wiskundige vaardigheden
Inleiding Bij het vak natuurkunde ga je veel rekenstappen zetten. Het is noodzakelijk dat je deze rekenstappen goed en snel kunt uitvoeren. In deze presentatie behandelen we de belangrijkste wiskundige
Noordhoff Uitgevers bv
Voorkennis V-1a 4 8 + 4 1,80 + 4 0,60 = 32 + 7,20 + 2,40 = 41,60. Ze is 41,60 kwijt. 4 (8 + 1,80 + 0,60) = 4 10,40 = 41,60. Ze krijgt hetzelfde edrag. c 8 + 1,80 + 0,60 4 = 8 + 1,80 + 2,40 = 12,20. Je
Berekeningen op het basisscherm
Berekeningen op het basisscherm Het basisscherm Zet de grafische rekenmachine (GR) aan met waarop je de cursor ziet knipperen.. Je komt op het basisscherm, Contrast bijstellen Berekeningen maak je op het
Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b
Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen
Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude
Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude 1 De sinus van een hoek Eenheidscirkel In de figuur hiernaast
1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1.
Tentamen-wiskunde?. De basiswiskunde. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + ) =. Oplossing : ln(x + 2) = + ln(x + ) x + 2 = ln + x + 3 = ln dus x =
Uitleg: In de bovenstaande oefening zie je in het eerste blokje een LEES en een SCHRIJF opdracht. Dit is nog lesstof uit het tweede trimester.
In onderstaande oefeningen zijn kleuren gebruikt. Deze dienen aleen om de structuren makkelijker terug te kunnen herkennen. Ze worden niet standaard zo gebruikt. De dunne rood/roze balken zijn ook geen
Basiskennistoets wiskunde
Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide
Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)
Wiskunde B (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Inzenden scores Uiterlijk op 9 mei de scores van de alfabetisch eerste vijf kandidaten per school op
BLAD 6: KARWEITJES EN KOZIJNEN
BLAD 6: KARWEITJES EN KOZIJNEN 1. Samen een karweitje doen a. Vier vrienden hebben een karweitje gedaan. Samen hebben ze daarmee 60 euro verdiend. Hoeveel krijgt ieder?... b. Hoeveel zou iedereen krijgen
Wortels met getallen. 2 Voorbeeldenen met de vierkantswortel (Tweedemachts wortel)
Wortels met getallen 1 Inleiding WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht van de
Noorderpoortcollege school voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 periode 3. M. van der Pijl. Transfer Database
Noorderpoortcollege school voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 periode 3 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet
Elementaire rekenvaardigheden
Hoofdstuk 1 Elementaire rekenvaardigheden De dingen die je niet durft te vragen, maar toch echt moet weten Je moet kunnen optellen en aftrekken om de gegevens van de patiënt nauwkeurig bij te kunnen houden.
1. Vectoren in R n. y-as
1. Vectoren in R n Vectoren en hun meetkundige voorstelling. Een vector in R n is een rijtje (a 1, a 2,..., a n ) van reële getallen. De getallen a i heten de coördinaten van de vector. In het speciale
logaritmen WISNET-HBO update jan Zorg dat je het lijstje met rekenregels hebt klaarliggen als je met deze training begint.
Training Vergelijkingen met logaritmen WISNET-HBO update jan. 0 Inleiding Voor deze training heb je nodig: de rekenregels van machten de rekenregels van de logaritmen Zorg dat je het lijstje met rekenregels
Uitwerking Basisopgaven
Uitwerking Basisopgaven Opgave 1 a. Gevraagd wordt om y = 3x 2 te tekenen. Een manier om dit te doen is het berekenen van snijpunten met x-as en y-as: - Snijpunt y-as: x = 0 invullen geeft y = 3.0 2 =
9.0 INTRO. Onder nul. In de nacht van 29 op 30 december was de temperatuur nog vier graden lager. a Hoe koud was het die nacht?
57 9.0 INTRO Onder nul 1 Temperaturen worden in ons land gemeten in graden Celsius ( C). Bij 0 C bevriest water. In de winter is het vaak kouder dan 0 C. Zo was de middagtemperatuur op 9 december 006 in
Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2
Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van
Functiewaarden en toppen
Functiewaarden en toppen Formules invoeren Met [Y=] kom je op het formule-invoerscherm. Reeds ingevoerde formules wis je met [CLEAR]. Krijg je niet een scherm waarop Y1, Y2,... te zien zijn, kies dan bij
5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking
5. Vergelijkingen 5.1. Vergelijkingen met één variabele 5.1.1. Oplossen van een lineaire vergelijking Probleem : We willen x oplossen uit de lineaire vergelijking p x+q=r met p. Maxima biedt daartoe in
Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker
Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker Programma Breuken PPON Leerlijn Didactiek van bewerkingen Breuken en kommagetallen in het echt Kommagetallen