16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

Maat: px
Weergave met pagina beginnen:

Download "16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3"

Transcriptie

1 Hoofdstuk 6 HAAKJES VWO 6.0 INTRO 6. TREK AF VAN 8 a b De uitkomsten zijn allemaal. c (n + )(n ) (n + )(n ) = d - - = -0,75 -,75 = b De uitkomsten zijn allemaal. c n + (n + ) (n + ) = = 6 4 = d 4 6. REKENEN a ( + 5) = 8 = 64 = 8 b + 5 = = ( + 5 ) = ( + 5) = 8 = 56 ( ( + 5)) = ( 8) = 6 = 56 c = -6 ( 5 + 7) = -0 (5 + 7) = -4 ( ) = ( ) (5 + 7) = - 4 a Nee, a + (4 + ) en a zijn allebei a + 6. b Ja, a (4 ) = a en a 4 = a 6. c Nee, a (4 ) en a 4 zijn allebei 8a. d Ja, a:(4:) = a: en a:4: = a:8. 5 a : ( 6) (7 4) (6 + ( 7)) : -4 (6 + -4) = = - b (4 + 5) + (6 9) = 9 + (-) = = 6 c ( ) : 7 = ( + 8 0) : 7 = ( + 6 0) : 7 = : 7 = 9 6 a (x + 5) = x + 5 (x + 5) + 5(x ) = x+5 + 5x 5 = 8x 5(x + 5) (x + 5) = x + 0 b (5x) = 5x (5x) = 5x = 75x ( 5x) = (5x) = 5x ( x 4 ) = x 8 c - ( x 4 ) = - x (- x 4 ) = x a b Alleen bij 4 ( + ) en 4 ( ). b A B+C = A (B C) en A B C = A (B+C) 9 a met: 00 (a + b) ; zonder: 00 a b b 00 (a + b) = 00 a b c 00 b + c euro ; 00 (b c) euro d 00 b + c = 00 (b c) 0 a met: 4 (a b) ; zonder: 4 a + b b 4 (a b) = 4 a + b a 90 a b 90 + a a met: 00 (a + b + c + d) zonder: 00 a b c d b 00 (a + b + c + d) = 00 a b c d c a x y z u a x + y z + u a = 7500 = = = (000 + x) = 7500 x b = = = = = = (000 x) = x 4 a 54 x b x y c met: 54 (x y) ; zonder: 54 x + y d 54 (x y) = 54 x + y 5 a 8500 (000 x) = 8500 (000 -) = = 7497 en x = = 7497 ; klopt b 4a + 9 x -4a + x + a + -x + 5-4a 5 de Wageningse Methode Antwoorden H6 HAAKJES VWO

2 6 a (x 5) = (x 7) x 5 = x 4 x 5 = -4 x = haakjes weg min x plus 5 controle: (x 5) = -4 = - (x 7) = -6 = - b x 5 = x (x ) haakjes weg x 5 = x + min x x 5 = plus 5 x = 6 delen door controle: x 5 = 9 5 = 4 x (x ) = 6 = 4 7 0,60,,00 en,40 m 8 a Breedte C =,60 (,40 x) zonder haakjes: x 0,80 b x 0,8 + x =,0 c x 0,8 =,0 x =,8 x =,4 d A:,40 m, B:,00 m, C: 0,60 m 9 breedte van A: x breedte van B: 4,70 x breedte van C: 4,0 (4,70 x) = x 0,50 vergelijking: x + (x 0,50) =,0 oplossing; x 0,50 =,0,80 x =,90 br. A:,90 m, br. B:,80 m, br. C:,40 m 0 prijs fles wijn = x prijs fles sherry = x prijs fles cognac = 7 ( x) = 5 + x vergelijking : x + (5 + x) = 0 oplossing: x + 5 = 0 x = 5 x = 7,50 wijn: 7,50, sherry: 4,50, cognac:,50 6. TEGENGESTELDE a Van Corien: 7 a, van Joris: -7 + a b Van Corien: 7 a + b, van Joris: -7 + a b c Van Corien: a + b, van Joris: - + a b (7 a) + (-7 + a) = 0; klopt. a a + a = 0 b -04, 0,78, 0, 4 a -x -a + b c + d a + n b -5 z + p + a + y -x 5 -x is het tegengestelde van het kwadraat van x, dus -(x x) (-x) is het kwadraat van het tegengestelde van x, dus -x -x (en dat is gelijk aan x ). 6 -a + b a b a + b 7 + (-x + 4) = -x x + (-x 4) = -x + -x (x 6) = x x 4 + (-5 + x) = 5x 9 x + (- + x) = 0 6x (4x 6) = 6x + (-4x + 6) = x a (x ) + (4x 7) ( x) = (x 9) + (4x 7) (6 x) = (x 9) + (4x 7) + (-6 + x) = 9x b 8 (-x + 4 ) + -(x 7) = 8 (-x + 4) + (-x + 4) = 8 + (x 4) + (-x + 4) = 8 c x (x y) + (-x y) = x (x 6y) + (-x y) = x + (-x + 6y) + (-x y) = -x + 4y d (x y) (-x y) (-x y) = (x y) + (x + y) + (x + y) = 5x + y 9 a (x + ) (x + 4) = 6 (x + ) (4x + 8) = 6 (x + ) + (-4x 8) = 6 -x 6 = 6 -x = x = -4 controle: (x + ) (x + 4) = - -4 = - -8 = = 6 b -(x + ) 5(6x 7) = 94 8x -4x 6 + (-0x + 5) = 94 8x -4x + 9 = 94 8x -6x = 65 x = -,5 controle: -(-5 + ) 5(-5 7) = = = = PRODUCTEN VAN TWEETERMEN 0 a b c n + d manier : n + (n + ) = n + n + manier : (n + )(n + ) = (n + ) e (n + ) = n + n + f 0 = (00 + ) = = 0.0 de Wageningse Methode Antwoorden H6 HAAKJES VWO

3 a n, 5n, 5n, 5 b n + 5 bij n + 5 c (n+5) = n + 0n + 5 a n, n, 4n, b (n + )(n + 4) = n + 7n + c d (n + )(n + 5) = n + 7n + 0 e (n + )(n + 4) = n + 6n + 8 a 7a + 0b + ab b (a + )(x + 5) = ax + x + 5a + 5 c (p + 7)(q + 5) = pq + 7q + 5p + 5 d q + p + pq 4 (- + 5)(-7 + ) = 4-4 = = = -6 5 Teken een rechthoek van a + b bij c + d. Verdeel hem in vier stukken en schrijf de oppervlakte op twee manieren op. 8 a x 6 = x 4x = -4x = -4x x = 5 controle: (5 + 4)(5 4) = 9 = 9 (5 ) = = 9 b x (x + x + ) = x 4x + 4 x x = x 4x + 4 -x = -4x + 4 x = 5 x = controle: ( ) ( +) = 6 4 ( ) = 4 = 4 ( ) = ( ) = 4 c 4(x x ) = 4x 4x 8x = 4x -8x = 0-8x = x = - controle: 4(- + )( - ) = = 9 ( - ) = (-) = 9 d x + 5x = x + 6x + 5 5x = 6x + 5 -x = 5 x = -5 controle: -5(-5 + 5) = -5 0 = 0 (-5 + )(-5 + 5) = -4 0 = 0 9 a (x + )(x + ) (x )(x ) (x + )(x + 6) (x )(x 6) (x + )(x ) (x )(x + ) (x + 6)(x ) (x 6)(x + ) b (a + b) (a b) (4a + b)(a + b) (4a b)(a b) (a + 5b)(a + b) (a 5b)(a b) (a + b)(a + 5b) (a b)(a 5b) 6 a = 98 b = = 59 7 a x 0x + x 4x x + 7x 8 x 7x 8 x 6 x 8x + 6 x + x x + x + 4 b x 7x + x x 6x + x 8 6x x 8 x 6x 6 4x 6x 6 x + x x + x + c p + 4pq + 4q p 4pq + 4q 5p + 0pq + 4q 5p 0pq + 4q 5p 0pq + 4q 5p + 0pq + 4q -5p + 4q -5p + 0pq 4q 40 a x b x + 5, x 4 c x = (x + 5)(x 4) d x = x + x 0 x = x + x 0 0 = x 0 0 = x controle: x = 400 (x + 5)(x 4) = 5 6 = 400 e 400 plaatsen 4 a 4 ; 90 b 64 ( ) = = = 906 c n (n ) ; (n )(n ) d n (n ) = (n )(n ) e n (n ) = n n + (n )(n ) = n n + de Wageningse Methode Antwoorden H6 HAAKJES VWO

4 4 a 0 personen extra mee: korting per persoon = 0 0,05 = 0,50 De bus kost 40 5,50 = 0 b 6 5 0,05 = 5,75 ; 5 5,75 = 0, ,05 = 5,5 ; 47 5,5 = 4,05 c prijs per persoon = 6 0,05n, dus (0 + n)(6 0,05n) = ,5n 0,05n d Dan n = = 50,- of = 50,- 4 a x 0 bij x + meter b x ; (x 0)(x + ) c x = (x 0)(x + ) d x = x + x 0 0 = x 0 0 = x 60 = x e De vierkante akker is 60 bij 60 meter. De rechthoekige akker is 50 bij 7 meter. De oppervlakte van beide akkers is 600 m 44 (a + b) = (a + b)(a + b) = a + ab + ba + b = a + ab + b (a b) = (a b)(a b) = a ab ba + b = a ab + b (a + b)(a b) = a ab + ab + b = a b 45 (a + b) is de oppervlakte van het hele vierkant. a, ab, ab en b zijn de oppervlaktes van de vier stukken. 46 a 9x + 6x + 9x 6x + 9x b x + x + (x x + ) = 4x x + x + + (x x + ) = x + (x ) = (x ) x + = x 4 x + 47 a (n )(n + ) (n )(n + ) = n (n 4) = n n + 4 = b n + (n + ) (n + ) = n + (n + n + 4) (n + n + ) = n + n + n + 4 n 4n = 48 a (x + 8) (x 8) (x 8)(x + 8) b (x + ) (x ) (x )(x + ) c (0x + y) (0x y) (0x y)(0x + y) c (x ) is voor elke x positief of 0, want: als x > is (x ) een positief getal x een positief getal, en dus positief als x < is (x ) een negatief getal maal een negatief getal, en dus positief als x = is (x ) = 0 = 0 50 a x 0x + 00 = (x 0) 0 b x 0x is 00 kleiner dan x 0x + 00 Daar kunnen alle getallen -00 uitkomen. c x 0x + 7 is 6 kleiner dan x 0x + 00 Daar kunnen alle getallen -6 uitkomen. SUPER OPGAVEN a Bijvoorbeeld: = = 4 : = 4 7 = 4 = = (4 ) 4 = 4 ( ) 9 = (4 ) 5 = 4 0 = 4 b c Ja, bijvoorbeeld (4 ) = Het grootste getal dat je kunt maken is 4 ( ) ( ) a juist juist b juist juist c 5 Als d, s en t het aantal knikkers is dat Daan, Sem en Thomas eerst hadden, dan hebben ze daarna: d + 4, s + 5 en t knikkers. Daan heeft er 0, dus d + 4 = 0, dus d = 8. 7 a ( + ) : = 7 b ( : ( + )) = -6 0 a 99, 6, 0, -5, 0, 7, 05, 00 x, 00+x b c De uitkomst is steeds het getal waarmee je begon. d 00 (00 x) = x 49 a b (x ) de Wageningse Methode Antwoorden H6 HAAKJES VWO 4

5 Vul twee velden in zoals hiernaast. Uit een diagonaal volgt dat het middelste veld 6 is. Uit de tweede rij volgt dat? = 4. 5 a Noem de breedte van het gemeenschappelijke deel: z. Dan = z. Dus z = 5. Dus de oppervlakte is 45. b Noem de breedte van het gemeenschappelijke deel: z. Dan y = x + x z. Dus z = x y. Dus de oppervlakte is x(x y). 6 linksboven rechtsboven + rechtsonder linksonder verandert als je de getallen aan een zijde beide evenveel verhoogt of verlaagt. Dus blijft daar altijd = -5 uitkomen. Dat is zo bij figuur A. 9 aantal meisjes = aantal meisjes dat heeft opgelost + aantal meisjes dat wel heeft opgelost = aantal jongens dat wel heeft opgelost + aantal meisjes dat wel heeft opgelost = aantal leerlingen dat wel heeft opgelost. Antwoord B dus. 0 e vaas: aantal rozen: x aantal fresia s: x e vaas: aantal rozen: 5 x aantal fresia s: (5 x) = x x is inderdaad minder dan x. a Tussen - en. b c - 6 Nee. Kies bijvoorbeeld de getallen en. Het tegengestelde van het product van de getallen is dan -6. Het product van de tegengestelden is dan - - = 6. 8 a Het product van twee getallen die elkaars omgekeerde zijn is. b Dat is dat getal zelf weer. dat is dat getal zelf weer. c Er is geen verschil. d Het omgekeerde van een product is het product van de omgekeerden. Er komen aan de boven rand n + verticale lucifers bij en n horizontale. Er komen aan de rechter rand n + horizontale lucifers bij en n verticale. En nog twee lucifers in de hoek (rechtsboven). Dus totaal: 4n + 4 lucifers erbij. 4 Pas de distributie wet nog twee keer toe: (a + b)c = ac + bc en (a + b)d = ad + bd. Alles opgeteld is dat ac + bc + ad + bd. 5 a 6 a b (a + b + c)(d + e + f) = ad + ae + af + bd + be + bf + cd + ce + cf Een negenterm. b (a + b)(c + d)(e + f) = ace + acf + ade + adf + bce + bcf + bde + bdf Een achtterm. 4 a x bij x b x 5 bij x c (x )(x ) = x 7x + 6 d (x 5)(x ) = x 7x + 5 e Hoogakker; m meer. 44 Dan moet ab = 0, dus dat is alleen het geval als a = 0 of b = a (a b) is de oppervlakte van het vierkant linksonder. Dat is het hele vierkant (opp. a ), min de strook rechts (opp. ab) en min de strook boven (opp. ab); maar dan heb je het vierkantje rechtsboven (opp. b ) er twee keer vanaf getrokken. Om dat goed te maken moet b er weer bij geteld worden. b De L-vorm is het verschil van twee vierkanten, namelijk a en b, en heeft dus oppervlakte a b. De rechthoek meet a + b bij a b, en heeft dus oppervlakte (a + b)(a b). de Wageningse Methode Antwoorden H6 HAAKJES VWO 5

6 46 a 4, 6 4, 4, 0 4, 0 4 b is het product van en -meer-dan- c n(n + ) + 4 d (n + ) = n + n + 4 n(n + ) + 4 = n + n + 4 e Dat is = a x + 0x + 5 = (x + 5) 0 x + 0x + 49 is 4 meer dan x + 0x + 5. Dus kan x + 0x + 49 alle waarden 4 aannemen. b x + 6x + 64 = (x + 8) 0 x + 6x + 69 is 5 meer, en kan dus alle waarden 5 aannemen. Op de moet 69 staan. 6.7 EXTRA OPGAVEN a 5 6x = 80x 5 6x 5 40x + 6x x -(x y (x y)) = -(x y + (-x + y)) = -y (-x + y) (x y) = (-x + y) + (-x + y) = -4x + y -x (y + (-x + y)) = -x (-x + y) = -x + (x y) = -y -(x (y + (-x + y))) = -(x (-x + y)) = -(x + (x y)) = -(4x y) = -4x + y 4x 0x + 5-4x 0x 5 (x 0x + 5) = x 0x +50 (x 0) = 4x 40x + 00 (xy x + y ) = xy 6x + y 6 x + + y = x + y + x + y + = x y (-x ) + (-y+) = -x y + 4 b (x + 4)(x + 6) (x 5)(x + 5) (x )(x + ) (x 5y)(x + 5y) (x )(x + ) (x + )(y + ) (x 6)(x 4) (x + )(y ) a gewicht appel = a gewicht kiwi = 40 a gewicht peer = 400 a b vergelijking: 40 a a = 00 oplossing: 740 a = 00 -a = -440 a = 0 c De appel weegt 0 gram, de kiwi 0 gram en de peer 80 gram. b (x + 5) x c (x + 5) x = x + 0x + 5 x = 00 0x + 5 = 00 0x = 75 x = 7,5 d 7, 5 bij 7, 5 meter 4 a 4, 8 4, 5 4, 4 4 b Het is het kwadraat van het grootste getal. c n 4 d 0 4 = a (x ) (-x + ) = x 4 b x 8,5 = 0,5((-x + ) + (x )) x 8,5 = 0,5(x ) x 8,5 = 0,5x 6x 7 = x 5x 7 = - 5x = 5 controle: -x + = - en x =. x 8,5 = 0,5; en 0,5 ligt midden tussen - en. 6 a oplossing: x + (- + x) + 8 = 9 + x x + 7 = 9 + x - = x controle: - ( -) + 8 = - +8 = ( + -) = = b oplossing: x 9 = x x -9 = -x -6 = -x controle: ( + )( ) = 6 0 = 0 ( + )( ) = 4 0 = 0 c oplossing: x + (- x ) = - + x - x = - + x - x = - x = controle: ( + 4) = = - 6 -( ) = a BF = BD = 55 x CF = CD = 0 x b BC = 45 en BC = BD + CD = 55 x + 0 x Dus 45 = 85 x Dus x = 40, x = 0 a 4 m de Wageningse Methode Antwoorden H6 HAAKJES VWO 6

7 8 a BAC = BAM + CAM = C + B = + 8 = 50 AMB = 80 8 = 04 AMC = 80 = 56 BMC = 60 AMB AMC = = 00 b BAC = (b + c) BMA = (80 b) CMA = (80 c) BMC = 60 ((80 b) + (80 c)) = 60 (60 b c) = 60 + (-60 + b + c) = (b + c) c BMC is keer zo groot als BAC. de Wageningse Methode Antwoorden H6 HAAKJES VWO 7

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje.

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje. 4som kaart a In een 4som-puzzel moeten in vier hokjes getallen worden geschreven. Van de (horizontale) rijen en van de (verticale) kolommen is de som gegeven en ook van de diagonalen. Welke getallen moeten

Nadere informatie

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde Hoofdstuk GELIJKVORMIGHEID HAVO. INTRO a g Nee, de gezichten zijn even groot, terwijl de lengtes verschillen. h Ja, alle lengtes van de kleine driehoek worden met,4 vermenigvuldigd. Ja, want van Nils driehoek

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 Antwoorden

WISKUNDE-ESTAFETTE RU 2006 Antwoorden WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

Ruitjes vertellen de waarheid

Ruitjes vertellen de waarheid Ruitjes vertellen de waarheid Opdracht 1 Van fouten kun je leren Van fouten kun je leren, jazeker. Vooral als je héél goed weet wat er fout ging. Vandaag leer je handige formules begrijpen door kijken

Nadere informatie

Antwoordmodel - Kwadraten en wortels

Antwoordmodel - Kwadraten en wortels Antwoordmodel - Kwadraten en wortels Schrijf je antwoorden zo volledig mogelijk op. Tenzij anders aangegeven mag je je rekenmachine niet gebruiken. Sommige vragen zijn alleen voor het vwo, dit staat aangegeven.

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1 H5 Ruimtelijke figuren in het plat VWO 5.0 INTRO a een vierkant ; een lijnstuk ; een vierkant Bijvooreeld zo: Het laagste punt is het midden van het grondvlak. Snij van een kurk aan weerszijden een stuk

Nadere informatie

2003 De Wageningse Methode. Foto s De Wageningse Methode. Druk/Verkoop Tamminga bv, Postbus 176, 6920 AD Duiven

2003 De Wageningse Methode. Foto s De Wageningse Methode. Druk/Verkoop Tamminga bv, Postbus 176, 6920 AD Duiven INHOUDSOPGAVE Routes in Vakhorst 1 Oppervlakte 6 Formules 9 Roosterkwartier 11 Test 15 Op de grens van Roosterkwartier en Vakhorst 16 Met negatieve getallen 18 Formules uit plaatjes 0 Zonder plaatjes Terugblik

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Als x = 0,6 is de totale breedte 5,6 meter. De totale oppervlakte is 3 5,6 = 67, m. b De lengte is meter, de totale breedte is 5 + x meter, dus voor de oppervlakte geldt A = (5 + x). Dus

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

Rekenvaardigheden voor klas 3 en 4 VWO

Rekenvaardigheden voor klas 3 en 4 VWO Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)

Nadere informatie

9.0 INTRO. Onder nul. In de nacht van 29 op 30 december was de temperatuur nog vier graden lager. a Hoe koud was het die nacht?

9.0 INTRO. Onder nul. In de nacht van 29 op 30 december was de temperatuur nog vier graden lager. a Hoe koud was het die nacht? 57 9.0 INTRO Onder nul 1 Temperaturen worden in ons land gemeten in graden Celsius ( C). Bij 0 C bevriest water. In de winter is het vaak kouder dan 0 C. Zo was de middagtemperatuur op 9 december 006 in

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Hoeveel kinderen zitten er in elke groep van de Kameleonschool? Kleur het goede aantal hokjes. b 28 =

Hoeveel kinderen zitten er in elke groep van de Kameleonschool? Kleur het goede aantal hokjes. b 28 = les 23 en 24 blok 4 41 Teken de afstanden. 1 cm is in het echt 10 km. Van Amsterdam naar Alkmaar: 40 km. Controleer met je liniaal. aa Van Amsterdam naar Den Helder: 80 km. 8 cm b Van Almelo naar Utrecht:

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus CEVA-DRIEHOEKEN Eindwerk wiskunde 010 Heilige-Drievuldigheidscollege 6WeWIi Soetemans Dokus Inhoud 1. Inleiding... 4 1.1. Info over Giovanni Ceva... 4 1.. Wat zijn Ceva-driehoeken?... 4 1.3. Enkele voorbeelden...

Nadere informatie

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? deel

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11.

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. Uitwerkingen wizbrain 2013 1. E 2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. 3. C De vetgedrukte kaarsen in de volgende tabel branden na 55 minuten: begin 0 10 20 30

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.

Nadere informatie

Oefeningen in verband met tweedegraadsvergelijkingen

Oefeningen in verband met tweedegraadsvergelijkingen Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot

Nadere informatie

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5 Hoofdstuk 6: De afgeleide functie 6. Hellinggrafieken Opgave : als je vanuit punt A naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te komen, dus rc 6 b. c. d. x 0 4 helling 6,5 0, 5, 5 0,5 Opgave

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Oefenopgaven Stelling van Pythagoras.

Oefenopgaven Stelling van Pythagoras. Oefenopgaven Stelling van Pythagoras. 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en CD. B. Laat door middel van berekening zien dat hoek B van driehoek ABC

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a 4 8 + 4 1,80 + 4 0,60 = 32 + 7,20 + 2,40 = 41,60. Ze is 41,60 kwijt. 4 (8 + 1,80 + 0,60) = 4 10,40 = 41,60. Ze krijgt hetzelfde edrag. c 8 + 1,80 + 0,60 4 = 8 + 1,80 + 2,40 = 12,20. Je

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Handig met getallen 4 (HMG4), onderdeel Meetkunde

Handig met getallen 4 (HMG4), onderdeel Meetkunde Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de

Nadere informatie

2 Inproduct. Verkennen. Uitleg

2 Inproduct. Verkennen. Uitleg 2 Inproduct Verkennen Inproduct Inleiding Verkennen Het begrip arbeid komt uit de natuurkunde. Bekijk de applet zorgvuldig. Als je de rode stippellijn laat samenvallen met de beweging van A naar B dan

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600.

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. Estafette-opgave 1 (20 punten, rest 580 punten) Vier bij vier. In een schema van vier maal

Nadere informatie

5.5 Gemengde opgaven. Gemengde opgaven 159

5.5 Gemengde opgaven. Gemengde opgaven 159 Gemengde opgaven 159 5.5 Gemengde opgaven Opgave 40 a) Teken de lijn l waarvan alle punten dezelfde x- en -coördinaat hebben. Geefdeformulevan l. b) Tekendelijnkloodrechtopl endooro. Geefdeformule van

Nadere informatie

Vraagstukken van de tweede graad

Vraagstukken van de tweede graad Vraagstukken van de tweede graad 1. Een getal en zijn tweedemacht hebben als som 90. Bepaal dat getal.. Bepaal twee opeenvolgende getallen waarvan de som van de kwadraten 365 is. 3. Verdeel het getal 37

Nadere informatie

SMART-finale 2016 Ronde 1: 5-keuzevragen

SMART-finale 2016 Ronde 1: 5-keuzevragen SMART-finale 2016 Ronde 1: 5-keuzevragen Ronde 1 bestaat uit 16 5-keuzevragen. Bij elke vraag is precies één van de vijf antwoorden juist. Geef op het antwoordformulier duidelijk jouw keuze aan, door per

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209.

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. 1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

Rekentijger - Groep 6 Tips bij werkboekje A

Rekentijger - Groep 6 Tips bij werkboekje A Rekentijger - Groep 6 Tips bij werkboekje A Puzzelvierkanten Werkblad 1 Vierkant linksboven Zoek eerst uit hoeveel één hartje waard is. Daarna kun je ook berekenen hoeveel een rondje waard is. Vierkant

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

De eerste ronde van de Nederlandse Wiskunde Olympiade 2006 2008

De eerste ronde van de Nederlandse Wiskunde Olympiade 2006 2008 De eerste ronde van de Nederlandse Wiskunde Olympiade 2006 2008 een bundel met opgaven en uitgebreide uitwerkingen Floris van Doorn Alexander van Hoorn Maarten Roelofsma NEDERLANDSE WISKUNDE OLYMPIADE

Nadere informatie

tafel, inclusief de speelruimte, te plaatsen, volgens het advies van de leverancier afgerond 31 m 2 is.

tafel, inclusief de speelruimte, te plaatsen, volgens het advies van de leverancier afgerond 31 m 2 is. Tafeltennistafel Op de foto hiernaast staat een betonnen tafeltennistafel voor buiten. De tafel bestaat uit 2 onderdelen: een cilindervormige poot en een blad dat hierop bevestigd is. Het massieve blad

Nadere informatie

j (11,51) k (11,-41) l (11,-1011)

j (11,51) k (11,-41) l (11,-1011) H0 COÖRDINATEN 0.1 INTRO 1 a A3, C1, C3 b 3 A3, C1 a d6 of h10 0. DE WERELD IN KAART 3 B 4 a d Zie assenstelsel opgave 6. e b Zie bovenstaande wereldbol. Zie bovenstaande wereldbol. d 90 NB 5 a 7 b b Zie

Nadere informatie

Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende.

Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende. Cabri-werkblad Rond het zwaartepunt van een driehoek Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende. Stelling De verbindingslijn van de middens van twee zijden van

Nadere informatie

Wiskunde Opdrachten Pythagoras

Wiskunde Opdrachten Pythagoras Wiskunde Opdrachten Pythagoras Opdracht 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en AC. B. Laat door middel van berekening zien dat hoek B van driehoek

Nadere informatie

Vergelijkingen en hun oplossingen

Vergelijkingen en hun oplossingen Vergelijkingen en hun oplossingen + 3 = 5 is een voorbeeld van een wiskundige vergelijking: er komt een = teken in voor, en een onbekende of variabele: in dit geval de letter. Alleen als we voor de variabele

Nadere informatie

inhoudsopgave juni 2005 handleiding haakjes 2

inhoudsopgave juni 2005 handleiding haakjes 2 handleiding haakjes inhoudsopgave inhoudsopgave 2 de opzet van haakjes 3 bespreking per paragraaf 5 rekenen trek-af-van tegengestelde tweetermen merkwaardige producten tijdpad 6 materialen voor een klassengesprek

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Wortels Hoofdstuk - Wortels Voorkennis V- zijde vierkant in m oppervlakte vierkant in m 9 V- = = = = = 7 = 9 = 7 = 89 = 9 8 = = 9 8 = = 9 = 8 = 9 9 = = 0 = 00 = 0 = 00 V-a = 9 = b 7 = 9 = 9

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B Analytische meetkunde Inhoud.. Coördinaten in het vlak.. Vergelijkingen van lijnen.3. Vergelijkingen van cirkels.4. Snijden.5. Overzicht In opdracht van: Commissie Toekomst Wiskunde

Nadere informatie

Sterrenwerk. Rekenen. voor 9-11 jaar. combineren en visualiseren 2

Sterrenwerk. Rekenen. voor 9-11 jaar. combineren en visualiseren 2 Sterrenwerk Rekenen voor 9-11 jaar combineren en visualiseren 2 2 Hexomino s 1 Die dekselse figuren van zes! Deze figuren bestaan uit zes vierkanten die elkaar met ten minste een zijde raken. Ze heten

Nadere informatie

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268 Auteur VO-content Laatst gewijzigd Licentie Webadres 24 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74268 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein

Nadere informatie

6 a 121 meter ; 25 meter b v = - 501. h 2 + h c v = 0 als - 501. e v = 41 als - 501. [MAAL 7] [OMG] [PLUS 7] y =

6 a 121 meter ; 25 meter b v = - 501. h 2 + h c v = 0 als - 501. e v = 41 als - 501. [MAAL 7] [OMG] [PLUS 7] y = Hoofdstuk 30 FUNCTIES 30.0 INTRO 1 a 1, 4 en 6 kunnen niet de grafiek van en autorit zijn, want dan zou de auto op één moment op vershillende plaatsen moeten zijn! 2 De auto is ergens naar toe gereden

Nadere informatie

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie

Hoofdstuk 8: De normale verdeling. 8.1 Centrum- en spreidingsmaten. Opgave 1:

Hoofdstuk 8: De normale verdeling. 8.1 Centrum- en spreidingsmaten. Opgave 1: Hoofdstuk 8: De normale verdeling 8. Centrum- en spreidingsmaten Opgave : 00000 4 4000 5 3000 a. 300 dollar 0 b. 9 van de atleten verdienen minder dan de helft van het gemiddelde. Het gemiddelde is zo

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,

Nadere informatie

7t + 10 = 15t + 9 10 = 8t + 9 1 = 8t 1 = t 8. b + 6 = 8b + 1 6 = 7b + 1 5 = 7b 5. Controle: b + 6 = 5 5. 2p + 9 = 5p 9 = 3p 3 = p.

7t + 10 = 15t + 9 10 = 8t + 9 1 = 8t 1 = t 8. b + 6 = 8b + 1 6 = 7b + 1 5 = 7b 5. Controle: b + 6 = 5 5. 2p + 9 = 5p 9 = 3p 3 = p. Hoofdstuk VERGELIJKINGEN havo. INTRO pond druiven Een appel kost, en een kiwi,. Ton is jaar, Janneke is jaar en Gerd is jaar.. WAT IS HET GETAL X? 6 - of - géén oplossingen -9 -. DE WEEGSCHAALMETHODE 8

Nadere informatie

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 HAVO en VWO Klas 3, 4 en 5 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

Hoofdstuk 13 SYMMETRIE VWO. b A, H, I, M, O, T, U, V, W, X, Y c B, C, D, E, H, I, K, O, X 13.0 INTRO

Hoofdstuk 13 SYMMETRIE VWO. b A, H, I, M, O, T, U, V, W, X, Y c B, C, D, E, H, I, K, O, X 13.0 INTRO Hoofdstuk 13 SYMMETRIE VWO 13.0 INTRO 1 a Rechtsoven staat het woord in spiegelschrift Linksonder staat het woord ondersteoven Rechtsonder staat het woord achterstevoren en ondersteoven. Alleen de H, I,

Nadere informatie

Werkblad Cabri Jr. Vierkanten

Werkblad Cabri Jr. Vierkanten Werkblad Cabri Jr. Vierkanten Doel Allereerst leren we hierin dat er een verschil is tussen het "tekenen" van een vierkant en het "construeren" van een vierkant. Vervolgens bekijken we enkele eigenschappen

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7.

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7. Herhalingsoefeningen Rijen Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Onderzoek of de

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B 1 Analytische meetkunde Inhoud 1.1. Coördinaten in het vlak 1.2. Vergelijkingen van lijnen 1.3. Vergelijkingen van cirkels 1.4. Snijden 1.5. Overzicht In opdracht van: Commissie

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

Producten, machten en ontbinden in factoren

Producten, machten en ontbinden in factoren Joke Smit College Producten, machten en ontbinden in factoren Voor cursisten uit de volgende klassen: alle Havo en VWO klassen (wiskunde, wiskunde A en wiskunde B) Wat kun je oefenen? 1. Het uitrekenen

Nadere informatie

H15 GELIJKVORMIGHEID VWO

H15 GELIJKVORMIGHEID VWO Hoofstuk 5 Gelijkvormighei VWO 5 Vergroten en verkleinen a 5 a 9 riehoekjes, zie plaatje: a 0,5:,9, en :, ij 9 inh 7 0,5,57 m ij 7 5 5,9 5,95 m 6,9 0,7 m 9 e 6 a a Die van ij Die van 0 ij 0, ie van 8 ij

Nadere informatie

Werkblad Cabri Jr. Constructie van bijzondere vierhoeken

Werkblad Cabri Jr. Constructie van bijzondere vierhoeken Werkblad Cabri Jr. Constructie van bijzondere vierhoeken Doel Het construeren van bijzondere vierhoeken: parallellogram, ruit, vierkant. Constructies 1. Parallellogram (eerste constructie) We herhalen

Nadere informatie

Hoofdstuk 6 Examenaanpak. Kern 1 Modelleren

Hoofdstuk 6 Examenaanpak. Kern 1 Modelleren Uitwerkingen Wiskunde A Netwerk VWO 6 Hoofdstuk 6 Examenaanpak www.uitwerkingenste.nl Hoofdstuk 6 Examenaanpak Kern Modelleren a De vrouwen van 8 jaar vallen in de categorie 5 9. Hoe de verdeling binnen

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Stelling van Pythagoras

Stelling van Pythagoras 1 of 6 Stelling van Pythagoras Uit Wikipedia, de vrije encyclopedie De stelling van Pythagoras is een wiskundige stelling die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens

Nadere informatie

INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel.

INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel. Hoofdstuk 5 Het Assenstelsel 5.1 Het Assenstelsel INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel. Dit assenstelsel is een idee van de Franse filosoof en wiskundige René Descartes(1596-1650).

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Project Paper: Tiling problem

Project Paper: Tiling problem Project Paper: Tiling problem Groep 11: Said Hattachi, Ismael el Hadad Hakim, Muttalip Küçük Januari 015 Abstract Dit artikel beschrijft een heuristiek waarmee een veld op een systematische wijze gevuld

Nadere informatie

Extra oefeningen hoofdstuk 2: Natuurlijke getallen

Extra oefeningen hoofdstuk 2: Natuurlijke getallen Extra oefeningen hoofdstuk 2: Natuurlijke getallen 2.1 Natuurlijke getallen 1 Rangschik de volgende natuurlijke getallen van klein naar groot. 45 54 56 78 23 25 77 89 2 050 2 505 2 055 2 500 2 005 879

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde Junior Wiskunde Olympiade 200-2002: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie