Producten, machten en ontbinden in factoren
|
|
- Hanne Thys
- 2 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Joke Smit College Producten, machten en ontbinden in factoren Voor cursisten uit de volgende klassen: alle Havo en VWO klassen (wiskunde, wiskunde A en wiskunde B) Wat kun je oefenen? 1. Het uitrekenen van producten, waarbij ook machten een rol spelen. 2. Leren letterrekenen. 3. Ontbinden in factoren. Opmerkingen 1. Rekenen met machten kun je oefenen in het boekje Machten ( onderbouw) ( voldoende voor Havo A en onderbouw) of in het boekje Machten. Ook deze boekjes staan in de kast in het studiecentrum of zijn te koop voor 0, Ontbinden in factoren is voor Havo A1 geen onderdeel van de examenstof. 3. Ontbinden in factoren moet je vooral goed beheersen om hogere graads vergelijkingen en ongelijkheden te kunnen oplossen. Het boekje Vergelijkingen en ongelijkheden 2 kan je daarbij helpen. 1 van 9TSC, , J:\1213\wiskunde\basiscursus\definitieve_onderdelen\steunlesProdMaOntbindenv_hv_ doc, PvL
2 Inhoud: A. Optellen en vermenigvuldigen (3) B. Machten (3) C. Voorangsregels (3) D. Substitueren (4) E. Het uitrekenen van producten (4) F. Ontbinden in factoren (6) G. Antwoorden eerste vijf opgaven (7) H. Extra oefenopgaven berekenen van producten (8) I. Oefenopgaven ontbinden in faktoren ( per type) (8) J. Oefenopgaven ontbinden in factoren ( typen door elkaar heen) (9) 2 van 9 Joke Smit College, , J:\1213\wiskunde\basiscursus\definitieve_onderdelen\steunlesProdMaOntbindenv_hv_ doc,PvL
3 Optellen en vermenigvuldigen a + a = 2 a = 2 a = 2a 2a is een verkorte schrijfwijze voor a + a. Tussen een getal en een letter laten we de vermenigvuldigingspunt vaak weg. a + a + a = 3 a = 3a 3a + 2a = a+a+a + a+a = 5a 7a + 1½ a = 8½ a a + (-a) = a - a = 0 3a - 5a = -2a 5a - 6½ a = -1½ a 5a + 2b =? Hier kan je niet optellen, want de termen zijn niet gelijksoortig. Dat geldt ook voor: Oók geldt: 2a 2 + 3a =? Ook deze som kan je alleen maar laten staan! x 2 = 2 x = 2x Machten Een product kan je soms op een korte manier als een macht noteren: = 3 4 Zo is: = = Let wel op dat een macht dus een verkorte schrijfwijze van een product is. Je kunt dus: a 2 a 3 schrijven als a 5 ( a 2 a 3 is immers a a a a a ofwel a a a a a en dat is a 5 ) Zo is: 2b 2 3b 3 = 2 b 2 3 b 3 = 2 3 b 2 b 3 = 6b 5 Máár: a 2 + a 3 kan je helemaal niet korter opschrijven!! Voorrangsregels Met haakjes geven we aan wat je als eerste moet berekenen: 3 (4+5) = 3 9 = 27 Daarnaast werken we met de zogenaamde voorrangsregels: maar: je rekent in principe van links naar rechts vermenigvuldigen en delen hebben voorrang boven optellen en aftrekken = 3 + (4 5) = = 23 3 van 9 Joke Smit College, , J:\1213\wiskunde\basiscursus\definitieve_onderdelen\steunlesProdMaOntbindenv_hv_ doc,PvL
4 Wil je dat eerst 3 en 4 worden opgeteld, dan moet je met haakjes werken: (3 + 4) 5 = 7 5 = 35 machtsverheffen is sterker dan vermenigvuldigen en delen = 3 8 = 24 Als je wilt dat eerst 3 2 wordt uitgerekend, moet je met haakjes werken: (3 2) 3 = 6 3 = 216 Let op het verschil tussen: én: (-2) 4 = (-2) (-2) (-2) (-2) = = = - 16 In strijd met de afspraak is het de gewoonte vermenigvuldigen, genoteerd zonder of, voorrang te geven boven delen: 3 3 : 2a betekent 2a terwijl: 3 3 : 2 a betekent a 2 Veel verstandiger is om met haakjes te werken zodat er geen twijfel is: 3 : (2a) en (3:2) a Bij wortels maak je of met haakjes of met de verlenging van de vlag duidelijk wat je bedoelt: 4 9 = 2 9 = 18 ; duidelijker is: ( 4) 9 (4 9) = 36 = 6 óf Substitueren of invullen Veel van bovenstaande afspraken moet je nauwkeurig gebruiken bij zogenaamde invul- of substitutie-oefeningen: Vul x = -3 in in: x 2 2x Uitwerking: (-3) 2 2 (-3) = 9 (-6) = = 15 Vul x = -3 in in: -x Uitwerking: -(-3) = - (9) + 8 = = -1 Het uitrekenen van producten We gebruiken de distributieve wet ( ook wel verdeeleigenschap) om haakjes weg te werken: a (b + c) = a b + a c bijvoorbeeld: 3 (x+2y) = 3x + 6y 4 van 9 Joke Smit College, , J:\1213\wiskunde\basiscursus\definitieve_onderdelen\steunlesProdMaOntbindenv_hv_ doc,PvL
5 (a + b) (p + q) = ap + aq + bp + bq bijvoorbeeld: (x+2) (y+3) = xy+3x+2y+6 Met minnen erbij moet je erg opletten: (a b) (x y) = ax + a ( y) b x b ( y) Dus: (a b) (x y) = ax ay bx + by Speciale gevallen van de verdeeleigenschap ( ook wel de merkwaardige producten genoemd) zijn: (type 1) (a + b)(a b) = a 2 b 2 (type 2A) (a + b) 2 = a 2 + 2ab + b 2 ( Bedenk dat (a + b) 2 = (a + b)(a + b) ) 'het dubbele product' (type 2B) (a b) 2 = a 2 2ab + b 2 Vaak voorkomend type: (type 3) (x + 3)(x + 5) = x 2 + 8x + 15 de som het product van 3 en 5 van 3 en 5 Opgave 1: Ga deze gevallen na door zelf de haakjes steeds weg te werken. Vaak kom je bij het uitrekenen van producten machten tegen: x 2 (x + 3) = x 3 + 3x 2 (a 2 + 2b)(a + 3b 3 ) = a 3 + 3a 2 b 3 + 2ba + 6b 4 Opgave 2 Bereken: a. 2b + 7b = b. a a 3 = c. 3x 2x = d. a 2 a 5 = e. 5q 8q = f. d + d + 2d = g. a b 2 a 2 = 2 h. a 4 = i. a b 3 = j. 8a + 3a + b + 2b = k. 8a + 3b 8a + b = l. 3ab 2a 2 b +5ab 2 + ab = 5 van 9 Joke Smit College, , J:\1213\wiskunde\basiscursus\definitieve_onderdelen\steunlesProdMaOntbindenv_hv_ doc,PvL
6 Opgave 3 Bereken: a. b 5 + b 5 = b. b 5 b 5 = c. b 5 b 5 = d. 5b 5 5b 5 = e. 3y + 4y = f. 3y 4y = g. 3y 4y = Opgave 4 Bereken: a = b = c = d = h. (3y) 2 4y 2 = i. 2z 2 3z 3 = j. q 2q 2 3q 3 = k. (xy) 3 xy 3 = l. y (yz) 2 ( z) = Vul x = -2 in in: e. x 2 2x + 7 = f. 2x x 2 1 = g. x 2 + 5x h. (-x) 2 3x = Opgave 5 Schrijf zonder haakjes: a. x(x + y) = b. x(2x z) = c. 3xy(x 2y) = d. 3pq(p 2 pq) = e. (x + 3)(x + 2) = f. p 3) (p + 2) = g. (2a 3b) 2 = h. (2x 3) 2 = i. (x 2 + 4) 2 = j. x ( 2 3x) = Ontbinden in factoren We hebben bij het uitrekenen van producten steeds van een product een som ( of een verschil) gemaakt. Als we het omdraaien ( dus bijvoorbeeld: a 2 b 2 schrijven als (a + b)(a b) ) zeggen we dat we a 2 b 2 hebben ontbonden in factoren. Voorbeelden: x 2 9 = (x + 3)(x 3) (type 1) y 2 6y + 9 = (y 3) 2 (type 2b of 3) x 2 4x 5 = (x 5)(x + 1) (type 3) x 2 6x + 8 = (x 4)(x 2) (type 3) Ontbinden van type 3 ken je misschien als de som-product-methode. Het eerste waar je naar kijkt bij ontbinden in factoren is of er een gemeenschappelijke factor buiten haakjes gehaald kan worden: x 3 + 2x = x ( x 2 + 2) Verklaring: x 3 x 3 2x + 2x = x = x ( x 2 + 2) x x 6 van 9 Joke Smit College, , J:\1213\wiskunde\basiscursus\definitieve_onderdelen\steunlesProdMaOntbindenv_hv_ doc, PvL
7 Nog een voorbeeld: 3x 3 + 6x 2 + 9x = 3x 3 3x 3x 2 6x 3x 9x 3 = 3x (x 2 + 2x + 3) Soms ben je er niet in een stap: 2x 3 + 6x 2 8x = 2x (x 2 + 3x 4) = 2x (x + 4)(x 1) x 4 16 = (x 2 + 4) (x 2 4) = (x 2 + 4) (x + 2) (x 2) Maak nu in ieder geval de eerste opgaven 1,2 en 4 uit Extra oefenopgaven berekenen van producten en de opgaven 2,3,5,9 en 12 uit Oefenopgaven ontbinden in factoren op bladzijde 8. De andere opgaven op blz. 8 en 9 kun je gebruiken als extra oefenopgaven. Antwoorden opgave 1-5: 1: (a+b)(a-b) = a 2 ab + ba - b 2 = a 2 - b 2 (a+b) 2 = (a+b)(a+b) = a 2 + ab + ba + b 2 = a 2 + 2ab + b 2 (a-b) 2 = (a-b)(a-b) = a 2 - ab - ba + b 2 = a 2-2ab + b 2 (x+3)(x+5) = x 2 + x5 + 3x + 15 = x 2 + 8x a. 9b b. a 4 c. x d. a 7 e. 3q f. 4d g. a 3 b 2 3. a. 2b 5 b. b 10 c. 0 d. 25b 10 e. 7y f. y g. 12y 2 4. a. 3 b. 12 c. 19 d. 15 h. a 8 i. a 3 b 3 j. 11a + 3b k. 4b ( 0a + 4b) l. 4ab + 5ab 2 2a 2 b h. 36y 4 i. 6z 5 j. 6q 6 k. x 4 y 6 l. y 3 z 3 e. 15 f. 9 g. 14 h a. x 2 + xy b. 2x 2 + xz c. 3x 2 y 6xy 2 d. 3p 3 q 3p 2 q 2 e. x 2 +5x + 6 f. p 2 p 6 g. 4a 2 12ab + 9b 2 h. 4x 2 12x + 9 i. x 4 + 8x van 9TSC, , J:\1213\wiskunde\basiscursus\definitieve_onderdelen\steunlesProdMaOntbindenv_hv_ doc, PvL
8 j x Extra oefenopgaven berekenen van producten Antwoorden: Oefenopgaven ontbinden in factoren 8 van 9TSC, , J:\1213\wiskunde\basiscursus\definitieve_onderdelen\steunlesProdMaOntbindenv_hv_ doc, PvL
9 Antwoorden: Nu de typen door elkaar: Antwoorden: 9 van 9TSC, , J:\1213\wiskunde\basiscursus\definitieve_onderdelen\steunlesProdMaOntbindenv_hv_ doc, PvL
Rekenen met cijfers en letters
Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................
Uitwerkingen Rekenen met cijfers en letters
Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................
Rekenvaardigheden voor klas 3 en 4 VWO
Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)
5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2
Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30
Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4
Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen
Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag
Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige
De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a.
98 Algebra 3.3 Variabelen 3.3.1 Inleiding F= 9 5 15+32= 27+32=59 15 C= 59 F In de inleidende tekst aan het begin van dit hoofdstuk staat een afkorting waarmee de temperatuur in graden Celsius in graden
3.1 Haakjes wegwerken [1]
3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben
Voorkennis : Breuken en letters
Hoofdstuk 1 Rekenregels en Verhoudingen (H4 Wis A) Pagina 1 van 11 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x
Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008
Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.
WISNET-HBO. update aug. 2011
Basiskennis van machten WISNET-HBO update aug. 0 Inleiding Deze les doorwerken met pen en papier! We noemen de uitdrukking a 4 (spreek uit: a tot de vierde macht) een macht van a (in dit geval de vierde
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
1 Rekenen met gehele getallen
1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9
Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm
Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n
Voorkennis : Breuken en letters
Hoofdstuk 1 Getallen en Variabelen (V4 Wis A) Pagina 1 van 13 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x = 12
3.1 Kwadratische functies[1]
3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt
Rekenen aan wortels Werkblad =
Rekenen aan wortels Werkblad 546121 = Vooraf De vragen en opdrachten in dit werkblad die vooraf gegaan worden door, moeten schriftelijk worden beantwoord. Daarbij moet altijd duidelijk zijn hoe de antwoorden
KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN
KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden
kwadratische vergelijkingen
kwadratische vergelijkingen In deze paragraaf: 'exact berekenen van oplossingen', 'typen kwadratische vergelijkingen' en 'de abc-formule en de discriminant'. de abc-formule Voor een tweedegraads vergelijking
1.1 Rekenen met letters [1]
1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren
Extra oefeningen hoofdstuk 2: Natuurlijke getallen
Extra oefeningen hoofdstuk 2: Natuurlijke getallen 2.1 Natuurlijke getallen 1 Rangschik de volgende natuurlijke getallen van klein naar groot. 45 54 56 78 23 25 77 89 2 050 2 505 2 055 2 500 2 005 879
7.1 Grafieken en vergelijkingen [1]
7.1 Grafieken en vergelijkingen [1] Voorbeeld: Getekend zijn de grafieken van y = x 2 4 en y = x + 2. De grafieken snijden elkaar in de punten A(-2, 0) en B(3, 5). Controle voor x = -2 y = x 2 4 y = x
Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)
1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht
Breuken met letters WISNET-HBO. update juli 2013
Breuken met letters WISNET-HBO update juli 2013 De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers
Antwoordmodel - Kwadraten en wortels
Antwoordmodel - Kwadraten en wortels Schrijf je antwoorden zo volledig mogelijk op. Tenzij anders aangegeven mag je je rekenmachine niet gebruiken. Sommige vragen zijn alleen voor het vwo, dit staat aangegeven.
4.1 Negatieve getallen vermenigvuldigen [1]
4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats
Wortels met getallen. 2 Voorbeeldenen met de vierkantswortel (Tweedemachts wortel)
Wortels met getallen 1 Inleiding WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht van de
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool 11/5/2013. dr. Brenda Casteleyn
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: cirkel en parabool 11/5/2013 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),
1.3 Rekenen met pijlen
14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr.
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),
Goed aan wiskunde doen
Goed aan wiskunde doen Enkele tips Associatie K.U.Leuven Tim Neijens Katrien D haeseleer Annemie Vermeyen Maart 2011 Waarom? Dit document somt de belangrijkste aandachtspunten op als je een wiskundeopgave
4.1 Rekenen met wortels [1]
4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:
Noorderpoortcollege school voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 periode 3. M. van der Pijl. Transfer Database
Noorderpoortcollege school voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 periode 3 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet
inhoudsopgave januari 2005 handleiding algebra 2
handleiding algebra inhoudsopgave Inhoudsopgave 2 De grote lijn 3 Bespreking per paragraaf 1 Routes in een rooster 4 2 Oppervlakte in een rooster 4 3 Producten 4 4 Onderzoek 5 Tijdpad 9 Materialen voor
Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2
Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep
breuken 1.0 Inleiding 1.1 Natuurlijke getallen
1 Natuurlijke getallen, breuken 1.0 Inleiding Dit hoofdstuk begint in paragraaf 1.1 met het rekenen met de getallen 0, 1, 2,, enzovoort. Dat heb je op de lagere school ook geleerd, alleen wordt er nu wat
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr.
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters, stelsels 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)
1 Complexe getallen in de vorm a + bi
Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...
Gehele getallen: machtsverheffing en vierkantsworteltrekking
4 Gehele getallen: machtsverheffing en vierkantsworteltrekking Dit kun je al gehele getallen vermenigvuldigen 2 afspraken i.v.m. de volgorde van de bewerkingen toepassen 3 regelmaat en patronen ontdekken
1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden
Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i
REKENVAARDIGHEID BRUGKLAS
REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling
Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2. Omschrijving Rekenen en Wiskunde Getallen 2
Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep
OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl
OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare
Machten, exponenten en logaritmen
Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde
14.1 Vergelijkingen en herleidingen [1]
4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )
Het schaakbord van koning Shirham
Het schaakbord van koning Shirham Dion Gijswijt De Indiase koning Shirham wilde volgens een oud verhaal de uitvinder van het schaakbord, Sissa ben Dahir, rijkelijk belonen voor zijn uitzonderlijke prestatie.
Extra oefeningen Hoofdstuk 8: Rationale getallen
Extra oefeningen Hoofdstuk 8: Rationale getallen 1 Noteer met een breuk. a) Mijn stripverhaal is voor de helft uitgelezen. Een kamer is voor behangen. c) van de cirkel is gekleurd. 15 Gegeven : 18 teller
Noordhoff Uitgevers bv
Voorkennis V-a Als x = 0,6 is de totale breedte 5,6 meter. De totale oppervlakte is 3 5,6 = 67, m. b De lengte is meter, de totale breedte is 5 + x meter, dus voor de oppervlakte geldt A = (5 + x). Dus
Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden
A Notatie en betekenis - Uitspraak, schrijfwijze en betekenis van, symbolen en relaties - Wiskundetaal gebruiken - de relaties groter/kleiner dan - breuknotatie met horizontale streep - teller, noemer,
RSA. F.A. Grootjen. 8 maart 2002
RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven
Instructies zijn niet alleen visueel, maar ook auditief, met hoogkwalitatief ingesproken geluid (geen computerstem).
Getallen 3 Doelgroep Getallen 3 is bedoeld voor leerlingen in klas 3-5 van de havo, klas 3-6 van het vwo en in mbo 3&4. Het programma is bijzonder geschikt voor groepen waarin niveauverschillen bestaan.
1. Optellen en aftrekken
1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'
Vergelijkingen en hun oplossingen
Vergelijkingen en hun oplossingen + 3 = 5 is een voorbeeld van een wiskundige vergelijking: er komt een = teken in voor, en een onbekende of variabele: in dit geval de letter. Alleen als we voor de variabele
5.1 Lineaire formules [1]
5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire
Rekenvaardigheden voor het vak natuurkunde
Inhoud Formules uitrekenen... 2 Balansmethode... 2 Categorie eenvoudig... 3 Categorie moeilijker... 4 Categorie moeilijkst... 5 Uitgebreidere formules... 8 Balansmethode en abc-formule... 8 1/11 Formules
Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:
Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van
Noordhoff Uitgevers bv
Extra oefening - Basis B-a 5x + 6 7x + e 4x + 6 x + 6 x + 3x + 6 4 x 3x 5 x 4 : dus x x 5 : 3 dus x 5 b 9x + 0 34 + x f 8x + 5x + 38 8x + 0 34 3x + 38 8x 4 3x 6 x 4 : 8 dus x 3 x 6 : 3 dus x c 4x + 9 7x
Breuken in de breuk. 1 Breuken vermenigvuldigen en delen (breuken in de breuk)
Breuken in de breuk update juli 2013 WISNET-HBO De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers
Rekenen met de GRM. 1 van 1. Inleiding: algemene zaken. donkerder. lichter
1 van 1 Rekenen met de GRM De grafische rekenmachine (voortaan afgekort met GRM) ga je bij hoofdstuk 1 voornamelijk als gewone rekenmachine gebruiken. De onderste zes rijen toetsen zijn vergelijkbaar met
Ruitjes vertellen de waarheid
Ruitjes vertellen de waarheid Opdracht 1 Van fouten kun je leren Van fouten kun je leren, jazeker. Vooral als je héél goed weet wat er fout ging. Vandaag leer je handige formules begrijpen door kijken
METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen
METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen Beschrijf in eigen woorden: Waar gaat de opdracht over? Welke signaalwoorden staan in de tekst? Wijst een signaalwoord naar een strategie? Welke
Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7.
Herhalingsoefeningen Rijen Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Onderzoek of de
inhoudsopgave juni 2005 handleiding haakjes 2
handleiding haakjes inhoudsopgave inhoudsopgave 2 de opzet van haakjes 3 bespreking per paragraaf 5 rekenen trek-af-van tegengestelde tweetermen merkwaardige producten tijdpad 6 materialen voor een klassengesprek
Samenvatting Wiskunde B
Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen
y 2a 4b x x 5x 3x 15 8 Voorbeeld 1 Gegeven zijn de formules y 3x 2a 4b Druk y uit in x. Schrijf je antwoord zonder haakjes en zo eenvoudig mogelijk.
Havo 5 wiskunde A Substitueren en haakjes uitwerken Voorbeeld Gegeven zijn de formules y 2a b en a x 3 en b 3x. Druk y uit in x. Schrijf je antwoord zonder haakjes en zo eenvoudig mogelijk. y 2a b x x
WERKBOEK REKENVAARDIGHEID. Voeding en Diëtetiek
WERKBOEK REKENVAARDIGHEID Voeding en Diëtetiek 11 INHOUDSOPGAVE ACHTERGROND 3 1. Elementaire bewerkingen 4 2. Voorrangsregels (bewerkingsvolgorde) 8 3. Bewerkingen met machten 11 4. Rekenen met breuken
16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3
Hoofdstuk 6 HAAKJES VWO 6.0 INTRO 6. TREK AF VAN 8 a b De uitkomsten zijn allemaal. c (n + )(n ) (n + )(n ) = d - - = -0,75 -,75 = b De uitkomsten zijn allemaal. c n + (n + ) (n + ) = + 6 4 4 = 6 4 = d
Differentiëren. Training met de rekenregels en de standaard afgeleiden
Differentiëren Training met de rekenregels en de standaard afgeleiden Wisnet-HBO update maart 2011 Voorkennis Repeteer de standaardafgeleiden en de rekenregels voor differentiëren. Draai eventueel het
Eentermen en veeltermen
I Eentermen en veeltermen. Vul de tabel aan. eenterm coëfficiënt lettergedeelte 4 abc 4 rq 4 0,r t -6 z -4 8 a b c. Noteer de volgende algebraïsche vormen als eentermen door gebruik te maken van coëfficiënten
1. Rekenen met gehele getallen 3. 2. Rekenen met decimale getallen 7. 3. Rekenen met procenten 10. 4. Rekenen met breuken 15. 5.
Inhoudsopgave. Rekenen met gehele getallen. Rekenen met decimale getallen 7. Rekenen met procenten 0. Rekenen met breuken 5 5. Eenheden 6. Rekenen met machten 5 7. Rekenen met wortels 6 8. Redactiesommen
VIDEO 4 4. MODULUSVERGELIJKINGEN
VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook
Paragraaf 5.1 : Wortelvormen en Breuken
Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 1 van 11 Paragraaf 5.1 : Wortelvormen en Breuken Les 1 : Wortelformules, Domein en Bereik Definities Domein = { alle -en die je mag invullen in de formule
6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden
6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p
handleiding formules
handleiding formules inhoudsopgave inhoudsopgave 2 de grote lijn 3 bespreking per paragraaf 4 applets 4 1 rekenen en formules 4 2 formules maken 4 3 de distributiewet 5 4 onderzoek 5 tijdpad 6 materialen
3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.
92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,
Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429)
Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429) - een lijst met operationele en concrete doelen van de lessenserie, indien mogelijk gerelateerd
Afspraken cijferen derde tot zesde leerjaar
6/05/2013 Afspraken cijferen derde tot zesde leerjaar Sint-Ursula-Instituut Delen met natuurlijke getallen In het derde leerjaar werk ik volledig met potlood. Ik maak een verticaal lijstje van de tafelproducten.
opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename
Algebra Anders Parabolen uitwerkingen 1 Versie DD 014 1 Parabolen herkennen opdracht 1. x - -1 0 1 3 y 4 1 0 1 4 9-3 -1 + 1 + 3 +5 toename tt + + + + a) + b) De toename is steeds een nieuwe rand. De randen
De volgorde bij samengestelde reken-wiskunde bewerkingen
Ministerie van Onderwijs, Wetenschap en Cultuur (MinOWC) Lesbrief Basis-, VOJ- en VOS onderwijs De volgorde bij samengestelde reken-wiskunde bewerkingen juli 2015, MinOWC, Paramaribo Niets uit deze folder
Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo
Bijlage 7 Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Deze vragen kunnen gebruikt worden om aan het eind van klas 3 havo/vwo na te gaan in hoeverre leerlingen in staat zijn te
1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling
Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil
5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.
5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige
3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
De 10 e editie havo-vwo OB
De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie
2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13
REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.
2.1 Lineaire formules [1]
2.1 Lineaire formules [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte
Elementaire rekenvaardigheden
Hoofdstuk 1 Elementaire rekenvaardigheden De dingen die je niet durft te vragen, maar toch echt moet weten Je moet kunnen optellen en aftrekken om de gegevens van de patiënt nauwkeurig bij te kunnen houden.
Overzicht rekenstrategieën
Overzicht rekenstrategieën Groep 3 erbij tot tien Groep 3 eraf tot tien Groep 4 erbij tot twintigt Groep 4 eraf tot twintigt Groep 4 erbij tot honderd Groep 4 eraf tot honderd Groep 4 en 5 tafels tot tien
1.1 Tweedegraadsvergelijkingen [1]
1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2
Oefening: Markeer de getallen die een priemgetal zijn.
Getallenkennis : Priemgetallen. Wat is een priemgetal? Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. (m.a.w. een priemgetal is een natuurlijk getal
Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...
Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een
PG blok 4 werkboek bijeenkomst 4 en 5
2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene
Lineaire formules.
www.betales.nl In de wiskunde horen bij grafieken bepaalde formules waarmee deze grafiek getekend kan worden. Lineaire formules zijn formules die in een grafiek een reeks van punten oplevert die op een
TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar
TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar Vraag 1: (pg 64 oefening 2 - Basisboek LVS wiskunde toetsen 2) Het verschil tussen
Paragraaf 1.1 : Lineaire verbanden
Hoofdstuk 1 Formules, grafieken en vergelijkingen (H4 Wis B) Pagina 1 van 11 Paragraaf 1.1 : Lineaire verbanden Les 1 Lineaire verbanden Definitie lijn Algemene formule van een lijn : y = ax + b a = richtingscoëfficiënt
Rekentijger - Groep 7 Tips bij werkboekje A
Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk
Programma. - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen. hfst 9 rekenen2.
Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen 1 priemfactoren Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na
Hoofdstuk 1 : REKENEN
1 / 6 H1 Rekenen Hoofdstuk 1 : REKENEN 1. Wat moet ik leren? (handboek p.3-34) 1.1 Het decimaal stelsel In verband met het decimaal stelsel: a) het grondtal van ons decimaal stelsel geven. b) benamingen