6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken"

Transcriptie

1 Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen, meloen. meloen meloen Zo kun je ook een taart in stukken snijden. Als je taart verdeelt in gelijke stukken, dan is elk stuk (spreek uit één zesde) taart. Een breuk is dus eigenlijk een gebroken getal. Breuken ontstaan als een deling niet uitkomt op een geheel getal. Als je meloenen door wilt delen, krijg je, rest. Wil je die rest ook nog delen door dan krijg je gedeeld door. Dat is. is gedeeld door :. Een breuk bestaat uit een teller en een noemer: De teller staat boven de breukstreep en de noemer er onder. teller noemer Het deelstreepje wordt schuin op je toetsenbord geschreven. Dus / is hetzelfde als. De teller geeft hoeveel stukken er zijn en de noemer zegt wat de naam is van die stukken: taart geeft dus aan dat de taart in stukken is verdeeld en dat je stukjes telt die allemaal groot zijn. één zesde twee zesde drie zesde vier zesde vijf zesde zes zesde De taart is in stukken verdeeld. Eén stuk is dus en vijf stukken is. Zes stukken taart is en dat is hetzelfde als hele. Als de teller en noemer gelijk zijn, dan is dat hetzelfde als. Je kunt een hele in net zoveel gelijke stukjes verdelen als je zelf wilt, bijvoorbeeld. stukjes van (één tweede, we noemen dat meestal een half) stukjes van (één derde) stukjes van (één vierde, we noemen dat vaak een kwart) stukjes van (één vijfde) stukjes van (één zesde) stukjes van (één zevende) stukjes van (één achtste) stukjes van (één negende) 0 stukjes van 0 (één tiende) 00 stukjes van 00 (één honderdste) 000 stukjes van (één duizendste) 000 Je kunt ook meer helen in stukken verdelen. hele is helen is stukjes Pagina van

2 Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- Vergelijken en ordenen van breuken Hoe groter de noemer is, hoe kleiner het stuk is. Want als je een taart in stukjes snijdt, is elk stukje kleiner dan wanneer je de taart in stukjes snijdt en die stukjes zijn weer kleiner dan wanneer je taart in stukken snijdt. Dus is kleiner dan en is kleiner dan. 0 Anders wordt het als de teller groter is dan. Als je een taart in stukken snijdt en een andere taart in stukken, dan is een stuk van de eerste taart kleiner dan één stuk van de tweede taart. Eén stukje van de eerste taart is kleiner dan één stukje van de tweede taart. Ook twee stukjes van de eerste taart is samen kleiner dan twee stukjes van de tweede taart: is dus kleiner dan Dus als de teller van beide breuken gelijk is, kun je aan de noemer zien welk getal groter is. 0 Maar twee stukjes van de eerste taart is samen evenveel als één stukje van de tweede taart: is dus hetzelfde als. De breuk met de grootste noemer kan dus evenveel of zelfs groter zijn dan de breuk met de kleinste noemer als de teller van de eerste breuk groter is dan die van de tweede breuk. is groter dan. Als je bij teller en noemer allebei door deelt, krijg je : gedeeld door gedeeld door. Ook hier deel je teller en noemer allebei door hetzelfde getal: gedeeld door gedeeld door Pagina van

3 Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- gedeeld door gedeeld door gedeeld door gedeeld door Andersom, dus teller en noemer met hetzelfde getal vermenigvuldigen, mag ook: keer keer keer keer keer keer Je mag teller en noemer altijd delen of vermenigvuldigen met hetzelfde getal. De waarde van de breuk blijft hetzelfde ( ) Rekenen met breuken Om te kunnen rekenen met breuken, moet je twee dingen kunnen: breuken gelijknamig maken en breuken vereenvoudigen. Breuken gelijknamig maken Twee of meer breuken gelijknamig maken, betekent dat je de noemer van de breuken hetzelfde maakt. Bij het gelijknamig maken van breuken zoek je naar het kgv, het kleinste gemene (gemeenschappelijke) veelvoud. Tel de breuken en bij elkaar op. Maak deze breuken eerst gelijkwaardig. Neem de tafel van de kleinste noemer, in dit geval, totdat je bij het getal komt dat ook in de tafel van de grootste noemer staat. x x x en x Het getal is het kgv en wordt de nieuwe noemer. Om van het getal te maken, doe je dit keer. Teller en noemer mag je met hetzelfde getal vermenigvuldigen, dus doe dan ook de teller keer. En om van het getal te maken, doe je keer. Dan moet je dus ook de teller keer doen. teller vermenigvuldigen met noemer vermenigvuldigen met teller vermenigvuldigen met noemer vermenigvuldigen met Vereenvoudigen van breuken Een breuk moet altijd zo klein mogelijk worden opgeschreven. Dit heet vereenvoudigen. Om een breuk te vereenvoudigen, heb je de ggd, de grootste gemene (gemeenschappelijke) deler nodig. Pagina van

4 Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- Vereenvoudig. Neem de grootste tafel waarin en in de antwoorden staan, en zitten in de tafels van, en. x x x x x x x x x x x x 0 x x x x x x De tafel van is de grootste tafel waarin beide getallen voorkomen. Dus is de ggd. Deel teller en noemer nu allebei door. gedeeld door Dus gedeeld door Breuken optellen en aftrekken Je kunt breuken, net als hele getallen bij elkaar breuken optellen. Bij breuken met gelijke noemers hoef je, om ze op te tellen, alleen de tellers bij elkaar op te tellen. + Beide noemers zijn, dus deze breuk kun je optellen. Het aantal stukken tel je bij elkaar. De naam van de stukken blijft gelijk. Je telt dus alleen de tellers bij elkaar op. + Dus ook: en dat is hetzelfde als + Hier is het handiger eerst te splitsen. Tel eerst de helen bij elkaar: + Tel dan de breuken bij elkaar: + Tel daarna alles bij elkaar: + Vereenvoudig tot slot de breuk:, dus de uitkomst is. + De teller () is groter dan de noemer (). Dus in het getal zit een hele. De noemer is, dus de hele is. Dan houd je nog over. schrijf je daarom als Als de noemers niet gelijk zijn, zoek dan een nieuwe noemer om de breuken gelijkwaardig te maken. Breuken met ongelijke noemers moet je eerst gelijknamig maken om ze op te kunnen tellen. + Zoek het kgv. Neem de tafel van de kleinste noemer, in dit geval, totdat je bij het getal komt dat ook in de tafel van de grootste noemer staat. Pagina van

5 Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- x x x x en x Het getal wordt de nieuwe noemer. Om van het getal te maken, vermenigvuldig je met en om van het getal te maken, vermenigvuldig je met. teller x noemer x teller x noemer x Hetzelfde doe je bij breuken met helen erin. + Je zoekt eerst de nieuwe noemer. Dat wordt 0, want x 0 en x 0. teller x 0 noemer x teller x 0 noemer x Ook voor aftrekken met breuken geldt: Bij breuken met gelijke noemes hoef je om ze af te trekken alleen de tellers van elkaar af te trekken Beide noemers zijn, dus deze breuk kun je aftrekken. Het aantal stukken trek je van elkaar af. De naam van de stukken blijft gelijk. Je trekt alleen de tellers van elkaar af. Dus ook: Trek eerst de helen van elkaar af. Trek de breuken af. Tel dan alles bij elkaar. + Je moet lenen van de om te kunnen aftrekken. is hetzelfde als dus Als de noemers niet gelijk zijn, moet je de breuken gelijknamig maken. Zoek nieuwe noemers. Zoek het kgv. Neem de tafel van de kleinste noemer, in dit geval, totdat je bij het getal komt dat ook in de tafel van de grootste noemer staat. x x x x en x Het getal wordt de nieuwe noemer. Om van het getal te maken, doe je keer en om van het getal te maken, doe je keer. Vermenigvuldig dus ook de teller van met en de teller van met. 0 Pagina van

6 Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- Neem de tafel van. Het getal wordt de nieuwe noemer. Om van het getal te maken, doe je keer en om van het getal te maken, doe je keer. Teller en noemer van blijven dus gelijk. Neem de tafel van. Het getal wordt de nieuwe noemer. Om van het getal te maken, doe je keer en om van het getal te maken, doe je keer. Je moet lenen van de om te kunnen aftrekken. Schrijf als en tel daar. Trek dan af. Breuken vermenigvuldigen Stel je bij het vermenigvuldigen van een breuk weer de taart voor. Bij een vermenigvuldiging van een breuk, bijvoorbeeld, met een heel getal tel je net zoveel stukjes als het hele getal aangeeft bij elkaar op. x dus x Je vermenigvuldigt de teller met het hele getal. x + + dus x Je kunt ook breuken met elkaar vermenigvuldigen. x Hier staat dus: hoeveel is de helft van? De helft van stukje is, want er zitten dan stukjes in de hele strook. de tellers met elkaar vermenigvuldigen x de noemers met elkaar vermenigvuldigen Om twee breuken te vermenigvuldigen, vermenigvuldig je de tellers met elkaar en de noemers met elkaar. Bij breuken groter dan maak je er eerst een echte breuk van, door van de helen ook een breuk te maken. Je kunt ook vereenvoudigen vóór het vermenigvuldigen. Dit heet wegstrepen. Je mag teller en noemer door hetzelfde getal delen. Bij het vermenigvuldigen van breuken pas je deze regel kruiselings toe. De teller van de eerste breuk en de noemer van de tweede breuk deel je door hetzelfde getal. De teller van de tweede breuk en de noemer van de eerste breuk deel je door hetzelfde getal. / / en delen door x / / en delen door Breuken delen Bij het delen van een breuk door een heel getal, verdeel je het aantal stukken. x 0 0 x x : x Pagina van

7 Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- Je hebt stukken van. Ieder krijgt stukken van. Je deelt de teller door het hele getal. Je kunt een breuk ook delen door een breuk. Delen door een breuk is hetzelfde als vermenigvuldigen met het omgekeerde van die breuk. Je kunt ook meteen wegstrepen: : 0 : x Als er helen in de breuk zitten, maak je daar eerst een breuk van. : : x : x / / / / Kommagetallen Een kommagetal is getal dat niet heel is. Het is een breuk. Voor de komma staan de helen, achter de komma staat de breuk. De getallen achter de komma staan voor de tienden, honderdsten, duizendsten, enzovoort. Een breuk kun je schrijven als een kommagetal. De breuk is dan herleid tot tienden, honderdsten, duizendsten. Kommagetallen gebruik je bij geld en maten: een kamer van, meter en een boek van,. De komma is de scheiding tussen hele euro s () en het deel dat kleiner is dan een hele euro (), de eurocenten. Alles wat of groter is, staat voor de komma. Alles wat kleiner is dan, staat achter de komma. Opbouw van de getallen Deel - geheel Welke breuk is cm? De balk is 0 cm, verdeeld in stukken van cm. Elk stuk is van 0 cm. Je kunt ook zeggen. De balk is 0 cm lang, dan is 0 de noemer. Elke cm is 0 deel van de balk. Een stuk van cm is dus van de balk. 0 Als je weet hoeveel de breuk is, kun je uitrekenen hoeveel de hele is. cm cm cm cm deel van een bedrag is,00. Hoeveel is dan het hele bedrag? deel is,00 :,00. Dus deel x,00 0,00 Deze reep is in 0 stukken verdeeld. Elk stukje is 0 deel, een tiende deel. Als je 0 schrijft als kommagetal, schrijf je 0,0. De laatste 0 laat je weg 0,. Twee stukjes is 0 deel. Als kommagetal schrijf je 0,0 of 0,. In 0 is de teller en 0 de noemer van de breuk. De teller vind je terug in het kommagetal. De noemer bepaalt de plaats achter de komma. Tienden zijn het eerste getal achter de komma. + 0, 0,0 0, 0, 0, 0, 0, 0, 0, 0, 0,,0,,,,,,,,,,0 hele is verdeeld in 0 gelijke stukken van 0,. Je ziet dat 0, kleiner is dan. En dat 0, + 0, gelijk is aan 0,. Pagina van

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken breuken breukentaal tekening getal een hele 1 een halve een kwart een achtste ½ of ½ ¼ of ¼ ⅛ of ⅛ 3 breuken breukentaal tekening getal een vijfde ⅕ of ⅕ een tiende

Nadere informatie

Kommagetallen. Twee stukjes is

Kommagetallen. Twee stukjes is Kommagetallen Een kommagetal is een getal dat niet heel is. Het is een breuk. Voor de komma staan de helen, achter de komma staat de breuk. De cijfers achter de komma staan voor de tienden, honderdsten,

Nadere informatie

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28 Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken 1 d elen colofon en hal eren Het ik maak DiKiBO de Breukenboekje som makkelijk Voor groep 6, 7 en 8 DiKiBO behandelt op iedere kaart een bepaald soort som en aan de

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

Het weetjesschrift. Weetjesschrift Galamaschool

Het weetjesschrift. Weetjesschrift Galamaschool Het weetjesschrift Dit is het weetjesschrift. In dit schrift vind je heel veel weetjes over taal, rekenen en andere onderwerpen. Sommige weetjes zal je misschien al wel kennen en anderen leer je nog! Uiteindelijk

Nadere informatie

Reken zeker: leerlijn breuken

Reken zeker: leerlijn breuken Reken zeker: leerlijn breuken B = breuk H = hele HB = hele plus breuk (1 1/4) Blauwe tekst is theorie uit het leerlingenboek. De breuknotatie in Reken zeker is - anders dan in deze handout - met horizontale

Nadere informatie

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? deel

Nadere informatie

12 Tijd VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Tijd. Klokkijken

12 Tijd VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Tijd. Klokkijken Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Tijd K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl Regel Een plank van

Nadere informatie

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen.

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen. Uitwerkingen hoofdstuk Gebroken getallen. Kennismaken met breuken.. Deel van geheel Opdracht. a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde

Nadere informatie

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen Uitwerkingen 2. Kennismaken met breuken 2.. Deel van geheel Opdracht B 8 deel. ( deel + 8 deel). Opdracht 2 C 5 deel Opdracht C Driehoek C past in driehoek A. Aangezien driehoek A deel is van de tekening,

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Afspraken hoofdrekenen eerste tot zesde leerjaar

Afspraken hoofdrekenen eerste tot zesde leerjaar 24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

Van een percentage een breuk maken, is vaak nog eenvoudiger.

Van een percentage een breuk maken, is vaak nog eenvoudiger. breuken breuken en percentages wist je dat breuken en percentages op elkaar lijken Het geheel wordt steeds 100% genoemd. Met de helft wordt dan dus 50% bedoeld. Als men het heeft over 25%, dan bedoelt

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

Rekentermen en tekens

Rekentermen en tekens Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

Deel A. Breuken vergelijken

Deel A. Breuken vergelijken Deel A Breuken vergelijken - - 0 Breuken en brokken (). Kleur van elke figuur deel. Doe het zo nauwkeurig mogelijk.. Kleur van elke figuur deel. Doe het telkens anders.. Kleur steeds het deel dat is aangegeven.

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? 8

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel Opdracht 2 blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een heel blaadje.

Nadere informatie

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495.

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495. Bij vermenigvuldigen van twee grote getallen onder elkaar staan de rijen onder de streep elk voor een tussenstap. De eerste rij staat voor het vermenigvuldigen met het cijfer dat de eenheden van het onderste

Nadere informatie

WISo. Handleiding breukendoos. www.zwiso.be. Inhoud breukendoos. Gebruik van de breukendoos. Inzicht in breuken

WISo. Handleiding breukendoos. www.zwiso.be. Inhoud breukendoos. Gebruik van de breukendoos. Inzicht in breuken Handleiding breukendoos Inhoud breukendoos De breukendoos bevat: - metalen breukenbord met vermelding van het geheel en de stambreuken van t.e.m. en ruimte voor de kommagetallen- en de procentstrook -

Nadere informatie

Breuken met letters WISNET-HBO. update juli 2013

Breuken met letters WISNET-HBO. update juli 2013 Breuken met letters WISNET-HBO update juli 2013 De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers

Nadere informatie

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN OPTELLEN/AFTREKKEN Zet de getallen onder elkaar in je schrift eerst zelf proberen uit te rekenen bij aftrekken: denk om lenen bij optellen: denk om doorschuiven geen vergissingen? bij lang nadenken: rekenmachine

Nadere informatie

breuken 1.0 Inleiding 1.1 Natuurlijke getallen

breuken 1.0 Inleiding 1.1 Natuurlijke getallen 1 Natuurlijke getallen, breuken 1.0 Inleiding Dit hoofdstuk begint in paragraaf 1.1 met het rekenen met de getallen 0, 1, 2,, enzovoort. Dat heb je op de lagere school ook geleerd, alleen wordt er nu wat

Nadere informatie

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat. 92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken Deel 1 78 & het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken 2 DIT IS HET DiKiBO-BOEK VAN TIP PAS OP 2 HOE? hoi, ik ben DiKiBO samen met mijn vrienden help ik jou bij

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

GETALLEN deel De waarde van een cijfer wordt bepaald door de. We lezen 1 E. .. vijf tientallen

GETALLEN deel De waarde van een cijfer wordt bepaald door de. We lezen 1 E. .. vijf tientallen GETALLEN deel Les 2 : Getallenkennis: getallen tot 00 000. De waarde van de cijfers in een getal: De waarde Je leest Besluit:..................... De waarde van een cijfer wordt bepaald door de in et getal.

Nadere informatie

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar De Graankorrel Wervik Mijn wiskundehulpschrift van 1 tot 6 leerjaar We gebruiken de rekenmethode Zo gezegd, zo gerekend! van het eerste tot het zesde leerjaar. Eerste leerjaar blz. 2 Tweede leerjaar blz.

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Wiskunde in vierde, vijfde en zesde klas Lezing

Wiskunde in vierde, vijfde en zesde klas Lezing Wiskunde in vierde, vijfde en zesde klas Lezing 14-02-2006 BREUKEN Nog eenmaal pannenkoeken verdelen. De cirkel als meest gebruikte beeld bij de breuken Breukentafels: ½ - 2/4 3/6 4/8 enz. De breukenregels:

Nadere informatie

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

Overstapprogramma 6-7

Overstapprogramma 6-7 Overstapprogramma - Cijferend optellen 9 Verdeel het getal. Het getal 8 kun je verdelen in: duizendtallen honderdtallen tientallen eenheden D H T E 8 D H T E 8 = 8 9 9 9 = = = = Zet de getallen goed onder

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen Uitsluitend te gebruiken

Nadere informatie

Antwoorden bij Rekenen met het hoofd

Antwoorden bij Rekenen met het hoofd Antwoorden bij Rekenen met het hoofd Hoofdstuk Basisbewerkingen. Bewerkingen in beeld a. : splitsen in 5 en. Eerst min 5, dan min 0 en tenslotte nog min : splitsen in 5 en, die uitvoeren en dan nog stapsgewijs

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

ALBERDINGK THIJM COLLEGE REKENGIDS. Basis en afspraken rekenen

ALBERDINGK THIJM COLLEGE REKENGIDS. Basis en afspraken rekenen ALBERDINGK THIJM COLLEGE REKENGIDS Basis en afspraken rekenen VOORWOORD Deze rekengids is bedoeld als overzichtelijk naslagwerk voor leerlingen, ouders, docenten en alle anderen die met rekenen te maken

Nadere informatie

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2 Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30

Nadere informatie

Deel C. Breuken. vermenigvuldigen en delen

Deel C. Breuken. vermenigvuldigen en delen Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt

Nadere informatie

Start u met zwiso in verschillende leerjaren tegelijkertijd?

Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Geef dan eventueel aan het begin van het schooljaar enkele lessen uit het voorafgaande

Nadere informatie

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen Getallenkennis Target 1 Les 1: getalbegrip to 10 000 000 wb. p. 1+2, sb 1 Les 5: kommagetallen tot 0,001 wb. p. 8-9, sb 5 Les 12: breuken vergelijken en sorteren wb. p. 15-16, sb 10 Les 13: breuk als operator,getal,verhouding,

Nadere informatie

Van een verdeling naar een stambreuk

Van een verdeling naar een stambreuk Van een verdeling naar een stambreuk Domein - Verhoudingen: breuken Plaats in de leerlijn - Br 1.2 - Br 1.5 - Br 2.4 Moment van aanbieden - Tweede helft jaargroep 7 Doel De leerlingen - Br 1.2: (Her)kennen

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Procenten en breuken, leren en oefenen 90 toetsopgaven met meerkeuze-antwoorden

Procenten en breuken, leren en oefenen 90 toetsopgaven met meerkeuze-antwoorden NL-211 CS Bodegraven Telefax +31(0)172-61 3 96 Honderd procent goed BLOEMLEZING Auteur en uitgever: Inhoud Deel 1 Deel 2 Inleiding Klaas van der Veen Procenten en breuken, leren en oefenen 90 toetsopgaven

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

INHOUDSTAFEL. inhoudstafel... 2

INHOUDSTAFEL. inhoudstafel... 2 INHOUDSTAFEL inhoudstafel... 2 getallenkennis waarde van cijfers in een getal... 6 grote getallen... 7 rekentaal... 8 rekentaal deel 2... 9 soorten getallen... 9 rekentaal deel 3... 10 de ongelijke verdeling...

Nadere informatie

De laatste loodjes...

De laatste loodjes... De laatste loodjes... Hieronder vindt je een uittreksel van alles dat we met rekenen hebben geoefend. En nog een paar herhaalsommetjes. Om als laatste nog even door te lezen om te zien of je alles nog

Nadere informatie

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 +

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 + I Getall 0 e π 8 9 Dit deel gaat over het rek met getall. Ze kom in allerlei soort voor: positieve getall, negatieve getall, gehele getall, rationale irrationale getall. De getall, π e zijn voorbeeld van

Nadere informatie

Breuken som en verschil

Breuken som en verschil Auteur Laatst gewijzigd Licentie Webadres Monique Faken 18 december 2014 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/56142 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet.

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

11 Meten en maten VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Meten en maten

11 Meten en maten VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Meten en maten Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Meten en maten K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl De dollar

Nadere informatie

spiekboek rekenen de ultieme voorbereiding op de Citotoets groep

spiekboek rekenen de ultieme voorbereiding op de Citotoets groep spiekboek rekenen de ultieme voorbereiding op de Citotoets groep 3 COLOFON 3 DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 8 groep 5 & 6 (een uittreksel van DiKiBO Rekenen

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13

Nadere informatie

DIT IS HET DiKiBO-BOEK VAN

DIT IS HET DiKiBO-BOEK VAN Groep 5 6 & 2 DIT IS HET DiKiBO-BOEK VAN TIP PAS OP 2 HOE? hoi, ik ben DiKiBO samen met mijn vrienden help ik jou bij het leren 3 COLOFON DiKiBO presenteert het complete reken-zakboek voor groep 5 & 6

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 100 000 10 Les 2: Natuurlijke getallen kleiner dan 1 000 000

Nadere informatie

Getallen en breuken. /1 Schrijf de helen als breuken, of haal de helen uit de breuk. 2 Verdeel de breuken. 3 Verdeel de breuken.

Getallen en breuken. /1 Schrijf de helen als breuken, of haal de helen uit de breuk. 2 Verdeel de breuken. 3 Verdeel de breuken. Getallen en breuken 9 0 0 / Scrijf de elen als breuken, of aal de elen uit de breuk. = =.. =.. 7 =.. =.. =.. 0 9 =.. 0 =.. 0 =.. 7 =.. 9 = = = 0 = 7 = = = = = 7 = 7 Verdeel de breuken. kinderen verdelen

Nadere informatie

Op stap naar 1 B Minimumdoelen wiskunde

Op stap naar 1 B Minimumdoelen wiskunde Campus Zuid Boomsesteenweg 265 2020 Antwerpen Tel. (03) 216 29 38 Fax (03) 238 78 31 www.vclbdewisselantwerpen.be VCLB De Wissel - Antwerpen Vrij Centrum voor Leerlingenbegeleiding Op stap naar 1 B Minimumdoelen

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

Blok 1 GB les 2 K1: cijfers 2 en 3 overtrekken en zelf schrijven

Blok 1 GB les 2 K1: cijfers 2 en 3 overtrekken en zelf schrijven Blok GB les 2 K: cijfers 2 en 3 overtrekken en zelf schrijven Cijfers 2 en 3 overtrekken en zelf schrijven 2 3 Start Van richting veranderen Stop Start Van richting veranderen Stop Overtrek de cijfers.

Nadere informatie

Deel B. Breuken. optellen en aftrekken

Deel B. Breuken. optellen en aftrekken Deel B Breuken optellen en aftrekken - 0 0 Parten optellen 0 tablet chocola klok. Vul in: tablet tablet... stukjes uur uur... minuten - tablet - uur Vul passende breuken in. Schrijf de breuken op zijn

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

spiekboek rekenen beter rekenen op de entreetoets van het Cito groep

spiekboek rekenen beter rekenen op de entreetoets van het Cito groep spiekboek rekenen beter rekenen op de entreetoets van het Cito groep 3 COLOFON 3 DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 6 groep 5 & 6 (een uittreksel van DiKiBO

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

Module Rekenvaardigheid in havo als voorbereiding op pabo. AN nr. 3.4044.0006

Module Rekenvaardigheid in havo als voorbereiding op pabo. AN nr. 3.4044.0006 Module Rekenvaardigheid in havo als voorbereiding op pabo AN nr..4044.0006 Inleiding Beste leerling, Wanneer je naar de PABO gaat is het belangrijk dat je een goede beheersing hebt van de Nederlandse

Nadere informatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deze mappen willen wegwijzers aanreiken om vanuit begrip en respect het beste te halen uit die leerlingen die de basis wiskundeleerstof uit

Nadere informatie

Tussendoelen domein VERHOUDINGEN

Tussendoelen domein VERHOUDINGEN Tussendoelen domein VERHOUDINGEN Eind groep 2 Eind groep 3 Eind groep 4 Eind groep 5 beheerst de doelen van groep 2, ook op het niveau van groep 3 en beheerst de doelen van groep 2 en 3, ook op het niveau

Nadere informatie

TOELICHTING BETEKENIS GEVEN AAN BREUKEN

TOELICHTING BETEKENIS GEVEN AAN BREUKEN TOELICHTING BETEKENIS GEVEN AAN BREUKEN 1 2 3 Rekenvlinder_betekenis_geven_aan_breuken.indd 2 27-06-13 21:57 4 5 6 13226_rv_wb_betekenis_geven_aan_breuken_bw.indd 3 04-07-13 17:26 liter 1 0 Rekenvlinder

Nadere informatie

WISNET-HBO. update aug. 2011

WISNET-HBO. update aug. 2011 Basiskennis van machten WISNET-HBO update aug. 0 Inleiding Deze les doorwerken met pen en papier! We noemen de uitdrukking a 4 (spreek uit: a tot de vierde macht) een macht van a (in dit geval de vierde

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2 Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Joep van Vugt Anneke Wösten Handig optellen; tribunesom* Bij optellen van bijna ronde getallen zoals 39, 198, 2993,..

Nadere informatie

Hoofdstuk 9: NEGATIEVE GETALLEN

Hoofdstuk 9: NEGATIEVE GETALLEN 1 H9. Negatieve getallen Hoofdstuk 9: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 53 57) 9.1 Getallen onder 0 Het verschil verwoorden tussen positieve en negatieve getallen. Weten dat we 0 zowel

Nadere informatie

Breuken in de breuk. 1 Breuken vermenigvuldigen en delen (breuken in de breuk)

Breuken in de breuk. 1 Breuken vermenigvuldigen en delen (breuken in de breuk) Breuken in de breuk update juli 2013 WISNET-HBO De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers

Nadere informatie

wizkid 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan

wizkid 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com www.smart.be Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

HET GROTE REKENBOEK OEFENBOEK. Antwoorden en Uitwerkingen VOORBEELDPAGINA S

HET GROTE REKENBOEK OEFENBOEK. Antwoorden en Uitwerkingen VOORBEELDPAGINA S Bestelnr. Het grote rekenboek - oefenboek - Antwoorden en uitwerkingen K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +()- Telefax +()- info@k-publisher.nl www.k-publisher.nl HGRB-Methode-Antwoorden-M_:Opmaak

Nadere informatie

Jaaroverzicht Kompas zesde leerjaar

Jaaroverzicht Kompas zesde leerjaar Week 1 WB 6A 3 Jaaroverzicht Kompas zesde leerjaar Getallenkennis Bewerkingen Meten en Les 1 Getalbegrip tot 10 000 000 Week 2 Les 1 Kommagetallen tot op Week 3 Les 1 Breuken vergelijken en ordenen Soorten

Nadere informatie

Groep 6. Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Don Boscoschool groep 6 juf Kitty

Groep 6. Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Don Boscoschool groep 6 juf Kitty Groep 6 Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Getalbegrip Ging het in groep 5 om de hele getallen tot 1000, nu wordt de getallenwereld uitgebreid. Naast

Nadere informatie

JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10

JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10 JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10 Op basis van 5 wiskundelessen per week Week 44: herfstvakantie Week 52 en 1: Kerstvakantie Week 10: krokusverlof Week 15 en 16: Paasvakantie

Nadere informatie

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar Vraag 1: (pg 64 oefening 2 - Basisboek LVS wiskunde toetsen 2) Het verschil tussen

Nadere informatie

Inhoud 1 Info coach Breuken exploreren met levensecht materiaal Zelf breuken tekenen... 11

Inhoud 1 Info coach Breuken exploreren met levensecht materiaal Zelf breuken tekenen... 11 Inhoud Info coach... Breuken exploreren met levensecht materiaal... 7. Exploreer in doe-activiteiten... 7. Hoe goedkoop is gratis... Zelf breuken tekenen.... Breuken die starten met de helft.... Breuken

Nadere informatie

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam:

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam: Datum: Klas: Nr: Naam: Score G1 /5 /5 Opgave 1 G2 / / Opgave 2 G3 /10 /10 Opgave 3 G4 /5 /5 Opgave 4 G5 /4 /4 Opgave 5 G6 /5 /5 G7 /5 /5 G8 /10 /10 G9 /10 /10 G10 /7 /7 G11 /10 /10 Totaal Zelfevaluatie

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie