ANTWOORDEN blz. 1. d = 1013; = ; = ; =

Maat: px
Weergave met pagina beginnen:

Download "ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999"

Transcriptie

1 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI, XCIX, CMXCIX, MCM, bijv. 996: MCMXCVI 333, namelijk 9 tekens: CCCXXXIII MCCXIV: = 4 MMXLV: = 045 LXXXVI: 9 43 = 86 CXII: 999 = d. Je vervangt elk symbool door een symbool van een orde hoger, dus I wordt X, V wordt L, X wordt C, L wordt D, C wordt M, et e. X keer XVII is CLXX ( keer), en I keer XVII is XVII, dus optellen van CLXX + CLXX + XVII geeft het antwoord CCCLVII; x 7 = a. 999, namelijk 7 tekens: 5 a. d = 03; = ; = 7 6; = Je vervangt elk symbool door een symbool van een orde hoger 6 a. Na de e verdubbeling en uitgave van dinarii heeft hij nog x Na de e verdubbeling en uitgave van dinarii heeft hij (x ) = 4x 36 Uiteindelijk geldt dus (4x 36) = 0, ofwel 8x 84 = 0. Dit geeft x = 0,5 dinarii dus hij vertrok met 0 en een halve dinarii. Op de laatste dag klimt de leeuw wel omhoog, maar glijdt niet meer omlaag (want hij is er dan uit!). Na x dagen klimmen is hij dus / 7 x voet geklommen en / 9 (x ) voet gedaald; in totaal zit hij na x dagen dus op hoogte / 7 x / 9 (x ) voet. Dat kun je vereenvoudigen tot / 63 x + / 9, dus moet gelden / 63 x + / Oplossen geeft x 57,5 dus na 57 dagen is de leeuw uit de kuil. De afstand tot de toren van 40 m is x, dan is de afstand tot de andere toren 50 x. De vergelijking 40 x 30 (50 x) geeft x = 8, dus de fontein bevindt zich 8 meter van de toren van 40 m hoogte en 3 meter van de toren van 30 m hoogte. 7 a. 7 x = = 63 x x = x 8 3 = 5 d. x x x = = a d e. Je zet er een nul achter

2 9 a. ANTWOORDEN blz. f., 3, 5, 7,, 3, 5, 7,, 3, 5, 7, (telkens erbij), 4, 6, 0,, 4, 6, 0,, 4, 6, (telkens erbij), 4, 0, 0, 40, 00, 00, 400, 000, 000, 4000, (telkens verdubbelen),,, 3, 5, 0, 5, 5, 4, 67, 3, 0, 35, (telkens de voorgangers optellen) g. Het laatste cijfer rechts weghalen (het cijfer dat je weghaalt is de rest) x x a d. 0 0 e x 0 a , 0, 00, 000, 0000, 00000,.; er komt telkens een nul bij Je zet er een nul rechts achter d , , , , , , 00000, 0000, 000, 00, 0, e. Je hebt dan rest ; je kunt delen door twee, door het meest rechter cijfer weg te halen; (het cijfer dat je weghaalt is de rest) Er worden wel twee datums genoemd: 8 oktober 0 of op december 0; ze staan beide ter discussie 3 a. 3 x x x = x x x x = 73.5 x x x x 3 + x = a. Je hebt 9 0-tallen en één 0-tal, dus twintig 0-tallen; dat geeft normaal gesproken één 400-tal, maar bij de Maya s geeft dat dus één 3-tal en twee 0-tallen. Voor het aftrekken van de 0-tallen moet je lenen van de 3-tallen; dat geeft dus 8 0-tallen. Daar haal je er één van af, dus hou je 7 0-tallen over (en nog een 3-tal). d. 5 a. Je zet er een nul achter

3 ANTWOORDEN blz. 3 (achtereenvolgens 3,, 00, 4.000, , ) d. Plaats alles een rij omhoog en zet er een nul onder; bij het nieuwe aantal 0-tallen moet je het dubbele van het oude aantal 0-tallen bij optellen; komt het aantal 0-tallen daarbij boven de 9, haal er dan 8 van af en tel eentje bij de 3-tallen bij e. Pas bovenstaande rekenregel toe:, ofwel (decimaal: x 0 = ) 6 7 Het getal 70 schrijf je als: ( x + 0) en als je dit omdraait krijg je (0 + ) en dat is. 8 a. 48 uur, minuten en 33 seconden Ja: 48 uur, min, 33 sec is hetzelfde als 48::33 bij de Babyloniërs, ofwel 99 = x + 39, dus : = 6 x + 39, dus 6: = x + 46 x + 39, dus :46: = 7 x + 46 x + 39, dus 7:46: = 4 x x + 46 x + 39, dus 4:37:46:39 d. :: = x + x + = = :59:59 = 59 x + 59 x + 59 = a. 6:00, 38:3, ::0 9:08, 5:49 37:5, :46, 50:6 0 a. In transcriptie :05, :00:05, :05:00; in spijkerschrift allemaal als: In transcriptie:, :00, :00:00; in spijkerschrift allemaal als: a. 3::00 en :34:56:00 De schrijfwijzen zijn gelijk! Conclusie: je kunt bij getallen in spijkerschrift niet zien dat een getal met wordt vermenigvuldigd. Het resultaat is gelijk aan het oorspronkelijke getal. a. A: tafel van 6; recht evenredig verband; y = 6x B: kwadraten; kwadratisch verband (of machtsverband); y = x C: machten van twee; exponentieel verband; y = x

4 ANTWOORDEN blz. 4 3 a. 0,5 : ( 0, ) , : 48 ( 0, 33...) 0,59 :59 ( 0, ) 0, ,5 4 dus 0,06 : 40 0,3 : ,36 ; , 37 : , 3: , 0: 5 : 30 4 a. Het product is telkens ; omgekeerd evenredig (of hyperbolisch) verband; x y = of y x Decimale waarden achtereenvolgens: 7½ 6 / ¾ 3 / 3 3 ½ / 5 / 9 In transcriptie achtereenvolgens 7,30 6, ,45 3,0 3,30,4,3:0 Dan zijn de eerste 5 waarden die in de tabel staan ½ / 3 ¼ / 5 / 6 ; dat schrijf je in transcriptie achtereenvolgens als 0,30 0,0 0,5 0, 0,0 en dat komt overeen met de kleitablet; Decimale waarden van de lege plekken: / 8 / 9 / 0 / / 5 / 6 / 8 / 0 / 4 / 5 / 7 In transcriptie is dat achtereenvolgens 0,07:30 0,06:40 0,06 0,05 0,04 0,03:45 0,03:30 0,03 0,0:30 0,0:4 0,0:3:0 d. De twee tabellen zijn gelijk! y x x, dus de waarden van de eerste tabel met y x krijg je door de waarden van de tweede tabel bij y x met te vermenigvuldigen; met vermenigvuldigen is niet te zien bij de Babyloniërs (zie vraag ) 5 a. d = = = 800, dus d = 800 = 30 4, ,4 0,4 5 / + 35 / 30, dus 4,4 is in transcriptie 4,5:35 en dat komt overeen met het Babylonische getal,4:5:0 = + 4 / + 5 / / 00,443 d. 30 x,443 4,4 dus het klopt e. 30 / 30 = Extra opgave op het kleitablet

5 ANTWOORDEN blz. 5 a. rest rest rest rest rest rest enzovoort; de resten herhalen zich (5, 3, 4, 9,, 5, 3, 4, 9,, 5, ), dus 0,05 : 7 :6 : : 49 : 05 : 7 :6 : : 49 :... 6 a. 000 = = en dat zijn precies de getallen uit de eerste kolom Elke volgende rij is het dubbele van de rij ervoor; het begint met 54 en bij 6 is het 4 keer verdubbeld, dus 54 x x x x = 54 x 4 = 54 x 6 Voor de andere rijen geldt dat net zo: achter 3 staat bijv. 3 x x 54 = ( ) x 54 = x54 + 6x54 + x54 + x54 en dat zijn precies de getallen in de rechter kolom in die rijen bij elkaar opgeteld waarvan de som in de linkerrij gelijk is aan 83 d. Ja (?) / 7 / 4 7 a dus 9 x 7 = = / = , dus binair 00; 9 38 / 4 76 / 8 5 je moet de rijen achter 4, 8, 6, 3, en 8 optellen: / / 3 8 / 6 / 8 43 Dus 5 x 9 = = 4788 / 5 / = : 4 008, dus 5 x 9 = = / 6 403

6 ANTWOORDEN blz. 6 d. 8 a. 33 / / 8 / / / / 3968 / / / 6 3 / 05 / / / / 3 33 dus 6 x 33 = = 858 dus 74 x 6 = = 4588 dus 85 x = x 85 = = 785 dus 05 x 59 = 59 x 05 = = 695 / 8 / 6 / / / 8 96 / / / 34 / 4 68 / 8 36 / / / = , dus 84 : 8 = = = , dus 056 : = = = , dus 38 : 7 = = 4 4 = , dus 4 : = = 405 = , dus 405 : 9 = = 45 7 / / 6 7 / / 8 68 / / 9 8 / 4 36 / / 3 88 dus 35 : 7 = + 6 = 8 rest ( =) 9 dus 530 : = = 5 rest ( =) a Verdeel 4 broden elk half doormidden (je krijgt 8 halfjes); verdeel de twee overige 3 broden in kwarten; iedereen krijgt dan 4 4 brood Verdeel 4 van de 5 broden in halfjes, zodat je 8 halfjes hebt; iedereen krijgt een halve brood en er blijft een halfje over: verdeel deze in 7 gelijke delen tot / 4 brood; het hele brood dat over is verdeel je in 7 gelijke delen; Iedereen krijgt dan brood a. 4 8 ; 9 ; ; 4 5;

7 ANTWOORDEN blz ; 0 90 ; ; 4 8; a , dus klopt Bij een even noemer kan de breuk vereenvoudigd worden door teller en noemer te delen door ; bijvoorbeeld :8 is gelijk aan :9 ; 6 tabel 3 a a. 6 3 en 6 3 ; , dus het dubbele van is 3 9 ; De getallen zijn gehalveerd: dat geldt altijd bij even noemers (zie vorige vraag)! dubbele dubbele dubbele dubbele d. Er is 4 keer verdubbeld, dus vermenigvuldigd met 6, dus de uitkomst is / dus gedeeld door 5 is a , dus het oog komt tekort ; het verschil is ( 0, 005) 35 a. Omdat 3 x 4 = 4 x 3 hoef je maar iets meer dan de helft te kennen; Je moet er ½ x 0 x = 55 kennen fout is 36 x 36 = 96, maar slechts ½ x 36 x = 666 stuks 3 = 9 vermenigvuldigingen; 4 = 6 vermenigvuldigingen 36 a euro 5 kratjes (of vaatjes?) bier 55 euro 37 Het eerste getal is 0:7, dus decimale waarde x + 7 = 47; 47 = 9 = 6:00:09, dus in het antwoord moet tussen de 6 en de 9 een nul staan: 38 a. (, 3, 6, 0,) 5,, 8, 36, 45, 55 (namelijk regelmaat +, +3, +4, +5, +6, et) 00; 5050; ½ n (n + ) vierkante getallen: (, 4, 9, 6,) 5, 36, 49,, 8, 00; 0 = 400; 00 = 0 000; n d. vijfhoekige getallen: (, 5,,,) 35, 5, 70, 9, 7, 45, 76, 0, 47, 87 (nl. +4, +7, +0, +3, +6, +9, et); zeshoekige getallen: (, 6, 5, 8,) 45, 66, 9, 0, 53, 90, 3, 76, 35, 378 (nl. +5, +9, +3, +7, +, +5, et) e. driehoekige getallen k = 3 invullen: n (3 )( n ) n (( n ) ) n ( n ) n (4 )( n ) n(( n ) ) n( n) n vierkante getallen k = 4 invullen: n (5 )( n ) n (3( n ) ) n (3 n ) f. vijfhoekig, k = 5 invullen: zeshoekig, k = 6 invullen: n (6 )( n ) (4( ) ) (4 ) ( ) n n n n n n 39 a. (, 6,, 0,) 30, 4, 56, 7, 90, 0 (, 4, 9, 6,) 5, 36, 49,, 8, 00 (, 4, 7,,) 6,, 9, 37, 46, 56

8 ANTWOORDEN blz. 8 n (n + ) (de hoogte van het rechthoekje is n en de breedte is n + ) n (het zijn de vierkantige getallen) ½n (n + ) + (het is telkens één stipje meer dan de driehoekige getallen) 40 a. (, 3, 5, 7,,) 3, 7, 9, 3, 9, 3, 37, 4, 43, 47, 53, 59, 6, 67, 7, 73, 79, 83, 89, 97; 5 stuks 5 = = 3 7; 77 = Perfecte getallen zijn positieve gehele getallen waarvan de som van de delers (uitgezonderd zichzelf, wel inclusief de ) gelijk is aan het getal zelf 6 = + + 3, 8 = , 496 = , 88 = d. Twee natuurlijke getallen zijn bevriend als de som van de delers van het getal A (behalve A zelf, maar inclusief ) gelijk is aan getal B, terwijl de delers van B (behalve B zelf, maar inclusief ) samen het getal A opleveren. 0: = 84 84: = 0 4 a. Voor het maken van rechte, ofwel haakse hoeken, want bij een driehoek met zijden die voldoen aan de vergelijking is de hoek recht; bijvoorbeeld met een touw met knopen (3, 4, 5) (5,, 3) (6, 8, 0) (7, 4, 5) (8, 5, 7) (9,, 5) (9, 40, 4) a = (m n ) = m 4 m n + n 4 ; b = (mn) = 4m n ; c = (m + n ) = m 4 + m n + n 4 ; Hieruit volgt: a + b = m 4 m n + n 4 + 4m n = m 4 + m n + n 4 = c, dus klopt 4 a.,,,, 6, -775 en a. zie hiernaast In het midden van de voorlaatste rij moet twee keer 35 naast elkaar staan, maar er staat 34 en keer 5 44 a. 3 x 4 x 4x 3x 5 7x 5 x ( x x x x) x ( x) x ( ) x x deel ( door 0) x 400 x x 36 x 36 7 x y, ofwel y 5 x en tweede vergelijking xy = x + y 7 7 Combineren van de twee formules geeft: x x x x 5 7 delen door x keer x x ; invullen geeft y x a. Als a / 0 = a, dan is dus a 0 = a, maar dat klopt niet, want a 0 = 0 voor élke waarde van a. (Je zou kunnen zeggen: a 0 = a klopt wél als a = 0, dus dan geldt 0 / 0 = 0. Is Brahmagupta daardoor misschien op deze foute rekenregel gekomen?) Als je de vergelijking 6 x 0 = 7 x 0 links en rechts deelt door 0, dan zou je krijgen 6 = 7 46 a. Allemaal gelijk aan 0 Dan geldt 0 0 = want een getal gedeeld door zichzelf is, dus 3 0 = 8 3 d. Allemaal gelijk aan e. Dan geldt 0 0 = f. Geen van beide, dus 0 0 bestaat niet 47 a. Alle stappen lijken te kloppen Er wordt gedeeld door (x x), ofwel: er wordt gedeeld door 0 en dat is en geeft flauwekul! 48 a. De delers van 4 zijn,, 3, 4, 6, 8,, 4; de delers van 00 zijn,, 4, 5, 0, 0, 5, 50, 00; dus ggd(4, 00) = x

9 ANTWOORDEN blz. 9 De delers van 48 zijn,, 3, 4, 6, 8,, 6, 4, 48; de delers van 0 zijn,, 5, 0,,, 55, 0; dus ggd(48, 330) = De delers van 07 zijn en 07 (priemgetal); de delers van 39 zijn en 39 (priemgetal); dus ggd(07, 39) = 49 a. ggd(4, 4) = 6 ggd(05, 5) = ggd(, 800) = a. Met de stelling van Pythagoras: AC = AB + BC = + =, dus AC = a Stel dat b met a en b zonder gemeenschappelijke delers. Hieruit volgt: b a. Kwadrateren links en rechts van het gelijkteken geeft: b = a, dus a is even. Omdat het kwadraat van een oneven geheel getal altijd oneven is, kan a niet oneven zijn en dus is a zelf even. Zeg a = p, met p een geheel getal. Daaruit volgt weer: b = a = (p) = 4p, dus (deel links en rechts door ) b = p. We zien dat b even is, en op dezelfde manier als hierboven bij a, trekken we de conclusie dat b ook even is. Zowel a als b zijn dus even en bijgevolg beide deelbaar door. Dit is echter in tegenspraak met onze keuze van a en b, die geen gemeenschappelijke deler hebben. Onze veronderstelling was bijgevolg verkeerd en daarmee is bewezen dat er geen a gehele getallen a en b bestaan zodat b. Met Pythagoras: AC , dus AB : AC = 8 : 7 d. Als de zijden van de rechthoek samen met de diagonaal een Pythagoreïsche drietal vormen 5 a. (lijnstuk met lengte cm) (lijnstuk met lengte 3 cm) ggd(6, 4) = ggd( 3, 7) =, dus de gemeenschappelijke maat heeft lengte ggd(6, 5) = ggd( 3, 3 5) = 3, dus de gemeenschappelijke maat heeft lengte 3 5 a. AC : AB = 8 : 3; CB : AB = 5 : 3 5/8 = 0,65; 8/3 0,65; 5/3 0,385; ja: AC : CB AC : AB AC : AB = 6 : 3; CB : AB = 7 : 3 6/7 0,857; 6/3 0,46; 7/3 0,538; nee 53 a. ; (Punt C ligt 8 cm van A af; AC : CB = 8 : 3 0,65 0,69 3 : = CB : AB) Ja, bij x = 8 zijn de uitkomsten bijna gelijk x 34x Invoeren op GR: AC : CB 34 x en CB : AB 34 ; verschillen het minst als x = 3; AC : CB = 3 : 0,69 0,68 : 34 = CB : AB d. Met Intersect: bij AB = geeft dat x 8,09 en verhouding 0,6803 Met Intersect: bij AB = 34 geeft dat x,98684 en verhouding 0, a. Door kruislings te vermenigvuldigen krijg je x = + x en dat geeft x x = 0 ( ) 4 ( ) 4 5 x ( 5) ; ½( 5) is negatief en vervalt daardoor, dus blijft over x = ½( 5), a. AD = ½ AB = ; met de stelling van Pythagoras: BD AB AD 5 DE is gelijk aan AD, dus DE = ; BE = BD DE = 5 AB, 6803 CB 5 58 a. Door bij φ φ 0 links en rechts op te tellen krijg je: φ φ links en rechts delen door φ geeft φ φ φ φ, dus φ φ 59 a. Het 7 e getal, namelijk 597 (en het 6 e is 987) = = 3 ; eerste 6 geeft het 8 e getal min ; eerste 7 geeft het 9 e getal min ; algemeen: de eerste n getallen uit de rij optellen geeft het (n+) e getal min

10 ANTWOORDEN blz. 0 Afwisselend is het product van de buitenste twee getallen van elk drietal opeenvolgende getallen uit de rij telkens meer of minder dan het kwadraat van het middelste getal d. Het quotiënt van twee opeenvolgende getallen gaat steeds meer lijken op φ,6803 a.

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

Bijlage 1 Rekenen met wortels

Bijlage 1 Rekenen met wortels Bijlage Rekenen met wortels Deze bijlage hoort bij het hoofdstuk Meetkunde en Algebra juli 0 Opgaven gemarkeerd met kunnen worden overgeslagen. Uitgave juli 0 Colofon 0 ctwo Auteurs Aad Goddijn, Leon van

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Toelichting op de werkwijzer

Toelichting op de werkwijzer Toelichting op de werkwijzer NEDERLANDSE W I S K U N D E OLYMPIADE Birgit van Dalen, Quintijn Puite De opgaven voor de training komen uit het boekje De Nederlandse Wiskunde Olympiade 100 opgaven met hints,

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl Breuken Breuk

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

3 - Babylonische Wiskunde (C-1)

3 - Babylonische Wiskunde (C-1) 3 - Babylonische Wiskunde (C-1) De opdracht omschrijving voor dit hoofdstuk bestond uit het volgende: C1 - Maak uit de hoofdstukken 0 t/m 6 van het Zebra-boekje Babylonische Wiskunde 15 van de 62 opgaven.

Nadere informatie

7 a patroonnummer a patroonnummer a h = z

7 a patroonnummer a patroonnummer a h = z Hoofdstuk 3 FORMULES 3.1 PATRONEN EN FORMULES 3 a 10 22 c? d De beweringen a b = b a en a + b = b + a zijn juist. e 15 a 12 a 18 a f a + 8 10 + a a + 14 b zijde vierkant 3 4 5 6 7 aantal gekleurde hokjes

Nadere informatie

Breuken met letters WISNET-HBO. update juli 2013

Breuken met letters WISNET-HBO. update juli 2013 Breuken met letters WISNET-HBO update juli 2013 De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers

Nadere informatie

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 Hoofdstuk 6 HAAKJES VWO 6.0 INTRO 6. TREK AF VAN 8 a b De uitkomsten zijn allemaal. c (n + )(n ) (n + )(n ) = d - - = -0,75 -,75 = b De uitkomsten zijn allemaal. c n + (n + ) (n + ) = + 6 4 4 = 6 4 = d

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

inhoudsopgave januari 2005 handleiding algebra 2

inhoudsopgave januari 2005 handleiding algebra 2 handleiding algebra inhoudsopgave Inhoudsopgave 2 De grote lijn 3 Bespreking per paragraaf 1 Routes in een rooster 4 2 Oppervlakte in een rooster 4 3 Producten 4 4 Onderzoek 5 Tijdpad 9 Materialen voor

Nadere informatie

Deel C. Breuken. vermenigvuldigen en delen

Deel C. Breuken. vermenigvuldigen en delen Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28 Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je

Nadere informatie

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 Hoofdstuk 16 HAAKJES VWO 16.0 INTRO 16.2 TREK AF VAN 8 a 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 1111d 1 2-2 2-1 2= -0,75-3,75 = 3 2 b De uitkomsten zijn allemaal 2. c n 2 +

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

Antwoorden bij Rekenen met het hoofd

Antwoorden bij Rekenen met het hoofd Antwoorden bij Rekenen met het hoofd Hoofdstuk Basisbewerkingen. Bewerkingen in beeld a. : splitsen in 5 en. Eerst min 5, dan min 0 en tenslotte nog min : splitsen in 5 en, die uitvoeren en dan nog stapsgewijs

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat. 92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 Antwoorden

WISKUNDE-ESTAFETTE RU 2006 Antwoorden WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Deel B. Breuken. optellen en aftrekken

Deel B. Breuken. optellen en aftrekken Deel B Breuken optellen en aftrekken - 0 0 Parten optellen 0 tablet chocola klok. Vul in: tablet tablet... stukjes uur uur... minuten - tablet - uur Vul passende breuken in. Schrijf de breuken op zijn

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Getaltheorie II. ax + by = c, a, b, c Z (1)

Getaltheorie II. ax + by = c, a, b, c Z (1) Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B-a 5x + 6 7x + e 4x + 6 x + 6 x + 3x + 6 4 x 3x 5 x 4 : dus x x 5 : 3 dus x 5 b 9x + 0 34 + x f 8x + 5x + 38 8x + 0 34 3x + 38 8x 4 3x 6 x 4 : 8 dus x 3 x 6 : 3 dus x c 4x + 9 7x

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 6 Etra oefening - Basis B-a 0 y 9 8 8 9 b y = + y 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a r = ( s+ )( s + ) e h= ( + i)( i +

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE 2012 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Optellen De som van twee getallen van twee cijfers is een getal van drie cijfers (geen van deze

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening - Basis B-a 0 y 9 8 8 9 b y y = + 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a g = 7 ( a+ ) a + 7 g = 7 a+ 0 b w= 9n(

Nadere informatie

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden. EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

Antwoorden. Magische vierkanten Vierkant voor Wiskunde Doeboek 8

Antwoorden. Magische vierkanten Vierkant voor Wiskunde Doeboek 8 Antwoorden Magische vierkanten Vierkant voor Wiskunde Doeboek 8 1 6 1 8 7 5 3 2 9 4 2 De getallen 1 tot en met 9. 3 15. 15 en 15. De som van de getallen van elke rij is 15. 4 15. De som van de getallen

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

Extra oefeningen hoofdstuk 2: Natuurlijke getallen

Extra oefeningen hoofdstuk 2: Natuurlijke getallen Extra oefeningen hoofdstuk 2: Natuurlijke getallen 2.1 Natuurlijke getallen 1 Rangschik de volgende natuurlijke getallen van klein naar groot. 45 54 56 78 23 25 77 89 2 050 2 505 2 055 2 500 2 005 879

Nadere informatie

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495.

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495. Bij vermenigvuldigen van twee grote getallen onder elkaar staan de rijen onder de streep elk voor een tussenstap. De eerste rij staat voor het vermenigvuldigen met het cijfer dat de eenheden van het onderste

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10 B M De getallenlijn 0 + = = + = = Nee 0 0 = 9 = 0 6 = = 9 = 6 = 6 = = C a b a b 0 = 0 0 = 0 a b < 0 ; a b < 0 ; a > b ; b > a = = = = C Nee, hij loopt steeds maar verder. < x H x < x < x < x + + = x +

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2009-2010: tweede ronde

1 Vlaamse Wiskunde Olympiade 2009-2010: tweede ronde Vlaamse Wiskunde Olympiade 009-00: tweede ronde Welke van de volgende vergelijkingen heeft als oplossing precies alle gehele veelvouden van π? () sinx = 0 (B) cos x = 0 (C) sinx = 0 (D) cosx = 0 (E) sinx

Nadere informatie

Oefening: Markeer de getallen die een priemgetal zijn.

Oefening: Markeer de getallen die een priemgetal zijn. Getallenkennis : Priemgetallen. Wat is een priemgetal? Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. (m.a.w. een priemgetal is een natuurlijk getal

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2005-2006: eerste ronde 1 Vier van de volgende figuren zijn het beeld van minstens één andere figuur door een draaiing in het vlak Voor één figuur is dit niet het geval Welke?

Nadere informatie

Oefeningen in verband met tweedegraadsvergelijkingen

Oefeningen in verband met tweedegraadsvergelijkingen Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot

Nadere informatie

Vraagstukken van de tweede graad

Vraagstukken van de tweede graad Vraagstukken van de tweede graad 1. Een getal en zijn tweedemacht hebben als som 90. Bepaal dat getal.. Bepaal twee opeenvolgende getallen waarvan de som van de kwadraten 365 is. 3. Verdeel het getal 37

Nadere informatie

handleiding ontbinden

handleiding ontbinden handleiding ontbinden inhoudsopgave inhoudsopgave de grote lijn 3 Bespreking per paragraaf 4 Applets 4 1 met gegeven product 4 ontbinden van getallen 4 3 vergelijkingen 5 4 onderzoek 6 tijdpad 9 materialen

Nadere informatie

Junior Wiskunde Olympiade : tweede ronde

Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 2007-2008: tweede ronde 1 Op de figuur stellen de getallen de grootte van de hoeken voor De waarde van x in graden is gelijk aan 2x 90 x 24 (A) 22 (B) 1 (C) (D) 8 (E) 57 2 Welke

Nadere informatie

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21. Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde

Nadere informatie

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer.

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer. ANTWOORDEN KANGOEROE 2001 BRUGKLAS en KLAS 2 1. E 2. E 18 doosjes voor de rode, 13 voor de blauwe: totaal 31 doosjes 3. C De ringen A, B en D zitten allemaal alleen door ring C. 4. B De twee getallen moeten

Nadere informatie

9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a

9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a 6.0 INTRO De uitkomsten zijn allemaal. c (n+)(n ) (n +)(n ) = d - - = -0,75 -,75 = De uitkomsten zijn allemaal c n + (n+) (n+) = d + 6 4 4 4 = 6 4 = 6. REKENEN a ( + 5) = 8 = 64 = 8 + 5 = 6 + 5 = ( + 5

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE 2014 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 00 1 (20 punten) Gegeven zijn drie aan elkaar rakende cirkels met straal 1. Hoe groot is de (donkergrijze) oppervlakte

Nadere informatie

WISKUNDE-ESTAFETTE 2011 Uitwerkingen

WISKUNDE-ESTAFETTE 2011 Uitwerkingen WISKUNDE-ESTAFETTE 2011 Uitwerkingen 1 C D O A O B Omdat driehoek ACD gelijkbenig is, is CAD = ACD en daarmee zien we dat 2 CAD+ ADC = 180. Maar we weten ook dat 180 = ADC + ADB. Dus ADB = 2 CAD. Driehoek

Nadere informatie

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

WISNET-HBO. update aug. 2011

WISNET-HBO. update aug. 2011 Basiskennis van machten WISNET-HBO update aug. 0 Inleiding Deze les doorwerken met pen en papier! We noemen de uitdrukking a 4 (spreek uit: a tot de vierde macht) een macht van a (in dit geval de vierde

Nadere informatie

WISKUNDE-ESTAFETTE 2013 Uitwerkingen

WISKUNDE-ESTAFETTE 2013 Uitwerkingen WISKUNDE-ESFEE 2013 Uitwerkingen 1 We geven twee oplossingen. De eerste oplossing ligt meer voor de hand. De tweede oplossing is rekentechnisch iets eenvoudiger. Oplossing 1: Er zijn 9 getallen met 1 cijfer,

Nadere informatie

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje.

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje. 4som kaart a In een 4som-puzzel moeten in vier hokjes getallen worden geschreven. Van de (horizontale) rijen en van de (verticale) kolommen is de som gegeven en ook van de diagonalen. Welke getallen moeten

Nadere informatie

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar 25 JAAR VLAAMSE WISKUNDE OLYMPIADE De slechtst beantwoorde vragen in de eerste ronde per jaar Samenstelling en lay-out: Daniël Tant Luc Gheysens Vlaamse Wiskunde Olympiade v.z.w. VWO 1 1986 Vraag 17 Een

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Medische rekenen AJK

Medische rekenen AJK Medische rekenen AJK Herhaling Optellen, aftrekken en breuken Optellen Voorbeeld optellen 122

Nadere informatie

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209.

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. 1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE 2013 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Een lange rij Iemand schrijft alle jaartallen van 1 tot en met 2013 op een rij: Hoeveel cijfers

Nadere informatie

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11.

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. Uitwerkingen wizbrain 2013 1. E 2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. 3. C De vetgedrukte kaarsen in de volgende tabel branden na 55 minuten: begin 0 10 20 30

Nadere informatie

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Blok - Vwo VWO Reht, sherp of stomp? a AB 7 AC BC 8 6 6 Nee, de optelling van de kwadraten klopt niet, want 6 6 en geen 6. Nee, nabc is geen rehthoekige driehoek, want de optelling van de kwadraten klopt

Nadere informatie

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen Een praktische opdracht voor leerlingen van 5VWO met wiskunde B DE TELDUIVEL Inleiding Wiskunde? Hou op zeg! Voor

Nadere informatie

x 2x x 4x x 1x x 8x x x 12 = 0 G&R vwo B deel 1 1 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/25

x 2x x 4x x 1x x 8x x x 12 = 0 G&R vwo B deel 1 1 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/25 C. von Schwartzenberg 1/ 1 I, II, IV en V zijn tweedegraadsvergelijkingen. (de hoogste macht van is steeds ; te zien na wegwerken haakjes?) (III is een eerstegraadsvergelijking en VI is een derdegraadsvergelijking)

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie