1. Het getal = 1800 is even. De andere antwoorden zijn oneven: 2009, = 11, = 191, = 209.

Maat: px
Weergave met pagina beginnen:

Download "1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209."

Transcriptie

1 1. Het getal = 1800 is even. De andere antwoorden zijn oneven: 2009, = 11, = 191, = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd editie Koala: jaargang 2009, probleem 2. c Vlaamse Wiskunde Olympiade v.z.w. 2. Van 15 tot en met 53 zijn er 20 oneven nummers. Hij bestelt dus brieven bij 20 huizen. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 2. c Vlaamse Wiskunde Olympiade v.z.w. 3. De jongens hadden in totaal = 8 danspartners, de drie meisjes hadden samen = 6 danspartners dus danste het vierde meisje met 2 jongens. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 3. c Vlaamse Wiskunde Olympiade v.z.w. 4. De omtrek van de ster bestaat uit twaalf gelijke stukken en is 36 cm lang. Elk stukje is dus 3 cm lang. De omtrek van de zeshoek kan je tekenen met zes van deze stukjes en is daardoor 18 cm lang. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 4. c Vlaamse Wiskunde Olympiade v.z.w.

2 5. Het grote vierkant is in 9 gelijke vierkanten verdeeld. Het middelste vierkant daarvan werd verdeeld in vier gelijke vierkanten. Het kleine zwarte vierkantje is één van de 25 vierkantjes waarin zo n vierkant is verdeeld. De oppervlakte van het kleine zwarte vierkantje is dus gelijk aan = van het grote vierkant. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 5. c Vlaamse Wiskunde Olympiade v.z.w. 6. Als je 100 ontbindt in priemfactoren krijg je: 100 = Dit is een product van vier natuurlijke getallen maar die zijn niet allemaal verschillend. We kunnen dit oplossen door het product van twee getallen samen te nemen. Bovendien als je een getal met 1 vermenigvuldigt blijft dat getal gelijk. Dus krijgen we: 100 = De som van deze getallen is 18. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 6. c Vlaamse Wiskunde Olympiade v.z.w. 7. Het aantal varkensstaarten is gelijk aan de helft van het aantal koeienpoten. Elke koe heeft vier poten en elk varken één staart dus is het aantal koeien gelijk aan de helft van het aantal varkens. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 7. c Vlaamse Wiskunde Olympiade v.z.w. 8. Bij 12 volwassenen is de lift volzet. Bij 9 volwassenen is de lift slechts voor 3 volzet en kan er 4 nog 1 van het maximum aantal kinderen bij. Een vierde van 20 is 5, dus mogen er maximaal 4 5 kinderen bij de 9 volwassenen in deze lift. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 8. c Vlaamse Wiskunde Olympiade v.z.w.

3 9. Plaats je vinger op een willekeurige plaats op het touw in figuren II of IV en volg het touw met je vinger. Op den duur kom je terug waar je begonnen bent en je hebt dan de hele figuur doorlopen. Bij figuren I, III en V is dit niet het geval. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 9; Kangoeroewedstrijd editie Koala: jaargang 2009, probleem 10. c Vlaamse Wiskunde Olympiade v.z.w. 10. Dit kenmerk is waar voor drie natuurlijke getallen, namelijk voor 1, 2 en 4. Merk op dat 1 2 = 1, 1 3 = 1, 2 2 = 4 en 2 3 = 8 dus bij het getal 1 en bij het getal 2 bestaat het kwadraat en de derde macht beide uit 1 cijfer. Voor het getal 4 bestaat het kwadraat en de derde macht beide uit 2 cijfers, namelijk 4 2 = 16 en 4 3 = 64. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 10. c Vlaamse Wiskunde Olympiade v.z.w. 11. Je moet minstens 3 punten wegdoen - bijvoorbeeld een diagonaal - en dan kan je geen enkele rechte tekenen waarop drie van de overblijvende punten liggen. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 11. c Vlaamse Wiskunde Olympiade v.z.w. 12. Het is onmiddellijk duidelijk dat 120 een hoek is van de stomphoekige driehoek. Vermits de som van de hoeken van een driehoek gelijk is aan 180, kan 80 geen hoek zijn van de stomphoekige driehoek, want de > 180. Dus 80 is een hoek van de scherphoekige driehoek. Vervolgens kan 10 geen hoek zijn van de scherphoekige driehoek want dan zou de derde hoek 90 meten en zou de driehoek een rechthoekige driehoek zijn. We weten nu dat de scherphoekige driehoek bestaat uit een hoek van 80 en een hoek van 55. Dus is de derde en tevens de kleinste hoek 45. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 12. c Vlaamse Wiskunde Olympiade v.z.w.

4 13. Neem als lengte van een zijde van het grote vierkant 2. Dan is de lengte van een zijde van het kleine vierkant 1. Elke twee gekleurde cirkelsectoren zijn qua oppervlakte gelijk aan de oppervlakte van een wit deel van het kleine vierkant. De oppervlakte van het gekleurde stuk is dus gelijk aan de oppervlakte van het kleine vierkant, namelijk 1. De oppervlakte van het grote vierkant is 4. Het gekleurde stuk is dus een vierde van het buitenste vierkant. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 13. c Vlaamse Wiskunde Olympiade v.z.w. 14. Stel dat de eerste persoon in de rij een Alito is, dan zouden alle andere Pseudo s moeten zijn, maar dat kan niet want de derde persoon in de rij bijvoorbeeld zegt dat de persoon voor hem een Pseudo is wat dan een waarheid zou zijn. De eerste persoon in de rij is dus een Pseudo. De tweede persoon in de rij spreekt met andere woorden de waarheid en de derde persoon is opnieuw een Pseudo. Op deze manier kan je heel de rij bekijken en merk je op dat de personen op een oneven positie in de rij telkens een Pseudo zijn en de personen op een even positie een Alito. Er zijn dus in totaal 13 Pseudo s. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 14. c Vlaamse Wiskunde Olympiade v.z.w. 15. Van het linkervoorvlak bovenaan is de waarde van twee hoekpunten gegeven en het derde hoekpunt heeft dit vlak gemeen met het rechtervoorvlak bovenaan. Het uiterst rechtse punt van de figuur moet daarom ook waarde 5 krijgen. Daardoor kennen we de waarden van de drie hoekpunten van het bovenste achtervlak, namelijk: 1, 5 en 5 en is de som hiervan 11. De som voor de andere vlakken moet ook 11 zijn en dus is de som van de waarden van de vijf hoekpunten: = 17. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 15. c Vlaamse Wiskunde Olympiade v.z.w.

5 16. In de gelijkheid (V I E R) (V I J F = T W I N T I G komen precies tien verschillende letters voor. Vermits verschillende letters verschillende cijfers aanduiden moeten alle cijfers van 0 tot en met 9 voorkomen. Dit wil zeggen dat de producten in het linker- en in het rechterlid moeten gelijk zijn aan nul. De enige letter die in beide leden voorkomt is I, dus moet I overeenstemmen met het cijfer nul. Bijgevolg is het product D R I E ook gelijk aan nul en kan dit dus maar één waarde aannemen. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 16. c Vlaamse Wiskunde Olympiade v.z.w. 17. Vul het rooster aan. De eerste mogelijkheid voor het middelste vakje op de bovenste rij is kleur A. Maar dan moet daaronder zeker kleur D komen en ziet de tweede rij er als volgt uit: D, C, D, B, A. De derde rij wordt dan: A, B, A, C, D en de vierde rij: D, C, D, B, A. De tweede mogelijkheid voor het middelste vakje op de bovenste rij is kleur D. Maar dan komt daaronder zeker kleur A en ziet de tweede rij er als volgt uit: D, C, A, B, A. De derde rij wordt dan A, B, D, C, D en de vierde rij: D, C, A, B, A. We stellen vast dat het grijze vakje steeds kleur A zal hebben. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 17. c Vlaamse Wiskunde Olympiade v.z.w. 18. Verleng de zijden van getekende hoek X en verleng ook de verticale zijde van de regelmatige negenhoek. We verkrijgen een gelijkzijdige driehoek. Alle drie de hoeken van deze driehoek zijn even groot dus is de hoek X gelijk aan 60. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 18. c Vlaamse Wiskunde Olympiade v.z.w. 19. Voor de eerste figuur heeft hij 20 vierkantjes nodig, voor de tweede 28 en voor de derde 36. Voor elke nieuwe figuur heeft hij 8 vierkantjes meer nodig. Voor het tiende figuurtje heeft hij dus = 92 vierkantjes nodig. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 19. c Vlaamse Wiskunde Olympiade v.z.w.

6 20. De breuken 1 en 1 liggen 16 streepjes van elkaar verwijderd. We kunnen de breuken 5 3 herschrijven als 1 3 = en 1 5 = Merk op dat er zich tussen 1 5 en 1 16 precies sten 1 bevinden. Punt a ligt op 6 streepjes van 5 en is dus gelijk aan = = 1 4. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 20. c Vlaamse Wiskunde Olympiade v.z.w. 21. Door de drie sneden komt bij de oppervlakte van de kubus de oppervlakte van elk zijvlak nog eens bij. De verhouding van de oppervlakten is dus 2 : 1. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 21. c Vlaamse Wiskunde Olympiade v.z.w. 22. De oppervlakte van het vierkant is 36 cm 2. De driehoek bedekt 2 van het vierkant. De driehoek 3 bedekt dus = 24 cm2 van het vierkant. Het vierkant bedekt dus ook 24 cm 2, wat 60% van de driehoek is. Dus is de oppervlakte van de driehoek 40 cm 2. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 22. c Vlaamse Wiskunde Olympiade v.z.w We kunnen de getallen van 1 tot en met 10 verdelen in vier groepjes die gemeenschappelijke delers hebben: {9, 3, 6}; {8, 4}; {10, 5} en {7}. De getallen die kunnen zorgen voor overgangen tussen de verschillende groepjes zijn 1 en 2. Samen bieden die ruimte aan overgangen tussen drie groepjes, zoals bijvoorbeeld in de volgende rij: 9, 3, 6, 1, 8, 4, 2, 10, 5. Het getal 7 kunnen we aan dit rijtje niet meer toevoegen omdat 7 alleen maar naast 1 kan staan en deze plaats al ingenomen is door langs de ene zijde het groepje getallen 9, 3 en 6 en langs de andere kant door het groepje 8, 4, 2. Zara heeft dus maximaal 9 getallen na elkaar opgeschreven. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 23. c Vlaamse Wiskunde Olympiade v.z.w. Een vierkant met zijde 44 heeft slechts een oppervlakte van Dit is onvoldoende om 2009 vierkantjes te maken met een natuurlijk getal als lengte van hun zijden. Als je een vierkant neemt met zijde 45 dan bestaat dit uit 2025 eenheidsvierkantjes. Maak met deze eenheidsvierkantjes twee vierkanten met lengte van de zijden 3 dan hebben we in totaal 2007 eenheidsvierkantjes en 2 grotere vierkantjes dus samen precies 2009 vierkantjes. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 24. c Vlaamse Wiskunde Olympiade v.z.w.

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier!

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Noteer hier eventueel je naam: Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! wwwwiskundekangoeroebe c Vlaamse Wiskunde Olympiade

Nadere informatie

2. Het getal = 1800 is even. De andere antwoorden zijn oneven: 2009, = 11, = 191, = 209.

2. Het getal = 1800 is even. De andere antwoorden zijn oneven: 2009, = 11, = 191, = 209. 1. De smiley is in de cirkel en in het vierkant, maar niet in de driehoek. Kangoeroewedstrijd editie Koala: jaargang 2009, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 2. Het getal 200 9 = 1800 is even.

Nadere informatie

3 + 3 + 6 = 3 + 3 + 3 + 3.

3 + 3 + 6 = 3 + 3 + 3 + 3. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Wallabie: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

= Om van de zoo naar school te gaan, moet Kleine Kangoe twee keuzes maken. Noem deze keuzes A en B.

= Om van de zoo naar school te gaan, moet Kleine Kangoe twee keuzes maken. Noem deze keuzes A en B. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Koala: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 2.

Nadere informatie

Kangoeroewedstrijd editie Wallabie: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Kangoeroewedstrijd editie Wallabie: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 1. Omdat2011 1 = 2011en011 = 1en1 2011 = 2011en1+2011 = 2012en1 : 2011 = 1 2011, is 1+2011 het grootst. Kangoeroewedstrijd editie Wallabie: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

Kangoeroewedstrijd editie Wallabie: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Wallabie: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw . Bij een weerspiegeling in het water staat een beeld op zijn kop. ntwoord is dus zeker fout. De stand van de maan ten opzichte van de boom moet dezelfde blijven. Zo moet de holle kant van de maan het

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 200-2005: tweede ronde De tweede ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Kangoeroewedstrijd editie Koala: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Kangoeroewedstrijd editie Koala: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 1. In de linkerschaal ligt in totaal 20+26 = 46 kg. De holbewoner heeft dus nog een rotsblok van 46 37 = 9 kg nodig. Kangoeroewedstrijd editie Koala: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade

Nadere informatie

Kangoeroe. Wallabie thema. de wereldwijde reken-, denk- en puzzelwedstrijd. Vlaamse Wiskunde Olympiade vzw

Kangoeroe. Wallabie thema. de wereldwijde reken-, denk- en puzzelwedstrijd. Vlaamse Wiskunde Olympiade vzw Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Vlaamse Wiskunde Olympiade vzw Vlakke situaties onderzoeken 1. Zara tekent de hoekpunten van een regelmatige zeshoek. oor een aantal van deze punten

Nadere informatie

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1. Het quotiënt 28 is gelijk aan 82 (A) 2 0 () 2 1 (C) 2 2 (D) 2 3 (E) 2 4 2. Het resultaat van de vermenigvuldiging 1 3 5 7 9 2011 eindigt op het cijfer

Nadere informatie

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600.

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. Estafette-opgave 1 (20 punten, rest 580 punten) Vier bij vier. In een schema van vier maal

Nadere informatie

Leest hij eerst de eerste kolom van boven naar beneden, dan de tweede enzovoorts, dan hoor je

Leest hij eerst de eerste kolom van boven naar beneden, dan de tweede enzovoorts, dan hoor je Estafette-opgave 1 (20 punten, rest 580 punten) Vier bij vier. In een schema van vier maal vier vierkantjes schrijft iemand letters. In iedere rij en in iedere kolom komt zo één A, één B en één C, zodat

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2009-2010: eerste ronde

1 Vlaamse Wiskunde Olympiade 2009-2010: eerste ronde Vlaamse Wiskunde Olympiade 009-00: eerste ronde Hoeveel is 5 % van 5 % van? (A) 6 (C) 5 (D) 5 (E) 65 Wat is de ribbe van een kubus als zijn volume 5 is? (A) 5 5 (C) 5 (D) 5 (E) 5 De oplossingen van de

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE 2014 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 00 1 (20 punten) Gegeven zijn drie aan elkaar rakende cirkels met straal 1. Hoe groot is de (donkergrijze) oppervlakte

Nadere informatie

10 Junior Wiskunde Olympiade : eerste ronde

10 Junior Wiskunde Olympiade : eerste ronde 10 Junior Wiskunde Olympiade 2001-2002: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

= 3 1111 101 + 6 3 1111 101 + 2 1111 101 = (3 + 2) 1111 101 = 5 11

= 3 1111 101 + 6 3 1111 101 + 2 1111 101 = (3 + 2) 1111 101 = 5 11 . Bij A en E staan de benen van het poppetje loodrecht op elkaar. Bij C vormen de benen een scherpe hoek. Bij D vormen de benen een gestrekte hoek. Alleen bij B vormen de benen van het poppetje een stompe

Nadere informatie

Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd

Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Aan alle Wallaroes en hun leerkrachten: veel succes en, nog belangrijker, veel plezier! reken denk puzzel Kangoeroe.org Vlaamse Wiskunde Olympiade

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 Brugklas en klas 2 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord ¾ punt. 1. In de spiegel zien we een klok. Hoe laat is het? A) 9.45

Nadere informatie

1 Junior Wiskunde Olympiade: eerste ronde

1 Junior Wiskunde Olympiade: eerste ronde Junior Wiskunde Olympiade: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord bezorgt

Nadere informatie

1 Junior Wiskunde Olympiade: tweede ronde

1 Junior Wiskunde Olympiade: tweede ronde Junior Wiskunde Olympiade: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt hem

Nadere informatie

Kangoeroewedstrijd editie Wallaroe: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Wallaroe: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw . Stapel A: + 5 + 5 + 0 = 2 Stapel B: + + 5 + 0 = 7 Stapel C: + 5 + 5 + 5 = 6 Stapel D: + + + 0 = 3 Stapel E: 5 + 5 + 5 + 5 = 20 Dus is stapel A het meeste waard. Kangoeroewedstrijd editie Wallaroe: jaargang

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 1,71 5,61 π,116 1 ls a a 17 a m = a 006, met a R + \{0, 1}, dan is m gelijk

Nadere informatie

Kangoeroewedstrijd editie Wallaroe: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Wallaroe: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw . en fles bevat ongeveer liter. In een regenton is er plaats voor ongeveer 00 liter, dus die is te groot. In een glas gaat ongeveer 00 milliliter, dus dat is te klein. en eetlepel is nog kleiner en er

Nadere informatie

Vlaamse Wiskunde Olympiade : eerste ronde

Vlaamse Wiskunde Olympiade : eerste ronde Vlaamse Wiskunde Olympiade 00-0: eerste ronde. e uitdrukking a b 4 is gelijk aan () ab () ab () ab 6 () ab 8 (E) ab 6. e uitdrukking (a b) is gelijk aan () a b () (b a) () a + b ab () a + b + ab (E) (a

Nadere informatie

Oefenenperonderwerp. Veel reken-, denk- en puzzelplezier! Inhoudsopgave

Oefenenperonderwerp. Veel reken-, denk- en puzzelplezier! Inhoudsopgave Oefenenperonderwerp Beste leerkracht Kangoeroe is in de eerste plaats een leuke en wereldwijde reken-, denk- en puzzelwedstrijd. Maar toch zijn een heleboel Kangoeroevragen ook goed bruikbaar in de dagelijkse

Nadere informatie

Kangoeroewedstrijd editie Koala: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Koala: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw . onderbroeken 4 wasknijpers 4 onderbroeken 5 wasknijpers 5 onderbroeken 6 wasknijpers Papa heeft dus telkens wasknijper meer nodig dan er onderbroeken zijn. In totaal heeft papa voor 9 onderbroeken dus

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2008-2009: eerste ronde 1 Hoeveel is 2 5 7? (A) 10 21 (B) 25 7 (C) 7 10 (D) 1 15 (E) 29 21 2 Welke van volgende sommen is gelijk aan 10? (A), + 5,555 (B) 2,222 + 6,666 (C),

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Kangoeroewedstrijd editie Koala: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Koala: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw 1. In volgende figuur kunnen we de werking van de optelmachine van boven naar beneden volgen: 2 0 1 3 + + 2 + Kangoeroewedstrijd editie Koala: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Nadere informatie

Wiskunde leuk? Reken maar! www.kangoeroe.org. Aan alle Koala s en aan hun leerkrachten: veel succes en, nog belangrijker, veel plezier!

Wiskunde leuk? Reken maar! www.kangoeroe.org. Aan alle Koala s en aan hun leerkrachten: veel succes en, nog belangrijker, veel plezier! Aan alle Koala s en aan hun leerkrachten: veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! www.kangoeroe.org c Vlaamse Wiskunde Olympiade vzw Juist antwoord Geen antwoord Fout

Nadere informatie

Junior Wiskunde Olympiade : tweede ronde

Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 2007-2008: tweede ronde 1 Op de figuur stellen de getallen de grootte van de hoeken voor De waarde van x in graden is gelijk aan 2x 90 x 24 (A) 22 (B) 1 (C) (D) 8 (E) 57 2 Welke

Nadere informatie

A. 54e B. 55e C. 56e D. 57e

A. 54e B. 55e C. 56e D. 57e Opgave 1 De Internationale Wiskunde Olympiade (IWO) is een jaarlijkse wiskundewedstrijd voor middelbare scholieren. Het is de oudste internationale wetenschapsolympiade. De eerste IWO werd gehouden in

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2009-2010: tweede ronde

1 Vlaamse Wiskunde Olympiade 2009-2010: tweede ronde Vlaamse Wiskunde Olympiade 009-00: tweede ronde Welke van de volgende vergelijkingen heeft als oplossing precies alle gehele veelvouden van π? () sinx = 0 (B) cos x = 0 (C) sinx = 0 (D) cosx = 0 (E) sinx

Nadere informatie

wizsmart 2015 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan

wizsmart 2015 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 50 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

Kangoeroewedstrijd editie Springmuis: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Kangoeroewedstrijd editie Springmuis: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 1. Geen uitgewerkte oplossing beschikbaar Kangoeroewedstrijd editie Springmuis: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 2. De les start om 10u30. Na 15 minuten vliegt er een vogel

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde Vlaamse Wiskunde Olmpiade 008-009: tweede ronde Wat is het voorschrift van deze tweedegraadsfunctie? (0, ) (, ) 0 (A) f() = ( + ) (B) f() = ( + ) + (C) f() = ( ) + (D) f() = ( ) (E) f() = ( ) + In volgend

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 006-007: tweede ronde 1 In een rechthoekige driehoek verdeelt de bissectrice uit een scherpe hoek de overstaande zijde in twee stukken met lengten 4 en 5 (zie figuur) De oppervlakte

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

2015 Voorronde Vragenbundel voor het 5 leerjaar

2015 Voorronde Vragenbundel voor het 5 leerjaar Wiskundequiz editie 8 2015 Voorronde Vragenbundel voor de het 5 leerjaar 01. Welke van de volgende rekensommen geeft de grootste uitkomst? (A) 2 x 0 x 1 x 4 (B) 2 + 0 + 1 + 4 (C) 20 x 1 x 4 (D) (2 + 0)

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. Vlaamse Wiskunde Olympiade 000-00: Eerste ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 VBO en MAVO Klas 3 en 4 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

wizprof 2016 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2016 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde Junior Wiskunde Olympiade 003-004: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1994-1995 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2005-2006: eerste ronde 1 Vier van de volgende figuren zijn het beeld van minstens één andere figuur door een draaiing in het vlak Voor één figuur is dit niet het geval Welke?

Nadere informatie

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Welke ongelijkheid is juist? (A) 3 5 < 2 6 (C) 5 6 < 3 (B) 3 7 < 2 (D) 5 7 < 2 10 (E) 5 < 6 7 2 Hoeveel vierkante meter is 1600 vierkante centimeter?

Nadere informatie

Kangoeroewedstrijd editie Springmuis: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Kangoeroewedstrijd editie Springmuis: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 1. In de verdubbelingsslang moet je ieder getal, behalve het laatste, vermenigvuldigen met 2 om het volgende getal te verkrijgen. Op de plaats van het vraagteken komt dus 16 2 = 32. Kangoeroewedstrijd

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde Junior Wiskunde Olympiade 200-2002: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 99 99 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Tweede ronde De tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 009-010: tweede ronde 1 Wat is de straal van een cirkel met oppervlakte? () π π (C) π (D) π (E) π an de diagonaal [] van een vierkant met zijde 1, bouwt men links en rechts

Nadere informatie

Junior Wiskunde Olympiade 2012-2013: eerste ronde

Junior Wiskunde Olympiade 2012-2013: eerste ronde Junior Wiskunde Olympiade 2012-201: eerste ronde 1.Hoeveelis 4+ 9+ 16? (A) (B) 29 (C) 29 (D) 29 (E) 4 29 2.Indezevijfhoekzijnallezijdenevenlangenstaandezijden [AB]en[DE]loodrechtop[AE].Hoegrootisdehoek

Nadere informatie

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer.

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer. ANTWOORDEN KANGOEROE 2001 BRUGKLAS en KLAS 2 1. E 2. E 18 doosjes voor de rode, 13 voor de blauwe: totaal 31 doosjes 3. C De ringen A, B en D zitten allemaal alleen door ring C. 4. B De twee getallen moeten

Nadere informatie

3. De kangoeroes overlappen elkaar precies als Rubi vouwt over de horizontale en verticale lijn.

3. De kangoeroes overlappen elkaar precies als Rubi vouwt over de horizontale en verticale lijn. 1. De les start om 10u30. Na 15 minuten vliegt er een vogel binnen. Dit is dus om 10u45. Kangoeroewedstrijd editie Wallaroe: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 2. Geen uitgewerkte

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

1 Vlaamse Wiskunde Olympiade: tweede ronde

1 Vlaamse Wiskunde Olympiade: tweede ronde Vlaamse Wiskunde Olympiade: tweede ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde

1 Vlaamse Wiskunde Olympiade : Tweede Ronde Vlaamse Wiskunde Olympiade 988-989: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Gekleurde sokken Op de planeet Swift B6 wonen de Houyhnhnms. Ze lijken sprekend op paarden;

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

wizbrain 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olmpiade 1997-1998: Eerste ronde De eerste ronde bestaat uit meerkeuzevragen Het quoteringsssteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

wizbrain 2016 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain 2016 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE 2012 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Optellen De som van twee getallen van twee cijfers is een getal van drie cijfers (geen van deze

Nadere informatie

WISKUNDE-ESTAFETTE KUN Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE KUN 2001 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Iemand bevindt zich te A en moet per fiets naar B, waar hij om precies 4 uur wil aankomen.

Nadere informatie

Kangoeroewedstrijd editie Springmuis: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Springmuis: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw 1. In de eerste figuur zijn er 3 gekleurde kangoeroes en 4 witte kangoeroes. Dit is dus een fout antwoord. In de tweede figuur zijn er 5 gekleurde kangoeroes en 4 witte kangoeroes. Dit is dus het juiste

Nadere informatie

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11.

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. Uitwerkingen wizbrain 2013 1. E 2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. 3. C De vetgedrukte kaarsen in de volgende tabel branden na 55 minuten: begin 0 10 20 30

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Tweede Ronde e tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem werkt (opnieuw) als volgt : een deelnemer start met 0 punten Per goed antwoord

Nadere informatie

Testboekje voor groep 4

Testboekje voor groep 4 Testboekje voor groep 4 Niet Schoolse Cognitieve Capaciteiten Test GION Gronings Instituut voor Onderzoek van onderwijs, Opvoeding en ontwikkeling Rijksuniversiteit Groningen Vul eerst op het antwoordformulier

Nadere informatie

Junior Wiskunde Olympiade 2014-2015: tweede ronde

Junior Wiskunde Olympiade 2014-2015: tweede ronde Junior Wiskunde Olympiade 0-05: tweede ronde. Demassavanzoutendemassavanzuiverwaterinzeewaterverhoudenzichals7en 9.Hoeveelkilogramzoutziterin000kgzeewater? (A) 5kg (B) 6kg (C) 7kg (D) 8kg (E) 9kg. Welke

Nadere informatie

wizkid 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan

wizkid 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com www.smart.be Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde Junior Wiskunde Olympiade 009-00: eerste ronde Van een rechthoek is de lengte het dubbel van de breedte Als de oppervlakte cm bedraagt, hoe lang is dan de langste zijde? (A) cm (B) cm (C) cm (D) 8 cm (E)

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1993-1994 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

Junior Wiskunde Olympiade : tweede ronde

Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 2015-2016: tweede ronde 1. ls de wieken van een windmolen op hun hoogste punt komen, dan reikt hun uiteinde tot een hoogte van 105 meter. Op hun laagste punt ligt het uiteinde

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier!

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! www.wiskundekangoeroe.be Dit initiatief kwam tot stand binnen het actieplan Wetenschapscommunicatie

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde Vlaamse Wiskunde Olympiade 003-00: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

Kangoeroewedstrijd editie Wallaroe: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Kangoeroewedstrijd editie Wallaroe: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 1. Boe volgt de weg van de pijl. Hij eindigt dus op de plaats van de. Het juiste antwoord is dus de tweede figuur. Kangoeroewedstrijd editie Wallaroe: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade

Nadere informatie

Drie Gelijkbenige driehoeken De gelijkbenige driehoek hieronder is verdeeld in twee gelijkbenige driehoeken. Hoe groot is de tophoek van de driehoek?

Drie Gelijkbenige driehoeken De gelijkbenige driehoek hieronder is verdeeld in twee gelijkbenige driehoeken. Hoe groot is de tophoek van de driehoek? Estafette-opgave 1 (20 punten, rest 480 punten) Drie Gelijkbenige driehoeken De gelijkbenige driehoek hieronder is verdeeld in twee gelijkbenige driehoeken.? O O Hoe groot is de tophoek van de driehoek?

Nadere informatie

7 a patroonnummer a patroonnummer a h = z

7 a patroonnummer a patroonnummer a h = z Hoofdstuk 3 FORMULES 3.1 PATRONEN EN FORMULES 3 a 10 22 c? d De beweringen a b = b a en a + b = b + a zijn juist. e 15 a 12 a 18 a f a + 8 10 + a a + 14 b zijde vierkant 3 4 5 6 7 aantal gekleurde hokjes

Nadere informatie

START WISKUNDE-ESTAFETTE 2008 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500.

START WISKUNDE-ESTAFETTE 2008 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500. START WISKUNDE-ESTAFETTE 2008 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500. Estafette-opgave 1 (30 punten, rest 470 punten) Uitgeveegd In de cirkeltjes heeft iemand de

Nadere informatie

wizkid 2014 20 maart 2014 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan

wizkid 2014 20 maart 2014 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl 20 maart 2014 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.sanderspuzzelboeken.nl www.schoolsupport.nl www.idpremiums.nl www.ru.nl

Nadere informatie

Junior Wiskunde Olympiade : eerste ronde

Junior Wiskunde Olympiade : eerste ronde Junior Wiskunde Olympiade 2007-2008: eerste ronde 1 30% van 300 is (A) geen van de volgende (B) 10 (C) 90 (D) 100 (E) 9000 2 Hoeveel getallen zijn het product van 2 verschillende getallen uit de verzameling

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 HAVO en VWO Klas 3, 4 en 5 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 986 987: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij

Nadere informatie

SMART-finale 2016 Ronde 1: 5-keuzevragen

SMART-finale 2016 Ronde 1: 5-keuzevragen SMART-finale 2016 Ronde 1: 5-keuzevragen Ronde 1 bestaat uit 16 5-keuzevragen. Bij elke vraag is precies één van de vijf antwoorden juist. Geef op het antwoordformulier duidelijk jouw keuze aan, door per

Nadere informatie

Vlaamse Wiskunde Olympiade : eerste ronde

Vlaamse Wiskunde Olympiade : eerste ronde Vlaamse Wiskunde Olympiade 00-008: eerste ronde 1 Een rechthoek met lengte b en breedte c en een vierkant met zijde a hebben gelijke oppervlakte Dan geldt: (A) a c = c b (B) b c = a a c = b c (D) bc =

Nadere informatie

Uitgeverij Schoolsupport

Uitgeverij Schoolsupport [1] Regelmaat, 2006, Niveau *, Volgorde Hermelien tekent poppetjes. Steeds dezelfde drie achter elkaar. Welk poppetje komt er op de plaats van het vraagteken? TIP: Kijk goed naar de armen. Welke poppetjes

Nadere informatie

Vlaamse Wiskunde Olympiade 2014-2015: eerste ronde

Vlaamse Wiskunde Olympiade 2014-2015: eerste ronde Vlaamse Wiskunde Olympiade 20-205: eerste ronde. Tussen Suske en Wiske staan drie blauwe kopjes opeenrij.suskezietdekopjeszoalsindefiguur. Hoe ziet Wiske de kopjes? () () () () (E) 2. Een repeterend decimaal

Nadere informatie

Kangoeroe. Wallaroe thema. de wereldwijde reken-, denk- en puzzelwedstrijd. Vlaamse Wiskunde Olympiade vzw

Kangoeroe. Wallaroe thema. de wereldwijde reken-, denk- en puzzelwedstrijd. Vlaamse Wiskunde Olympiade vzw Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Vlaamse Wiskunde Olympiade vzw Bewerkingen. Welk getal komt op de plaats van het vraagteken in de verdubbelingsslang? 4 8 6? 64 A 4 B 8 C 6 0 bron:

Nadere informatie

Vlaamse Wiskunde Olympiade : eerste ronde

Vlaamse Wiskunde Olympiade : eerste ronde Vlaamse Wiskunde Olympiade 2016-2017: eerste ronde 1. In de woordenwolk staan de 250 meest voorkomende namen van deelnemers aan de wiskundeolympiade. Hoe groter een naam gedrukt wordt, hoe vaker deze naam

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Wortels Hoofdstuk - Wortels Voorkennis V- zijde vierkant in m oppervlakte vierkant in m 9 V- = = = = = 7 = 9 = 7 = 89 = 9 8 = = 9 8 = = 9 = 8 = 9 9 = = 0 = 00 = 0 = 00 V-a = 9 = b 7 = 9 = 9

Nadere informatie

W i s k u n d e. voor de eerste klas van het gymnasium UITWERKINGEN AUTEUR: JOHANNES SUPIT

W i s k u n d e. voor de eerste klas van het gymnasium UITWERKINGEN AUTEUR: JOHANNES SUPIT W i s k u n d e voor de eerste klas van het gymnasium UITWERKINGEN UTEUR: JOHNNES SUPIT COSMICUS MONTESSORI LYCEUM MSTERDM, 200 Inhoudsopgave Getallen. Van de één naar de nul................................

Nadere informatie