1. Het getal = 1800 is even. De andere antwoorden zijn oneven: 2009, = 11, = 191, = 209.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209."

Transcriptie

1 1. Het getal = 1800 is even. De andere antwoorden zijn oneven: 2009, = 11, = 191, = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd editie Koala: jaargang 2009, probleem 2. c Vlaamse Wiskunde Olympiade v.z.w. 2. Van 15 tot en met 53 zijn er 20 oneven nummers. Hij bestelt dus brieven bij 20 huizen. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 2. c Vlaamse Wiskunde Olympiade v.z.w. 3. De jongens hadden in totaal = 8 danspartners, de drie meisjes hadden samen = 6 danspartners dus danste het vierde meisje met 2 jongens. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 3. c Vlaamse Wiskunde Olympiade v.z.w. 4. De omtrek van de ster bestaat uit twaalf gelijke stukken en is 36 cm lang. Elk stukje is dus 3 cm lang. De omtrek van de zeshoek kan je tekenen met zes van deze stukjes en is daardoor 18 cm lang. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 4. c Vlaamse Wiskunde Olympiade v.z.w.

2 5. Het grote vierkant is in 9 gelijke vierkanten verdeeld. Het middelste vierkant daarvan werd verdeeld in vier gelijke vierkanten. Het kleine zwarte vierkantje is één van de 25 vierkantjes waarin zo n vierkant is verdeeld. De oppervlakte van het kleine zwarte vierkantje is dus gelijk aan = van het grote vierkant. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 5. c Vlaamse Wiskunde Olympiade v.z.w. 6. Als je 100 ontbindt in priemfactoren krijg je: 100 = Dit is een product van vier natuurlijke getallen maar die zijn niet allemaal verschillend. We kunnen dit oplossen door het product van twee getallen samen te nemen. Bovendien als je een getal met 1 vermenigvuldigt blijft dat getal gelijk. Dus krijgen we: 100 = De som van deze getallen is 18. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 6. c Vlaamse Wiskunde Olympiade v.z.w. 7. Het aantal varkensstaarten is gelijk aan de helft van het aantal koeienpoten. Elke koe heeft vier poten en elk varken één staart dus is het aantal koeien gelijk aan de helft van het aantal varkens. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 7. c Vlaamse Wiskunde Olympiade v.z.w. 8. Bij 12 volwassenen is de lift volzet. Bij 9 volwassenen is de lift slechts voor 3 volzet en kan er 4 nog 1 van het maximum aantal kinderen bij. Een vierde van 20 is 5, dus mogen er maximaal 4 5 kinderen bij de 9 volwassenen in deze lift. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 8. c Vlaamse Wiskunde Olympiade v.z.w.

3 9. Plaats je vinger op een willekeurige plaats op het touw in figuren II of IV en volg het touw met je vinger. Op den duur kom je terug waar je begonnen bent en je hebt dan de hele figuur doorlopen. Bij figuren I, III en V is dit niet het geval. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 9; Kangoeroewedstrijd editie Koala: jaargang 2009, probleem 10. c Vlaamse Wiskunde Olympiade v.z.w. 10. Dit kenmerk is waar voor drie natuurlijke getallen, namelijk voor 1, 2 en 4. Merk op dat 1 2 = 1, 1 3 = 1, 2 2 = 4 en 2 3 = 8 dus bij het getal 1 en bij het getal 2 bestaat het kwadraat en de derde macht beide uit 1 cijfer. Voor het getal 4 bestaat het kwadraat en de derde macht beide uit 2 cijfers, namelijk 4 2 = 16 en 4 3 = 64. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 10. c Vlaamse Wiskunde Olympiade v.z.w. 11. Je moet minstens 3 punten wegdoen - bijvoorbeeld een diagonaal - en dan kan je geen enkele rechte tekenen waarop drie van de overblijvende punten liggen. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 11. c Vlaamse Wiskunde Olympiade v.z.w. 12. Het is onmiddellijk duidelijk dat 120 een hoek is van de stomphoekige driehoek. Vermits de som van de hoeken van een driehoek gelijk is aan 180, kan 80 geen hoek zijn van de stomphoekige driehoek, want de > 180. Dus 80 is een hoek van de scherphoekige driehoek. Vervolgens kan 10 geen hoek zijn van de scherphoekige driehoek want dan zou de derde hoek 90 meten en zou de driehoek een rechthoekige driehoek zijn. We weten nu dat de scherphoekige driehoek bestaat uit een hoek van 80 en een hoek van 55. Dus is de derde en tevens de kleinste hoek 45. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 12. c Vlaamse Wiskunde Olympiade v.z.w.

4 13. Neem als lengte van een zijde van het grote vierkant 2. Dan is de lengte van een zijde van het kleine vierkant 1. Elke twee gekleurde cirkelsectoren zijn qua oppervlakte gelijk aan de oppervlakte van een wit deel van het kleine vierkant. De oppervlakte van het gekleurde stuk is dus gelijk aan de oppervlakte van het kleine vierkant, namelijk 1. De oppervlakte van het grote vierkant is 4. Het gekleurde stuk is dus een vierde van het buitenste vierkant. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 13. c Vlaamse Wiskunde Olympiade v.z.w. 14. Stel dat de eerste persoon in de rij een Alito is, dan zouden alle andere Pseudo s moeten zijn, maar dat kan niet want de derde persoon in de rij bijvoorbeeld zegt dat de persoon voor hem een Pseudo is wat dan een waarheid zou zijn. De eerste persoon in de rij is dus een Pseudo. De tweede persoon in de rij spreekt met andere woorden de waarheid en de derde persoon is opnieuw een Pseudo. Op deze manier kan je heel de rij bekijken en merk je op dat de personen op een oneven positie in de rij telkens een Pseudo zijn en de personen op een even positie een Alito. Er zijn dus in totaal 13 Pseudo s. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 14. c Vlaamse Wiskunde Olympiade v.z.w. 15. Van het linkervoorvlak bovenaan is de waarde van twee hoekpunten gegeven en het derde hoekpunt heeft dit vlak gemeen met het rechtervoorvlak bovenaan. Het uiterst rechtse punt van de figuur moet daarom ook waarde 5 krijgen. Daardoor kennen we de waarden van de drie hoekpunten van het bovenste achtervlak, namelijk: 1, 5 en 5 en is de som hiervan 11. De som voor de andere vlakken moet ook 11 zijn en dus is de som van de waarden van de vijf hoekpunten: = 17. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 15. c Vlaamse Wiskunde Olympiade v.z.w.

5 16. In de gelijkheid (V I E R) (V I J F = T W I N T I G komen precies tien verschillende letters voor. Vermits verschillende letters verschillende cijfers aanduiden moeten alle cijfers van 0 tot en met 9 voorkomen. Dit wil zeggen dat de producten in het linker- en in het rechterlid moeten gelijk zijn aan nul. De enige letter die in beide leden voorkomt is I, dus moet I overeenstemmen met het cijfer nul. Bijgevolg is het product D R I E ook gelijk aan nul en kan dit dus maar één waarde aannemen. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 16. c Vlaamse Wiskunde Olympiade v.z.w. 17. Vul het rooster aan. De eerste mogelijkheid voor het middelste vakje op de bovenste rij is kleur A. Maar dan moet daaronder zeker kleur D komen en ziet de tweede rij er als volgt uit: D, C, D, B, A. De derde rij wordt dan: A, B, A, C, D en de vierde rij: D, C, D, B, A. De tweede mogelijkheid voor het middelste vakje op de bovenste rij is kleur D. Maar dan komt daaronder zeker kleur A en ziet de tweede rij er als volgt uit: D, C, A, B, A. De derde rij wordt dan A, B, D, C, D en de vierde rij: D, C, A, B, A. We stellen vast dat het grijze vakje steeds kleur A zal hebben. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 17. c Vlaamse Wiskunde Olympiade v.z.w. 18. Verleng de zijden van getekende hoek X en verleng ook de verticale zijde van de regelmatige negenhoek. We verkrijgen een gelijkzijdige driehoek. Alle drie de hoeken van deze driehoek zijn even groot dus is de hoek X gelijk aan 60. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 18. c Vlaamse Wiskunde Olympiade v.z.w. 19. Voor de eerste figuur heeft hij 20 vierkantjes nodig, voor de tweede 28 en voor de derde 36. Voor elke nieuwe figuur heeft hij 8 vierkantjes meer nodig. Voor het tiende figuurtje heeft hij dus = 92 vierkantjes nodig. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 19. c Vlaamse Wiskunde Olympiade v.z.w.

6 20. De breuken 1 en 1 liggen 16 streepjes van elkaar verwijderd. We kunnen de breuken 5 3 herschrijven als 1 3 = en 1 5 = Merk op dat er zich tussen 1 5 en 1 16 precies sten 1 bevinden. Punt a ligt op 6 streepjes van 5 en is dus gelijk aan = = 1 4. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 20. c Vlaamse Wiskunde Olympiade v.z.w. 21. Door de drie sneden komt bij de oppervlakte van de kubus de oppervlakte van elk zijvlak nog eens bij. De verhouding van de oppervlakten is dus 2 : 1. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 21. c Vlaamse Wiskunde Olympiade v.z.w. 22. De oppervlakte van het vierkant is 36 cm 2. De driehoek bedekt 2 van het vierkant. De driehoek 3 bedekt dus = 24 cm2 van het vierkant. Het vierkant bedekt dus ook 24 cm 2, wat 60% van de driehoek is. Dus is de oppervlakte van de driehoek 40 cm 2. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 22. c Vlaamse Wiskunde Olympiade v.z.w We kunnen de getallen van 1 tot en met 10 verdelen in vier groepjes die gemeenschappelijke delers hebben: {9, 3, 6}; {8, 4}; {10, 5} en {7}. De getallen die kunnen zorgen voor overgangen tussen de verschillende groepjes zijn 1 en 2. Samen bieden die ruimte aan overgangen tussen drie groepjes, zoals bijvoorbeeld in de volgende rij: 9, 3, 6, 1, 8, 4, 2, 10, 5. Het getal 7 kunnen we aan dit rijtje niet meer toevoegen omdat 7 alleen maar naast 1 kan staan en deze plaats al ingenomen is door langs de ene zijde het groepje getallen 9, 3 en 6 en langs de andere kant door het groepje 8, 4, 2. Zara heeft dus maximaal 9 getallen na elkaar opgeschreven. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 23. c Vlaamse Wiskunde Olympiade v.z.w. Een vierkant met zijde 44 heeft slechts een oppervlakte van Dit is onvoldoende om 2009 vierkantjes te maken met een natuurlijk getal als lengte van hun zijden. Als je een vierkant neemt met zijde 45 dan bestaat dit uit 2025 eenheidsvierkantjes. Maak met deze eenheidsvierkantjes twee vierkanten met lengte van de zijden 3 dan hebben we in totaal 2007 eenheidsvierkantjes en 2 grotere vierkantjes dus samen precies 2009 vierkantjes. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 24. c Vlaamse Wiskunde Olympiade v.z.w.

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier!

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Noteer hier eventueel je naam: Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! wwwwiskundekangoeroebe c Vlaamse Wiskunde Olympiade

Nadere informatie

3 + 3 + 6 = 3 + 3 + 3 + 3.

3 + 3 + 6 = 3 + 3 + 3 + 3. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Wallabie: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

Kangoeroewedstrijd editie Wallabie: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Wallabie: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw . Bij een weerspiegeling in het water staat een beeld op zijn kop. ntwoord is dus zeker fout. De stand van de maan ten opzichte van de boom moet dezelfde blijven. Zo moet de holle kant van de maan het

Nadere informatie

Kangoeroe. Wallabie thema. de wereldwijde reken-, denk- en puzzelwedstrijd. Vlaamse Wiskunde Olympiade vzw

Kangoeroe. Wallabie thema. de wereldwijde reken-, denk- en puzzelwedstrijd. Vlaamse Wiskunde Olympiade vzw Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Vlaamse Wiskunde Olympiade vzw Vlakke situaties onderzoeken 1. Zara tekent de hoekpunten van een regelmatige zeshoek. oor een aantal van deze punten

Nadere informatie

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1. Het quotiënt 28 is gelijk aan 82 (A) 2 0 () 2 1 (C) 2 2 (D) 2 3 (E) 2 4 2. Het resultaat van de vermenigvuldiging 1 3 5 7 9 2011 eindigt op het cijfer

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2009-2010: eerste ronde

1 Vlaamse Wiskunde Olympiade 2009-2010: eerste ronde Vlaamse Wiskunde Olympiade 009-00: eerste ronde Hoeveel is 5 % van 5 % van? (A) 6 (C) 5 (D) 5 (E) 65 Wat is de ribbe van een kubus als zijn volume 5 is? (A) 5 5 (C) 5 (D) 5 (E) 5 De oplossingen van de

Nadere informatie

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600.

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. Estafette-opgave 1 (20 punten, rest 580 punten) Vier bij vier. In een schema van vier maal

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 Brugklas en klas 2 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord ¾ punt. 1. In de spiegel zien we een klok. Hoe laat is het? A) 9.45

Nadere informatie

Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd

Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Aan alle Wallaroes en hun leerkrachten: veel succes en, nog belangrijker, veel plezier! reken denk puzzel Kangoeroe.org Vlaamse Wiskunde Olympiade

Nadere informatie

Kangoeroewedstrijd editie Wallaroe: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Wallaroe: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw . en fles bevat ongeveer liter. In een regenton is er plaats voor ongeveer 00 liter, dus die is te groot. In een glas gaat ongeveer 00 milliliter, dus dat is te klein. en eetlepel is nog kleiner en er

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Kangoeroewedstrijd editie Koala: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Koala: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw . onderbroeken 4 wasknijpers 4 onderbroeken 5 wasknijpers 5 onderbroeken 6 wasknijpers Papa heeft dus telkens wasknijper meer nodig dan er onderbroeken zijn. In totaal heeft papa voor 9 onderbroeken dus

Nadere informatie

Oefenenperonderwerp. Veel reken-, denk- en puzzelplezier! Inhoudsopgave

Oefenenperonderwerp. Veel reken-, denk- en puzzelplezier! Inhoudsopgave Oefenenperonderwerp Beste leerkracht Kangoeroe is in de eerste plaats een leuke en wereldwijde reken-, denk- en puzzelwedstrijd. Maar toch zijn een heleboel Kangoeroevragen ook goed bruikbaar in de dagelijkse

Nadere informatie

Kangoeroewedstrijd editie Koala: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Koala: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw 1. In volgende figuur kunnen we de werking van de optelmachine van boven naar beneden volgen: 2 0 1 3 + + 2 + Kangoeroewedstrijd editie Koala: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Nadere informatie

Wiskunde leuk? Reken maar! www.kangoeroe.org. Aan alle Koala s en aan hun leerkrachten: veel succes en, nog belangrijker, veel plezier!

Wiskunde leuk? Reken maar! www.kangoeroe.org. Aan alle Koala s en aan hun leerkrachten: veel succes en, nog belangrijker, veel plezier! Aan alle Koala s en aan hun leerkrachten: veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! www.kangoeroe.org c Vlaamse Wiskunde Olympiade vzw Juist antwoord Geen antwoord Fout

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2009-2010: tweede ronde

1 Vlaamse Wiskunde Olympiade 2009-2010: tweede ronde Vlaamse Wiskunde Olympiade 009-00: tweede ronde Welke van de volgende vergelijkingen heeft als oplossing precies alle gehele veelvouden van π? () sinx = 0 (B) cos x = 0 (C) sinx = 0 (D) cosx = 0 (E) sinx

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

Kangoeroewedstrijd editie Springmuis: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Kangoeroewedstrijd editie Springmuis: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 1. Geen uitgewerkte oplossing beschikbaar Kangoeroewedstrijd editie Springmuis: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 2. De les start om 10u30. Na 15 minuten vliegt er een vogel

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 VBO en MAVO Klas 3 en 4 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde Vlaamse Wiskunde Olmpiade 008-009: tweede ronde Wat is het voorschrift van deze tweedegraadsfunctie? (0, ) (, ) 0 (A) f() = ( + ) (B) f() = ( + ) + (C) f() = ( ) + (D) f() = ( ) (E) f() = ( ) + In volgend

Nadere informatie

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Welke ongelijkheid is juist? (A) 3 5 < 2 6 (C) 5 6 < 3 (B) 3 7 < 2 (D) 5 7 < 2 10 (E) 5 < 6 7 2 Hoeveel vierkante meter is 1600 vierkante centimeter?

Nadere informatie

2015 Voorronde Vragenbundel voor het 5 leerjaar

2015 Voorronde Vragenbundel voor het 5 leerjaar Wiskundequiz editie 8 2015 Voorronde Vragenbundel voor de het 5 leerjaar 01. Welke van de volgende rekensommen geeft de grootste uitkomst? (A) 2 x 0 x 1 x 4 (B) 2 + 0 + 1 + 4 (C) 20 x 1 x 4 (D) (2 + 0)

Nadere informatie

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde Junior Wiskunde Olympiade 200-2002: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Junior Wiskunde Olympiade 2012-2013: eerste ronde

Junior Wiskunde Olympiade 2012-2013: eerste ronde Junior Wiskunde Olympiade 2012-201: eerste ronde 1.Hoeveelis 4+ 9+ 16? (A) (B) 29 (C) 29 (D) 29 (E) 4 29 2.Indezevijfhoekzijnallezijdenevenlangenstaandezijden [AB]en[DE]loodrechtop[AE].Hoegrootisdehoek

Nadere informatie

wizbrain 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be

Nadere informatie

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Gekleurde sokken Op de planeet Swift B6 wonen de Houyhnhnms. Ze lijken sprekend op paarden;

Nadere informatie

1 Vlaamse Wiskunde Olympiade: tweede ronde

1 Vlaamse Wiskunde Olympiade: tweede ronde Vlaamse Wiskunde Olympiade: tweede ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11.

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. Uitwerkingen wizbrain 2013 1. E 2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. 3. C De vetgedrukte kaarsen in de volgende tabel branden na 55 minuten: begin 0 10 20 30

Nadere informatie

Testboekje voor groep 4

Testboekje voor groep 4 Testboekje voor groep 4 Niet Schoolse Cognitieve Capaciteiten Test GION Gronings Instituut voor Onderzoek van onderwijs, Opvoeding en ontwikkeling Rijksuniversiteit Groningen Vul eerst op het antwoordformulier

Nadere informatie

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie

Junior Wiskunde Olympiade 2014-2015: tweede ronde

Junior Wiskunde Olympiade 2014-2015: tweede ronde Junior Wiskunde Olympiade 0-05: tweede ronde. Demassavanzoutendemassavanzuiverwaterinzeewaterverhoudenzichals7en 9.Hoeveelkilogramzoutziterin000kgzeewater? (A) 5kg (B) 6kg (C) 7kg (D) 8kg (E) 9kg. Welke

Nadere informatie

wizkid 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan

wizkid 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com www.smart.be Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier!

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! www.wiskundekangoeroe.be Dit initiatief kwam tot stand binnen het actieplan Wetenschapscommunicatie

Nadere informatie

wizkid 2014 20 maart 2014 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan

wizkid 2014 20 maart 2014 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl 20 maart 2014 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.sanderspuzzelboeken.nl www.schoolsupport.nl www.idpremiums.nl www.ru.nl

Nadere informatie

Kangoeroewedstrijd editie Wallaroe: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Kangoeroewedstrijd editie Wallaroe: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 1. Boe volgt de weg van de pijl. Hij eindigt dus op de plaats van de. Het juiste antwoord is dus de tweede figuur. Kangoeroewedstrijd editie Wallaroe: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 HAVO en VWO Klas 3, 4 en 5 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

Kangoeroe. Wallaroe thema. de wereldwijde reken-, denk- en puzzelwedstrijd. Vlaamse Wiskunde Olympiade vzw

Kangoeroe. Wallaroe thema. de wereldwijde reken-, denk- en puzzelwedstrijd. Vlaamse Wiskunde Olympiade vzw Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Vlaamse Wiskunde Olympiade vzw Bewerkingen. Welk getal komt op de plaats van het vraagteken in de verdubbelingsslang? 4 8 6? 64 A 4 B 8 C 6 0 bron:

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Wortels Hoofdstuk - Wortels Voorkennis V- zijde vierkant in m oppervlakte vierkant in m 9 V- = = = = = 7 = 9 = 7 = 89 = 9 8 = = 9 8 = = 9 = 8 = 9 9 = = 0 = 00 = 0 = 00 V-a = 9 = b 7 = 9 = 9

Nadere informatie

Vlaamse Wiskunde Olympiade 2014-2015: eerste ronde

Vlaamse Wiskunde Olympiade 2014-2015: eerste ronde Vlaamse Wiskunde Olympiade 20-205: eerste ronde. Tussen Suske en Wiske staan drie blauwe kopjes opeenrij.suskezietdekopjeszoalsindefiguur. Hoe ziet Wiske de kopjes? () () () () (E) 2. Een repeterend decimaal

Nadere informatie

W i s k u n d e. voor de eerste klas van het gymnasium UITWERKINGEN AUTEUR: JOHANNES SUPIT

W i s k u n d e. voor de eerste klas van het gymnasium UITWERKINGEN AUTEUR: JOHANNES SUPIT W i s k u n d e voor de eerste klas van het gymnasium UITWERKINGEN UTEUR: JOHNNES SUPIT COSMICUS MONTESSORI LYCEUM MSTERDM, 200 Inhoudsopgave Getallen. Van de één naar de nul................................

Nadere informatie

Drie Gelijkbenige driehoeken De gelijkbenige driehoek hieronder is verdeeld in twee gelijkbenige driehoeken. Hoe groot is de tophoek van de driehoek?

Drie Gelijkbenige driehoeken De gelijkbenige driehoek hieronder is verdeeld in twee gelijkbenige driehoeken. Hoe groot is de tophoek van de driehoek? Estafette-opgave 1 (20 punten, rest 480 punten) Drie Gelijkbenige driehoeken De gelijkbenige driehoek hieronder is verdeeld in twee gelijkbenige driehoeken.? O O Hoe groot is de tophoek van de driehoek?

Nadere informatie

Kangoeroe. Springmuis thema. de wereldwijde reken-, denk- en puzzelwedstrijd. Vlaamse Wiskunde Olympiade vzw

Kangoeroe. Springmuis thema. de wereldwijde reken-, denk- en puzzelwedstrijd. Vlaamse Wiskunde Olympiade vzw Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Vlaamse Wiskunde Olympiade vzw Hoofdrekenen. Het bord van juf Nele is 6 m breed. Het middelste deel meet m. De andere delenhebben dezelfde breedte.

Nadere informatie

Ook de volledige spiraal van de stroken van lengte 1, 3, 5,, 99 past precies in een rechthoek.

Ook de volledige spiraal van de stroken van lengte 1, 3, 5,, 99 past precies in een rechthoek. Een spiraal In deze opgave bekijken we rechthoekige stroken van breedte en oneven lengte:, 3, 5,..., 99. Door deze stroken op een bepaalde manier aan elkaar te leggen, maken we een spiraal. In figuur is

Nadere informatie

Vlaamse Wiskunde Olympiade 2011-2012: tweede ronde

Vlaamse Wiskunde Olympiade 2011-2012: tweede ronde Vlaamse Wiskunde Olympiade 011-01: tweede ronde 1. Op hoeveel manieren kan deze ronde van de wiskunde olympiade opgelost worden met precies één antwoord dat foutief of blanco is? () 0 () 10 (C) 150 (D)

Nadere informatie

Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd

Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Aan alle Koala s en hun leerkrachten: veel succes en, nog belangrijker, veel plezier! reken denk puzzel Kangoeroe.org Vlaamse Wiskunde Olympiade

Nadere informatie

Wiskunde Opdrachten Vlakke figuren

Wiskunde Opdrachten Vlakke figuren Wiskunde Opdrachten Vlakke figuren Opdracht 1. Teken in de figuren hieronder alle symmetrieassen. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Opdracht 2. A. Welke

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

Niveau 1. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan. 1p. x + 6. 4x + 3. 4x 2 + 3. x 2 + 3x + 3. x 2 + 27

Niveau 1. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan. 1p. x + 6. 4x + 3. 4x 2 + 3. x 2 + 3x + 3. x 2 + 27 1p. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan x + 6 4x + 3 4x 2 + 3 x 2 + 3x + 3 Niveau 1 1p. 1p. 1p. x 2 + 27 Opgave 2. Als a log b = 64, dan is a2 log (b 3 ) gelijk aan 6 48 28/3 96 512 Opgave

Nadere informatie

Luc Gheysens - Extremumvraagstukken p.1

Luc Gheysens - Extremumvraagstukken p.1 EXTREMUMVRAAGSTUKKEN 1 Bepaal twee getallen x en y waarvan de som 144 is en waarvoor het product maximaal is. En voor welke waarden is het product x 3. y 2 maximaal? 2 Aan de vier hoeken van een vierkantig

Nadere informatie

Ruitjes vertellen de waarheid

Ruitjes vertellen de waarheid Ruitjes vertellen de waarheid Opdracht 1 Van fouten kun je leren Van fouten kun je leren, jazeker. Vooral als je héél goed weet wat er fout ging. Vandaag leer je handige formules begrijpen door kijken

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Opvouwbare kubus (180 o )

Opvouwbare kubus (180 o ) Workshop Verpakkingen NWD 18 februari 2012 hm / rvo Opvouwbare kubus (180 o ) - Een bouwplaat van de kubus en een voorbeeldfoto - Als je een mooi wilt maken: een A4-tje 160 g wit papier en een schutblad,

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde

1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde 1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde 1.Vantweenatuurlijkegetallenmennismevenennoneven.Welkvanvolgendegetallen is dan oneven? () m+4n () 3m+2n () mn (D) m n (E) n m 2. Welk van volgende

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

Handig met getallen 4 (HMG4), onderdeel Meetkunde

Handig met getallen 4 (HMG4), onderdeel Meetkunde Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek

Nadere informatie

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ...

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ... PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE a) Begrippen uit de getallenleer Bewerking optelling aftrekking vermenigvuldiging Symbool deling : kwadratering... machtsverheffing...

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Eerste Ronde. Vlaamse Wiskunde Olmpiade 985-986: Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringsssteem werkt als volgt : een deelnemer start met 30 punten Per goed antwoord krijgt hij of zij

Nadere informatie

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7.

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7. Herhalingsoefeningen Rijen Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Onderzoek of de

Nadere informatie

Kangoeroe. Koala 2015. de wereldwijde reken-, denk- en puzzelwedstrijd. Aan alle Koala s en hun

Kangoeroe. Koala 2015. de wereldwijde reken-, denk- en puzzelwedstrijd. Aan alle Koala s en hun Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd an alle Koala s en hun leerkrachten: veel succes en, nog belangrijker, veel plezier! Vlaamse Wiskunde lympiade vzw Juist antwoord Geen antwoord

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde Vlaamse Wiskunde lmpiade 2007-2008: tweede ronde 1 Jef mit cola met whisk in de verhouding 1 : In whisk zit 40% alcohol Wat is het alcoholpercentage van de mi? () 1, (B) 20 (C) 25 () 0 (E) 5 2 ver jaar

Nadere informatie

Sterrenwerk. Rekenen. voor 9-11 jaar. combineren en visualiseren 2

Sterrenwerk. Rekenen. voor 9-11 jaar. combineren en visualiseren 2 Sterrenwerk Rekenen voor 9-11 jaar combineren en visualiseren 2 2 Hexomino s 1 Die dekselse figuren van zes! Deze figuren bestaan uit zes vierkanten die elkaar met ten minste een zijde raken. Ze heten

Nadere informatie

Rekentijger - Groep 6 Tips bij werkboekje A

Rekentijger - Groep 6 Tips bij werkboekje A Rekentijger - Groep 6 Tips bij werkboekje A Puzzelvierkanten Werkblad 1 Vierkant linksboven Zoek eerst uit hoeveel één hartje waard is. Daarna kun je ook berekenen hoeveel een rondje waard is. Vierkant

Nadere informatie

EUROPESE KANGOEROE WISKUNDE WEDSTRIJD. BASISSCHOOL GROEP 7 en GROEP 8

EUROPESE KANGOEROE WISKUNDE WEDSTRIJD. BASISSCHOOL GROEP 7 en GROEP 8 EUROPESE KANGOEROE WISKUNDE WEDSTRIJD vrijdag 23 maart 200 BASISSCHOOL GROEP 7 en GROEP 8 Welkom bij de Kangoeroe, leuk dat je meedoet! Je hebt 75 minuten de tijd. Maak van de opgaven gewoon wat je maken

Nadere informatie

Wiskunde leuk? Reken maar! www.kangoeroe.org. Aan alle Wallabies en aan hun leerkrachten: veel succes en, nog belangrijker, veel plezier!

Wiskunde leuk? Reken maar! www.kangoeroe.org. Aan alle Wallabies en aan hun leerkrachten: veel succes en, nog belangrijker, veel plezier! Aan alle Wallabies en aan hun leerkrachten: veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! www.kangoeroe.org c Vlaamse Wiskunde Olympiade vzw Juist antwoord Geen antwoord Fout

Nadere informatie

Eigenschappen van driehoeken

Eigenschappen van driehoeken 5 igenschappen van driehoeken it kun je al een hoek meten de verschillende soorten driehoeken definiëren 3 de verschillende soorten hoeken definiëren 4 de eigenschappen van de verschillende soorten hoeken

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

Naam:... Nr... SPRONG 6

Naam:... Nr... SPRONG 6 Naam:... Nr.... SPRONG 6 G 1 Percenten a Bereken het percent. Schrijf de tussenuitkomsten op. 5 % van 500 = van 500 = x = 15 % van 200 = van 200 = x = 4 % van 2 000 = van 2 000 = x = 10 % van 700 = van

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Viervlakken. Op een tafel vóór je staan vier viervlakken V 1, V 2, V 3 en V 4. Op elk grensvlak

Nadere informatie

Ruimtelijke oriëntatie: plaats en richting

Ruimtelijke oriëntatie: plaats en richting Ruimtelijke oriëntatie: plaats en richting 1 Lijnen en rechten Hoe kunnen lijnen zijn? gebogen of krom gebroken recht We onthouden: Een rechte is een rechte lijn. c a b Een rechte heeft geen begin- en

Nadere informatie

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 Hoofdstuk 6 HAAKJES VWO 6.0 INTRO 6. TREK AF VAN 8 a b De uitkomsten zijn allemaal. c (n + )(n ) (n + )(n ) = d - - = -0,75 -,75 = b De uitkomsten zijn allemaal. c n + (n + ) (n + ) = + 6 4 4 = 6 4 = d

Nadere informatie

1 MEETKUNDE. Wat vindt u van deze preview? www.plantyn.com/integraal. Laat het ons weten op. http://wiskunde.plantyn.com/mijnmeningoverintegraal

1 MEETKUNDE. Wat vindt u van deze preview? www.plantyn.com/integraal. Laat het ons weten op. http://wiskunde.plantyn.com/mijnmeningoverintegraal INTEGRL www.plantyn.com/integraal INTEGRL SNEK PREVIEW DEEL HOOFDSTUK MEETKUNDE LEERWERKOEK Wat vindt u van deze preview? Laat het ons weten op http://wiskunde.plantyn.com/mijnmeningoverintegraal WISKUNDE

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 Antwoorden

WISKUNDE-ESTAFETTE RU 2006 Antwoorden WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal

Nadere informatie

Inhoudsopgave. Inleiding opdracht 4. Inleiding der Wiskunde Olympiade 5. Geschiedenis van de Wiskunde Olympiade 5

Inhoudsopgave. Inleiding opdracht 4. Inleiding der Wiskunde Olympiade 5. Geschiedenis van de Wiskunde Olympiade 5 1 2 Inhoudsopgave Inleiding opdracht 4 Inleiding der Wiskunde Olympiade 5 Geschiedenis van de Wiskunde Olympiade 5 Opzet van de Nederlandse Wiskunde Olympiade 5 Meedoen? 7 Hoe gebruik je dit boek? 7 A-vragen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a 4 8 + 4 1,80 + 4 0,60 = 32 + 7,20 + 2,40 = 41,60. Ze is 41,60 kwijt. 4 (8 + 1,80 + 0,60) = 4 10,40 = 41,60. Ze krijgt hetzelfde edrag. c 8 + 1,80 + 0,60 4 = 8 + 1,80 + 2,40 = 12,20. Je

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam

Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam W I N G O = W I S K U N D E - B I N G O W I N G O 17 15 π

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

De markt. Gebruik je liniaal. 1 hokje = 1 m 2

De markt. Gebruik je liniaal. 1 hokje = 1 m 2 34 blok 5 C 1 Hoeveel knikkers? 2 bonken kosten evenveel als 5 krieltjes. In je knikkerzak zitten 1050 knikkers. Je hebt net zoveel uitgegeven voor de bonken als voor de krieltjes. Er zitten 750 krieltjes

Nadere informatie

De eerste ronde van de Nederlandse Wiskunde Olympiade 2006 2008

De eerste ronde van de Nederlandse Wiskunde Olympiade 2006 2008 De eerste ronde van de Nederlandse Wiskunde Olympiade 2006 2008 een bundel met opgaven en uitgebreide uitwerkingen Floris van Doorn Alexander van Hoorn Maarten Roelofsma NEDERLANDSE WISKUNDE OLYMPIADE

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

i TiPDenk aan de rechthoeksstrategie!

i TiPDenk aan de rechthoeksstrategie! .------------ GetaUenkennis Wat leerde ik? Getallen tot een miljard Kommagetallen tot een duizendste - getallen interpreteren Verhoudingen binnen een context Breuken delen door een natuurlijk getal (De

Nadere informatie

= 50 : 2 = 25 Zo kun je bijvoorbeeld ook rekenen bij 24 : 5 + 24 : 20 = 24 x 1 5 + 24 x 1

= 50 : 2 = 25 Zo kun je bijvoorbeeld ook rekenen bij 24 : 5 + 24 : 20 = 24 x 1 5 + 24 x 1 Moeilijke deelsom 50 : 6 + 50 : 3 = 50 x 1 6 + 50 x 1 3 = 50 x ( 1 6 + 1 3 ) = 50 x 1 2 = 50 : 2 = 25 Zo kun je bijvoorbeeld ook rekenen bij 24 : 5 + 24 : 20 = 24 x 1 5 + 24 x 1 20 = 24 x (1 5 + 1 20 )

Nadere informatie