3.2 Basiskennis De getallenlijn Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat."

Transcriptie

1 92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: De getallenlijn Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat, rekenkundig gelijk is aan wat rechts van =staat. De ongelijkheidstekens De ongelijkheidstekens zijn: 2<3iswaar <betekent: kleinerdan. 0> 1iswaar >betekent: groterdan. 5 1iswaar betekent: kleinerofgelijkaan. 4 5iswaar betekent: groterofgelijkaan. 2<3betekentdus2iskleinerdan3,of: 2staatopdegetallenlijnlinksvan3. Positieve getallen 2;3; 1 2 Positievegetallenzijngetallendiegroterzijndannul. Zestaanopdegetallenlijnrechtsvanhetgetal0. 12>0 Negatieve getallen 2<0 Negatieve getallen zijn getallen die kleiner zijn dan nul. Ze worden aangeduid met een min-teken ervoor. Nul Nul is niet positief en niet negatief.

2 Basiskennis 93 Gebroken getallen of breuken Breukenzijngetallenvandevorm teller noemer,waarbijdetellerendenoemergehele getallenzijn.denoemerkannietgelijkaan0zijn.zoalsjeweetmakenwevaak geenverschiltusseneenbreukeneendeling. Alsindetellerófindenoemereennegatiefgetalstaat,danishetgebruikelijk om het minteken vóór de breukstreep te zetten. 8 5= = = 3 4 en Opgave1 Neem over en vul in (gebruik>voor is groter dan, of<voor iskleinerdan,of=voor isgelijkaan ): a) 5 6,want... d) ,want... b) ,want... e) ,want... c) ,want... f) ,want Bewerkingen met getallen Vermenigvuldigen De onderdelen waarop de bewerking vermenigvuldigen wordt uitgevoerd heten factoren. Het geheel van twee factoren en de bewerking vermenigvuldigen heet product. Het resultaat van de bewerking vermenigvuldigen heet uitkomst. 3 4=12 3,4 zijn factoren, 3 4hetproduct, 12isdeuitkomst. Het vermenigvuldigen van positieve en negatieve getallen 2 3 = 6 Het vermenigvuldigen van breuken Breuken worden vermenigvuldigd door de tellers met elkaar te vermenigvuldigen en ook de noemers met elkaar te vermenigvuldigen = 6 12 Delen Delen is de omgekeerde bewerking van vermenigvuldigen. Wat wordt gedeeld heet het deeltal. Waardoor wordt gedeeld heet de deler. 6 3=2, want2 3=6 In12 3=4is: het deeltal 12, dedeler3, hetquotiënt12 3, uitkomst 4.

3 94 Algebra 6 3= 2, want 2 3= = = = 7 6 Deler en deeltal samen heten quotiënt. Het resultaat van de bewerking delen heet de uitkomst. Het delen van positieve en negatieve getallen Het delen van breuken Delen door een breuk is vermenigvuldigen met het omgekeerde van die breuk. Breukenandersschrijven 1 2 = 2 4 = 3 6 enz. Optellen en aftrekken De onderdelen waarop de bewerking optellen wordt uitgevoerd heten termen. Hetgeheelvantweetermenendebewerking optellen heetsom(envan de bewerking aftrekken verschil. Het resultaat van de bewerking optellen of aftrekken heet uitkomst. 2+ 3= 1 2+3=5 2 3= = = = 5 6 Het optellen van positieve en negatieve getallen Het optellen van breuken Breuken kunnen alleen worden opgeteld als ze gelijke noemers hebben. Als ze ongelijke noemer hebben moeten ze eerst gelijknamig worden gemaakt. Het vereenvoudigen van breuken 4 12 = 1 3 telleren noemer door 4 gedeeld;want: 4 12 = 4x1 4x3 = = = (2+3)= 2 5= = = 3 3 Breuken kunnen worden vereenvoudigd door teller en noemer door een zelfde getalte delen. Dat leverteengetalopdatop degetallenlijnop dezelfdeplaats staat en dus dezelfde waarde heeft. Haakjes wegwerken Berekeneerstwattussenhaakjesstaatengadanpasverder. Machtsverheffen Machtsverheffen is herhaald vermenigvuldigen van dezelfde factor. 2 7 = ,hierinheet2hetgrondtalen7deexponent.

4 Basiskennis 95 Opgave 2 Vereenvoudig: a) c) e) 17 1 g) b) 27 3 d) 50 5 f) h) Opgave 3 a) c) e) g) b) d) f) h) Opgave 4 a) c) e) g) b) d)5 2 3 f) h) Opgave 5 a) c) e) g)6 1 4 b) d) f) h) Opgave 6 a)2 3 c)( 1 5 )4 e)( 2 7 )3 g) (3 3 5 ) Afspraken Volgorde van bewerking b)3 6 d)6 3 f)( 3) 5 h)( )3 Om misverstanden te voorkomen en haakjes te kunnen weglaten is afgesproken de rekenkundige bewerkingen haakjeswegwerken, machtsverheffen, vermenigvuldigen en delen, = = 14 3= (2+3)= 2 3 5= = 6 5=1

5 96 Algebra optellen en aftrekken in deze volgorde uit te voeren, waarbij vermenigvuldigen en delen als gelijkwaardige bewerkingen worden beschouwd en van links naar rechts worden uitgevoerd, evenals optellen en aftrekken. Breuken worden altijd zo veel mogelijk vereenvoudigd. Let op dat steeds aan weerszijden van het = teken dingen staan die ook echt aan elkaar gelijk zijn!! Eigenschappen De wissel-eigenschap voor vermenigvuldigen 2 3 = 3 2 Vermenigvuldigen kan in omgekeerde volgorde worden uitgevoerd, zonder dat de uitkomst verandert. De wissel-eigenschap voor optellen 4+5=5+4 Ook optellen kan in omgekeerde volgorde worden uitgevoerd, zonder dat de uitkomst verandert ,maar 3 2=3+ 2= = ,maar 6 3=6 1 3 = = (2 3) 4= 6 4=24 2 (3 4)= 2 12=24 (2+3)+4= = 5+4=9 2+(3+4)= 2+7=9 (2+4)+3= = 6+3=9 De wissel-eigenschap geldt niet voor aftrekken en delen. Wel kunnen we een aftrekking in een optelling veranderen en een deling in een vermenigvuldiging, waarna de wissel-eigenschap wél geldt. De volgorde-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in een willekeurige volgorde worden gedaan. De volgorde-eigenschap voor optellen Optellen kan in een willekeurige volgorde worden gedaan. Ook de volgorde-eigenschap geldt niet voor delen en aftrekken. Wel kunnen we ook hier een aftrekking in een optelling veranderen en een deling in een vermenigvuldiging, waarna de volgorde-eigenschap wél geldt.

6 Basiskennis 97 Opgave 7 a) e) b) f) c) g) Opgave 8 d) a)12 (3+3) 2 h) e)16 (5+3) (3+2) b)(11 1) 5+2 f)(1 1) (12+17) (2+3) c)22 (13 2) 2 g)(3 3) 12 2 d)17 5 (2+1) h)(17 12) (3+2)+2 Opgave 9 a)( )2 e)( ) 2 5 b) ( ) f)1 2 5 (2 7 +( )) c)(3 5) 2 ( 1 2 5)2 g)( 1) 9 ( )10 d) h)( )

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Hoofdstuk 9: NEGATIEVE GETALLEN

Hoofdstuk 9: NEGATIEVE GETALLEN 1 H9. Negatieve getallen Hoofdstuk 9: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 53 57) 9.1 Getallen onder 0 Het verschil verwoorden tussen positieve en negatieve getallen. Weten dat we 0 zowel

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

Afspraken hoofdrekenen eerste tot zesde leerjaar

Afspraken hoofdrekenen eerste tot zesde leerjaar 24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Hoofdstuk 3: NEGATIEVE GETALLEN

Hoofdstuk 3: NEGATIEVE GETALLEN 1-6 H3. Negatieve getallen Hoofdstuk 3: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 96 123) 3.1 Positieve en negatieve getallen Het verschil verwoorden tussen positieve en negatieve getallen.

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28 Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je

Nadere informatie

WISNET-HBO. update aug. 2011

WISNET-HBO. update aug. 2011 Basiskennis van machten WISNET-HBO update aug. 0 Inleiding Deze les doorwerken met pen en papier! We noemen de uitdrukking a 4 (spreek uit: a tot de vierde macht) een macht van a (in dit geval de vierde

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a.

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a. 98 Algebra 3.3 Variabelen 3.3.1 Inleiding F= 9 5 15+32= 27+32=59 15 C= 59 F In de inleidende tekst aan het begin van dit hoofdstuk staat een afkorting waarmee de temperatuur in graden Celsius in graden

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

breuken 1.0 Inleiding 1.1 Natuurlijke getallen

breuken 1.0 Inleiding 1.1 Natuurlijke getallen 1 Natuurlijke getallen, breuken 1.0 Inleiding Dit hoofdstuk begint in paragraaf 1.1 met het rekenen met de getallen 0, 1, 2,, enzovoort. Dat heb je op de lagere school ook geleerd, alleen wordt er nu wat

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Breuken met letters WISNET-HBO. update juli 2013

Breuken met letters WISNET-HBO. update juli 2013 Breuken met letters WISNET-HBO update juli 2013 De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers

Nadere informatie

Voorkennis getallenverzamelingen en algebra. Introductie 213. Leerkern 214

Voorkennis getallenverzamelingen en algebra. Introductie 213. Leerkern 214 Open Inhoud Universiteit Appendix A Wiskunde voor milieuwetenschappen Voorkennis getallenverzamelingen en algebra Introductie Leerkern Natuurlijke getallen Gehele getallen 8 Rationele getallen Machten

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2 Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen

Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen 1.12 Kernbegrippen van de Kennisbasis Hele getallen, onderdeel Bewerkingen Aftrekker De aftrekker in een aftreksom is het getal dat aangeeft hoeveel

Nadere informatie

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2. Omschrijving Rekenen en Wiskunde Getallen 2

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2. Omschrijving Rekenen en Wiskunde Getallen 2 Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken breuken breukentaal tekening getal een hele 1 een halve een kwart een achtste ½ of ½ ¼ of ¼ ⅛ of ⅛ 3 breuken breukentaal tekening getal een vijfde ⅕ of ⅕ een tiende

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

D A G 1 : T W E E D O M E I N E N

D A G 1 : T W E E D O M E I N E N REKENEN 3F DAG 1 :TWEE DOMEINEN DAG 2 : TWEE DOMEINEN DAG 3: EXAMENTRAINING DAG 4:EXAMENTRAINING EN A FRONDING Programma: Voorstellen 13.30 uur 16.15 uur Pauze: 15 minuten Theorie dag 1: Domein Getallen

Nadere informatie

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2 Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep

Nadere informatie

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl Breuken Breuk

Nadere informatie

Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429)

Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429) Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429) - een lijst met operationele en concrete doelen van de lessenserie, indien mogelijk gerelateerd

Nadere informatie

Vergelijkingen met breuken

Vergelijkingen met breuken Vergelijkingen met breuken WISNET-HBO update juli 2013 De bedoeling van deze les is het doorwerken van begin tot einde met behulp van pen en papier. 1 Oplossen van gebroken vergelijkingen Kijk ook nog

Nadere informatie

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden A Notatie en betekenis - Uitspraak, schrijfwijze en betekenis van, symbolen en relaties - Wiskundetaal gebruiken - de relaties groter/kleiner dan - breuknotatie met horizontale streep - teller, noemer,

Nadere informatie

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden. EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

Te kennen leerstof wiskunde voor het toelatingsexamen graduaten. Lea De Bie lea.debie@cvoleuven.be

Te kennen leerstof wiskunde voor het toelatingsexamen graduaten. Lea De Bie lea.debie@cvoleuven.be Te kennen leerstof wiskunde voor het toelatingsexamen graduaten Lea De Bie lea.debie@cvoleuven.be SOORTEN GETALLEN (Dit hoofdstukje geldt als inleiding en is geen te kennen leerstof). Natuurlijke getallen

Nadere informatie

Wortels met getallen. 2 Voorbeeldenen met de vierkantswortel (Tweedemachts wortel)

Wortels met getallen. 2 Voorbeeldenen met de vierkantswortel (Tweedemachts wortel) Wortels met getallen 1 Inleiding WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht van de

Nadere informatie

Breuken som en verschil

Breuken som en verschil Auteur Laatst gewijzigd Licentie Webadres Monique Faken 18 december 2014 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/56142 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet.

Nadere informatie

Het weetjesschrift. Weetjesschrift Galamaschool

Het weetjesschrift. Weetjesschrift Galamaschool Het weetjesschrift Dit is het weetjesschrift. In dit schrift vind je heel veel weetjes over taal, rekenen en andere onderwerpen. Sommige weetjes zal je misschien al wel kennen en anderen leer je nog! Uiteindelijk

Nadere informatie

Download gratis de PowerPoint rekenen domein getallen:

Download gratis de PowerPoint rekenen domein getallen: Getallen Bron: Examenbladmbo.nl, SYLLABUS REKENEN 2F en 3F vo en mbo, Versie mei 2015 Download gratis de PowerPoint rekenen domein getallen: http://nielspicard.nl/download/powerpoint-rekenen-domein-getallen/

Nadere informatie

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i

Nadere informatie

Rekenvaardigheden voor klas 3 en 4 VWO

Rekenvaardigheden voor klas 3 en 4 VWO Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen Uitsluitend te gebruiken

Nadere informatie

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar De Graankorrel Wervik Mijn wiskundehulpschrift van 1 tot 6 leerjaar We gebruiken de rekenmethode Zo gezegd, zo gerekend! van het eerste tot het zesde leerjaar. Eerste leerjaar blz. 2 Tweede leerjaar blz.

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

GETALLEN deel De waarde van een cijfer wordt bepaald door de. We lezen 1 E. .. vijf tientallen

GETALLEN deel De waarde van een cijfer wordt bepaald door de. We lezen 1 E. .. vijf tientallen GETALLEN deel Les 2 : Getallenkennis: getallen tot 00 000. De waarde van de cijfers in een getal: De waarde Je leest Besluit:..................... De waarde van een cijfer wordt bepaald door de in et getal.

Nadere informatie

Reken zeker: leerlijn breuken

Reken zeker: leerlijn breuken Reken zeker: leerlijn breuken B = breuk H = hele HB = hele plus breuk (1 1/4) Blauwe tekst is theorie uit het leerlingenboek. De breuknotatie in Reken zeker is - anders dan in deze handout - met horizontale

Nadere informatie

Kommagetallen. Twee stukjes is

Kommagetallen. Twee stukjes is Kommagetallen Een kommagetal is een getal dat niet heel is. Het is een breuk. Voor de komma staan de helen, achter de komma staat de breuk. De cijfers achter de komma staan voor de tienden, honderdsten,

Nadere informatie

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ...

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ... PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE a) Begrippen uit de getallenleer Bewerking optelling aftrekking vermenigvuldiging Symbool deling : kwadratering... machtsverheffing...

Nadere informatie

Wiskunde. voor de eerste klas van het Gymnasium

Wiskunde. voor de eerste klas van het Gymnasium Wiskunde Wiskunde voor de eerste klas van het Gymnasium Editie 2009 BARLAEUS PERS AMSTERDAM Het copyright berust bij de samenstellers / auteurs Typografie: Jan de Ruijter met gebruik van LATEX en L Y

Nadere informatie

Eenvoudige breuken. update juli 2007 WISNET-HBO

Eenvoudige breuken. update juli 2007 WISNET-HBO Eenvoudige reuken update juli 2007 WISNET-HBO De edoeling van deze les is het repeteren met pen en papier van het werken met reuken. Steeds wordt ij geruik van letters verondersteld dat de noemers van

Nadere informatie

WERKBOEK REKENVAARDIGHEID. Voeding en Diëtetiek

WERKBOEK REKENVAARDIGHEID. Voeding en Diëtetiek WERKBOEK REKENVAARDIGHEID Voeding en Diëtetiek 11 INHOUDSOPGAVE ACHTERGROND 3 1. Elementaire bewerkingen 4 2. Voorrangsregels (bewerkingsvolgorde) 8 3. Bewerkingen met machten 11 4. Rekenen met breuken

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Breuken in de breuk. 1 Breuken vermenigvuldigen en delen (breuken in de breuk)

Breuken in de breuk. 1 Breuken vermenigvuldigen en delen (breuken in de breuk) Breuken in de breuk update juli 2013 WISNET-HBO De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers

Nadere informatie

logaritmen WISNET-HBO update jan Zorg dat je het lijstje met rekenregels hebt klaarliggen als je met deze training begint.

logaritmen WISNET-HBO update jan Zorg dat je het lijstje met rekenregels hebt klaarliggen als je met deze training begint. Training Vergelijkingen met logaritmen WISNET-HBO update jan. 0 Inleiding Voor deze training heb je nodig: de rekenregels van machten de rekenregels van de logaritmen Zorg dat je het lijstje met rekenregels

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

Goed aan wiskunde doen

Goed aan wiskunde doen Goed aan wiskunde doen Enkele tips Associatie K.U.Leuven Tim Neijens Katrien D haeseleer Annemie Vermeyen Maart 2011 Waarom? Dit document somt de belangrijkste aandachtspunten op als je een wiskundeopgave

Nadere informatie

Blok 1 GB les 2 K1: cijfers 2 en 3 overtrekken en zelf schrijven

Blok 1 GB les 2 K1: cijfers 2 en 3 overtrekken en zelf schrijven Blok GB les 2 K: cijfers 2 en 3 overtrekken en zelf schrijven Cijfers 2 en 3 overtrekken en zelf schrijven 2 3 Start Van richting veranderen Stop Start Van richting veranderen Stop Overtrek de cijfers.

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen.

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen. Uitwerkingen hoofdstuk Gebroken getallen. Kennismaken met breuken.. Deel van geheel Opdracht. a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde

Nadere informatie

8000-4000=4000 900-600=300 90-90 =0 7-8= 1 tekort! 4000 + 300+0-1 = 4299

8000-4000=4000 900-600=300 90-90 =0 7-8= 1 tekort! 4000 + 300+0-1 = 4299 Rekenstrategieën Voor de basisbewerkingen optellen en aftrekken, vermenigvuldigen en delen en voor het rekenen met breuken en rekenen met decimale getallen, wordt een overzicht gegeven van rekenstrategieën

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen

DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen Wat voorafgaat aan het leren van de staartdeling: De kinderen moeten al vertrouwd zijn met de schrijfwijze van de delingen (hoofdrekenen)

Nadere informatie

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n

Nadere informatie

Negatieve getallen, docenteninformatie

Negatieve getallen, docenteninformatie Negatieve getallen, docenteninformatie Inleiding Met deze module leren de leerlingen rekenen met negatieve getallen. De leerlingen kunnen de opdrachten van de activiteiten zelfstandig maken. Op cruciale

Nadere informatie

Breuken volgens de rekenregels

Breuken volgens de rekenregels Breuken volgens de rekenregels Weeffout in het rekenonderwijs. Presentatie rekenidee volg: https://www.youtube.com/watch?v=azxqcuj7ole 7-5-2016 Terugrekenen Start + - Optellen of aftrekken (..) Haakjes

Nadere informatie

Toegepast Rekenen Theorie:

Toegepast Rekenen Theorie: Toegepast Rekenen Theorie: Hfst 1: Rekenen De volgorde van de basisbewerkingen is: Eerst tussen haakjes Daarna de volgorde volgens het ezelsbruggetje: Meneer Van Dalen Wacht Op Antwoord - Machtsverheffen

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

Differentiëren. Training met de rekenregels en de standaard afgeleiden

Differentiëren. Training met de rekenregels en de standaard afgeleiden Differentiëren Training met de rekenregels en de standaard afgeleiden Wisnet-HBO update maart 2011 Voorkennis Repeteer de standaardafgeleiden en de rekenregels voor differentiëren. Draai eventueel het

Nadere informatie

Start u met zwiso in verschillende leerjaren tegelijkertijd?

Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Geef dan eventueel aan het begin van het schooljaar enkele lessen uit het voorafgaande

Nadere informatie

5 5d o e l e n k a t e r n

5 5d o e l e n k a t e r n Blok Pagina Blok 1 2 tot 10 Blok 2 11 tot 21 Blok 3 22 tot 32 Blok 4 33 tot 40 Blok 5 41 tot 50 Blok 6 51 tot 60 Blok 7 61 tot 68 leerjaar 5 5d o e l e n k a t e r n Voorafgaande toelichting bij doelenkatern,

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel Opdracht 2 blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een

Nadere informatie

Elementaire rekenvaardigheden

Elementaire rekenvaardigheden Hoofdstuk 1 Elementaire rekenvaardigheden De dingen die je niet durft te vragen, maar toch echt moet weten Je moet kunnen optellen en aftrekken om de gegevens van de patiënt nauwkeurig bij te kunnen houden.

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Decimaliseren. 1.1 Vereenvoudigen 2. 1.2 Verhoudingen omzetten 3. 1.3 Afronden 4. 1.4 Oefeningen 4

Decimaliseren. 1.1 Vereenvoudigen 2. 1.2 Verhoudingen omzetten 3. 1.3 Afronden 4. 1.4 Oefeningen 4 Decimaliseren Samenvatting Decimaliseren is nodig, omdat alle apparaten voor hun instelling een decimaal getal nodig hebben. Bijvoorbeeld: een infuuspomp kan wel op 0,8 ml/min ingesteld worden, maar niet

Nadere informatie

leerjaar doelenkatern

leerjaar doelenkatern Blok Pagina Blok 1 2 tot 10 Blok 2 11 tot 20 Blok 3 21 tot 31 Blok 4 32 tot 40 Blok 5 41 tot 49 Blok 6 50 tot 57 Blok 7 58 tot 65 leerjaar 6 doelenkatern Voorafgaande toelichting bij doelenkatern, leerjaar

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

(o.a. voor 2F en 3F) Inhoud

(o.a. voor 2F en 3F) Inhoud (o.a. voor 2F en 3F) Inhoud Optellen... 2 Aftrekken... 3 Vermenigvuldigen... 4 Delen... 5 Tot de macht... 6 Combinaties... 7 Wortels... 7 Afronden... 8 Breuken... 10 Procenten... 11 Verhoudingen... 12

Nadere informatie

Rekenvaardigheden op de basisschool

Rekenvaardigheden op de basisschool Rekenvaardigheden op de basisschool Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 8 augustus 2007 Dit discussiestuk bevat in hoofdstuk 1

Nadere informatie

Proefexemplaar. Wendy Luyckx Mark Verbelen Els Sas. Dirk Vandamme. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door. Cartoons.

Proefexemplaar. Wendy Luyckx Mark Verbelen Els Sas. Dirk Vandamme. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door. Cartoons. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door Wendy Luyckx Mark Verbelen Els Sas Cartoons Dirk Vandamme Leerboek Getallen ISBN: 78 0 4860 48 8 Kon. Bib.: D/00/047/4 Bestelnr.: 4 0 000

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10 B M De getallenlijn 0 + = = + = = Nee 0 0 = 9 = 0 6 = = 9 = 6 = 6 = = C a b a b 0 = 0 0 = 0 a b < 0 ; a b < 0 ; a > b ; b > a = = = = C Nee, hij loopt steeds maar verder. < x H x < x < x < x + + = x +

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Bijlage 11 - Toetsenmateriaal

Bijlage 11 - Toetsenmateriaal Bijlage - Toetsenmateriaal Toets Module In de eerste module worden de getallen behandeld: - Natuurlijke getallen en talstelsels - Gemiddelde - mediaan - Getallenas en assenstelsel - Gehele getallen met

Nadere informatie