2.1 Kennismaken met breuken Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?"

Transcriptie

1 Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? deel deel deel deel Opdracht Welk deel van deze rechthoek is zwart ingekleurd? deel deel deel deel ThiemeMeulenhoff, mersfoort, 0

2 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht Welk deel vormt driehoek van het totale vierkant? deel deel deel deel Opdracht Neem gelijke blaadjes papier (vierkant of rechthoekig). Vouw blaadje in gelijke delen, blaadje in gelijke delen, blaadje in gelijke delen, en ten slotte blaadje in gelijke delen. Wat valt op? Opdracht Neem een vierkant of rechthoekig blaadje papier. Vouw het blaadje op verschillende manieren in delen. Welke stappen zet je achtereenvolgens? Opdracht it is reep. Teken de hele reep... Eerlijk (ver)delen Opdracht 7 ij welke verdeling krijgt ieder evenveel? lleen bij en. lleen bij en. lleen bij en. ij, en. ThiemeMeulenhoff, mersfoort, 0

3 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht Hoeveel krijgt ieder als je chocoladereep eerlijk verdeelt met personen? driekwart reep een halve reep een derde reep een achtste reep Opdracht an iedere tafel worden de pizza s eerlijk verdeeld. Er zijn tafels waaraan je dezelfde hoeveelheid pizza krijgt. Welke tafels zijn dat? de twee tafels rechts de tafel rechtsboven en de tafel linksonder de twee tafels links de tafel linksboven en de tafel rechtsonder Opdracht 0 an welke tafel krijg je de meeste pannenkoeken? Hoe heb je gerekend? Opdracht Er is liter limonade gemaakt voor een klas van leerlingen. e limonade wordt eerlijk verdeeld. Hoeveel liter limonade krijgt ieder kind? Opdracht Je verdeelt liter limonade over bekers van liter. Hoeveel bekers heb je nodig? Welke opgave heb je nu uitgerekend? ThiemeMeulenhoff, mersfoort, 0

4 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen.. Meten Opdracht Wat is zwaarder? kg of kg? kg of kg? kg of kg? V kg of, kg? Opdracht Welke hoeveelheid is evenveel? liter liter liter 0, liter liter liter liter liter liter 0, liter liter liter liter liter liter V liter liter liter, liter liter Opdracht Welke breuk hoort bij het vraagteken? ThiemeMeulenhoff, mersfoort, 0

5 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen V Opdracht Welke breuken passen bij de maatstrepen a t/m n? Let op: soms kun je voor meer breuken kiezen. Opdracht 7 Welke breuken horen bij de letters a t/m e? Opdracht Wat is langer? 0 strook of strook? strook of 7 strook? strook of strook? V strook of strook? ThiemeMeulenhoff, mersfoort, 0

6 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen.. eel van hoeveelheid Opdracht Je draait 0 met deze tol. Hoeveel keer komt de paperclip op het getal (ongeveer)? 0 keer 00 keer 7 keer 0 keer Opdracht 0 n een pabo- klas zitten studenten. Kies bij elke rekenzin het goede antwoord. studenten komen met het openbaar vervoer. it is deel deel deel studenten zijn rokers. it is deel deel deel Er zitten jongens in deze klas. it is deel deel deel Opdracht k heb al deel van de halve marathon ( km) afgelegd. Hoeveel meter heb ik gelopen? ThiemeMeulenhoff, mersfoort, 0

7 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht ls het hele vierkant 00 waard is, hoeveel euro is deel dan waard? Opdracht Hoeveel is kwart van? Opdracht Nederland heeft ongeveer 7 miljoen inwoners. Ongeveer deel van de inwoners belt mobiel. Hoeveel Nederlanders bellen mobiel? Tijdens de training moet je minuten hardlopen. Je bent op. Hoe lang moet je nog hardlopen?. Gelijkwaardigheid.. Gelijkwaardige breuken Opdracht Waar of niet waar? is gelijk aan. Waar. Niet waar. is gelijk aan. Waar. Niet waar. is gelijk aan. Waar. Niet waar. V is gelijk aan. Waar. Niet waar. V is gelijk aan. Waar. Niet waar. ThiemeMeulenhoff, mersfoort, 0 7

8 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht Los het raadsel op. Om welke breuk gaat het? e noemer is en de breuk is even groot als 0. Opdracht 7 Welke breuken zijn gelijkwaardig? V 0 0 Opdracht Vereenvoudigen. Geef van de volgende breuken een gelijkwaardige breuk met de kleinst mogelijke getallen. 0 V 0 ThiemeMeulenhoff, mersfoort, 0

9 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht Vergelijk. Welke stukken zijn even groot als? Welke stukken zijn nog meer even groot? Opdracht 0 edenk breuken die gelijkwaardig zijn aan. edenk breuken die gelijkwaardig zijn aan. edenk breuken die gelijkwaardig zijn aan 0,7... Vergelijken en ordenen Opdracht Waar of niet waar? 7 is groter dan 0,. Waar. Niet waar. <. Waar. Niet waar. Opdracht Welk gewicht ligt het dichtst bij het gewicht van het stuk kaas? kg kg kg kg ThiemeMeulenhoff, mersfoort, 0

10 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht n welke reeks staan de breuken van klein naar groot? Opdracht Uit hoeveel blokjes moet een reep minimaal bestaan als je vijfden en vierden met elkaar wilt vergelijken? Uit hoeveel blokjes moet een reep minimaal bestaan als je vierden en zesden met elkaar wilt vergelijken? Opdracht Zet de breuken op de goede plaats. Teken bij iedere vraag een lijn van cm. Zet aan het begin 0 en aan het eind. Opdracht Zet op volgorde van klein naar groot en licht je antwoord duidelijk toe Op de getallenlijn Opdracht 7 Welk van de breuken ligt het dichtst bij 0? Opdracht Welke breuk kun je bij het vraagteken plaatsen? ThiemeMeulenhoff, mersfoort, 0 0

11 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen E Opdracht Welke kleinste breuk kun je bij het vraagteken plaatsen? Opdracht 0 Welke breuken horen bij de letters a t/m f? Opdracht Kies het goede antwoord. Welke breuk ligt het dichtst bij 0? ThiemeMeulenhoff, mersfoort, 0

12 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Welke breuk ligt het dichtst bij? Welke breuk ligt het dichtst bij? Opdracht Noem een breuk die tussen en ligt.. Kommagetallen.. Geld Opdracht Hoe vaak past 0,0 in? Hoe vaak past 0,0 in? Hoe vaak past 0,0 in 0? Opdracht Hoeveel geld is het samen? munten van 0 eurocent euro en 0 cent euro en cent euro 0 euro en 0 cent munten van 0 eurocent euro en 0 cent euro en 0 cent euro en cent euro en 0 cent E euro F euro euro en munten van eurocent,0,0,0,0 V 0 munten van 0 eurocent, munten van eurocent en munten van eurocent,,,, ThiemeMeulenhoff, mersfoort, 0

13 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht Welk getal is kleiner? 0,0 0,0,,0,,7 V,,0 Opdracht Welk bedrag is het? Schrijf de bedragen met een -teken en een komma. munten van 0 eurocent meer dan, munten van eurocent meer dan, munten van euro minder dan, V munten van 0 eurocent minder dan, Opdracht 7 Schrijf in cijfers. vier tienden achtennegentig honderdsten drie tienden en twee honderdsten V zeven duizendsten V vijf en negenenveertig duizendsten Opdracht Welke benzine is duurder?,0 per liter, per liter,7 per liter,7 per liter,70 per liter,7 per liter?.. Meten Opdracht Zet in volgorde van klein naar groot. 0, kg 0,0 kg 0,0 kg,0 kg 0, kg 0,7 kg 0, kg 0,0 kg 0,0 m 0, m 0, m 0, m V,0 km,0 km, km,0 km ThiemeMeulenhoff, mersfoort, 0

14 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht 0 Hoe spreek je het getal,0 uit? achthonderdvijfendertig duizendsten acht en vijfendertig honderdsten acht en vijfendertig duizendsten acht en vijfendertig tienduizendsten Opdracht Welk kommagetal ligt het dichtst bij het gewicht van het stuk kaas? 0, 0,7 Opdracht Welke betekenis kun je geven aan de volgende kommagetallen?,,0,0 V, V,0 Opdracht Hoeveel is de waard in de volgende getallen?,,, V,0 V,0 Opdracht Zoek getallen die samen meter zijn. Let op: er zijn meer mogelijkheden. 0, m centimeter 0, m 0, meter centimeter 0, meter, centimeter, dm ThiemeMeulenhoff, mersfoort, 0

15 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen.. Op de getallenlijn Opdracht Welk kommagetal hoort bij het vraagteken? Opdracht Welk kommagetal hoort bij het vraagteken? Opdracht 7 Welk kommagetal hoort bij het vraagteken? Opdracht Zet de volgende kommagetallen op een getallenlijn. 0, 0, 0, 0, 0, Opdracht Zet de volgende getallen op een getallenlijn.,,, Opdracht 0,0,,,, Welk van deze getallen ligt op een getallenlijn het dichtst bij? Welk van deze getallen ligt op een getallenlijn het verst van?. fronden en afbreken Opdracht Waar of niet waar? 0,7 afgerond op tienden is 0,7. Waar. Niet waar. 0,7 afgerond op duizendsten nauwkeurig kun je niet weten. Waar. Niet waar. 0,7 afgerond op een geheel getal is 0. Waar. Niet waar. ThiemeMeulenhoff, mersfoort, 0

16 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen V 0,7 afgerond op honderdsten nauwkeurig is 0, Waar. Niet waar. Opdracht 7, afgerond op honderdsten geeft: 7,0 7, 7, 7, Opdracht eze vraag gaat over het verschil tussen afbreken en afronden van het kommagetal,7. Welke bewering is juist?,7 afbreken op honderdsten geeft,.,7 afronden op honderdsten geeft,.,7 afbreken op honderdsten geeft,.,7 afronden op honderdsten geeft,. Opdracht emand rondt een getal af op honderdsten nauwkeurig. e uitkomst is,0. Welk getal kan het oorspronkelijk geweest zijn? Opdracht Rond het getal, af op een heel getal. Opdracht Rond dit kommagetal op drie manieren af. Op een heel getal. Op decimaal nauwkeurig. Op decimalen nauwkeurig ThiemeMeulenhoff, mersfoort, 0

17 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. reuken en kommagetallen omzetten.. Kommagetallen omzetten in breuken Opdracht 7 Wat is de bijbehorende breuk? 0, , 0 0, 0 0 V 0, 0 0 Opdracht Een repeterende breuk is een breuk die achter de komma steeds dezelfde rij cijfers krijgt. Welke breuk hoort bij het kommagetal 0,? Opdracht Welke breuk hoort bij 0,7? ThiemeMeulenhoff, mersfoort, 0 7

18 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht 70 Welke kleinst mogelijke breuk hoort bij 0,? Opdracht 7 Zet de kommagetallen uit je hoofd om in een breuk. oe deze opdracht binnen minuut. 0, V 0, 0,7 V 0, 0, V 0,0 V 0,7 V, Opdracht 7 Welk getal is kleiner? 0, 0, 0,7.. reuken omzetten in kommagetallen Opdracht 7 e volgende breuken zijn allemaal repeterende breuken. Welke van de beweringen is niet waar? = 0, = 0,000 = 0,77 7 = 0,77 Opdracht 7 Welke van deze breuken is een repeterende breuk? 0 Opdracht 7 Er zijn handige breuken die je paraat moet hebben. Zoek de bijbehorende kommagetallen. 0, 0, 0,0 0, E 0,0 F 0, ThiemeMeulenhoff, mersfoort, 0

19 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen 0, 0, 0,0 0, E 0,0 F 0, 0, 0, 0,0 0, E 0,0 F 0, V 0 0, 0, 0,0 0, E 0,0 F 0, V 0, 0, 0,0 0, E 0,0 F 0, V 0 0, 0, 0,0 0, E 0,0 F 0, Opdracht 7 Zet de volgende breuken om in kommagetallen. 00 V 0 ThiemeMeulenhoff, mersfoort, 0

20 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht 77 Zet de breuken met de rekenmachine om in kommagetallen. 7 7 Opdracht 7 Vul bij a en b de juiste breuk in.. Rekenen met breuken.. Optellen en aftrekken Opdracht 7 Een van de volgende opgaven met breuken heeft niet als antwoord. Welke? Opdracht 0 Kies het goede antwoord. = = 7 = 7 ThiemeMeulenhoff, mersfoort, 0 0

21 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen V = 7 Opdracht Welke van de volgende getallen zijn samen? 0, 0, 00 0, 0,0 0, 0, 0, 0, 00 0, 00 Opdracht Vul het juiste teken in: < of > of = V + V + Opdracht ls je de breuken in het tovervierkant bij elkaar optelt, moet er horizontaal, verticaal en diagonaal 7 uitkomen. Vul het vierkant helemaal in. Opdracht Vul het schema verder in. edenk drie verschillende manieren om dit te doen. + = = = = ThiemeMeulenhoff, mersfoort, 0

22 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen.. Vermenigvuldigen Opdracht Kies het goede antwoord. = 0 = 0 = 0 V = 0 Opdracht ereken de goede antwoorden. = = = ThiemeMeulenhoff, mersfoort, 0

23 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht 7 Geef voor de volgende opgaven de bijbehorende oplossingsstrategie, met het goede antwoord. 7 = 7 + = + = = 0 + = = 7 + = + = = 0 + = = 7 + = + = = 0 + = V = 7 + = + = = 0 + = Opdracht edenk bij iedere situatie een passende opgave, met het juiste antwoord. n een kratje Fanta passen flesjes. Je hebt nog de helft van een half kratje. n een kratje kunnen flesjes. Het kratje is voor deel vol. Hoeveel flesjes zitten er nog in het kratje? Een maand heeft 0 dagen. deel van de maand is vakantie. Hoeveel dagen vakantie heb je? edenk bij iedere opgave een passende situatie. V = V 7 = V = Opdracht edenk bij elke opgave een passende strategie om de opgave uit te rekenen. Reken de opgaven vervolgens uit. = 7 = = V = ThiemeMeulenhoff, mersfoort, 0

24 RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen Opdracht 0 Los de raadsels op. ls je mij met vermenigvuldigt, krijg je. Welk getal ben ik? 0 ls je mij met vermenigvuldigt, krijg je. Welk getal ben ik?.. elen Opdracht Met liter limonade kun je volle glazen inschenken. Welke rekenzin hoort bij deze situatie? ereken hoeveel liter elk glas bevat. : = liter 0 : = liter : = liter 0 : = liter Opdracht Hoeveel keer past drie kwartier in uur? keer keer keer keer Opdracht Welke opgave heeft dezelfde uitkomst als : =? : = : = : = : = Opdracht edenk bij iedere opgave een passende situatie. : = : = : = Opdracht Reken uit. : = : = : = V : = Opdracht Los de raadsels op. ls je mij deelt door krijg je. Welk getal ben ik? ls je mij deelt door krijg je. Welk getal ben ik? ThiemeMeulenhoff, mersfoort, 0

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? 8

Nadere informatie

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen Uitwerkingen 2. Kennismaken met breuken 2.. Deel van geheel Opdracht B 8 deel. ( deel + 8 deel). Opdracht 2 C 5 deel Opdracht C Driehoek C past in driehoek A. Aangezien driehoek A deel is van de tekening,

Nadere informatie

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen.

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen. Uitwerkingen hoofdstuk Gebroken getallen. Kennismaken met breuken.. Deel van geheel Opdracht. a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel Opdracht 2 blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een heel blaadje.

Nadere informatie

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl Breuken Breuk

Nadere informatie

Kommagetallen. Twee stukjes is

Kommagetallen. Twee stukjes is Kommagetallen Een kommagetal is een getal dat niet heel is. Het is een breuk. Voor de komma staan de helen, achter de komma staat de breuk. De cijfers achter de komma staan voor de tienden, honderdsten,

Nadere informatie

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken breuken breukentaal tekening getal een hele 1 een halve een kwart een achtste ½ of ½ ¼ of ¼ ⅛ of ⅛ 3 breuken breukentaal tekening getal een vijfde ⅕ of ⅕ een tiende

Nadere informatie

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28 Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je

Nadere informatie

Deel A. Breuken vergelijken

Deel A. Breuken vergelijken Deel A Breuken vergelijken - - 0 Breuken en brokken (). Kleur van elke figuur deel. Doe het zo nauwkeurig mogelijk.. Kleur van elke figuur deel. Doe het telkens anders.. Kleur steeds het deel dat is aangegeven.

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker

Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker Programma Breuken PPON Leerlijn Didactiek van bewerkingen Breuken en kommagetallen in het echt Kommagetallen

Nadere informatie

Leerlijnen groep 7 Wereld in Getallen

Leerlijnen groep 7 Wereld in Getallen Leerlijnen groep 7 Wereld in Getallen 1 2 REKENEN Boek 7a: Blok 1 - week 1 in geldcontext 2 x 2,95 = / 4 x 2,95 = Optellen en aftrekken tot 10.000 - ciferend; met 2 of 3 getallen 4232 + 3635 + 745 = 1600

Nadere informatie

Reken zeker: leerlijn breuken

Reken zeker: leerlijn breuken Reken zeker: leerlijn breuken B = breuk H = hele HB = hele plus breuk (1 1/4) Blauwe tekst is theorie uit het leerlingenboek. De breuknotatie in Reken zeker is - anders dan in deze handout - met horizontale

Nadere informatie

Rekentermen en tekens

Rekentermen en tekens Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

TOELICHTING BETEKENIS GEVEN AAN BREUKEN

TOELICHTING BETEKENIS GEVEN AAN BREUKEN TOELICHTING BETEKENIS GEVEN AAN BREUKEN 1 2 3 Rekenvlinder_betekenis_geven_aan_breuken.indd 2 27-06-13 21:57 4 5 6 13226_rv_wb_betekenis_geven_aan_breuken_bw.indd 3 04-07-13 17:26 liter 1 0 Rekenvlinder

Nadere informatie

TOELICHTING REKENEN MET BREUKEN

TOELICHTING REKENEN MET BREUKEN TOELICHTING REKENEN MET BREUKEN 1 2 3 11628_rv_wb_breuken_bw.indd 2 13-11-12 23:2611628_rv_wb_breuken_bw.indd 3 13-11-12 23:27 4 5 6 Rekenvlinder Rekenen met breuken Toelichting Uitgeverij Zwijsen B.V.,

Nadere informatie

Deel C. Breuken. vermenigvuldigen en delen

Deel C. Breuken. vermenigvuldigen en delen Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt

Nadere informatie

TOELICHTING REKENEN MET DECIMALE GETALLEN

TOELICHTING REKENEN MET DECIMALE GETALLEN TOELICHTING REKENEN MET DECIMALE GETALLEN LEERSTAP 1 LEERSTAP 2 LEERSTAP 3 LEERSTAP 4 LEERSTAP 5 LEERSTAP 6 Rekenvlinder Rekenen met decimale getallen Toelichting Uitgeverij Zwijsen B.V., Tilburg www.rekenvlinder.nl

Nadere informatie

TOETS REKENEN / WISKUNDE. Naam:... School:...

TOETS REKENEN / WISKUNDE. Naam:... School:... TOETS REKENEN / WISKUNDE Naam:... School:... Datum:... Groep:... 1A. Hoofdrekenen: optellen en aftrekken Reken de sommen op je eigen manier uit. Gebruik het kladblaadje als je een tussenstap wilt noteren.

Nadere informatie

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken 1 d elen colofon en hal eren Het ik maak DiKiBO de Breukenboekje som makkelijk Voor groep 6, 7 en 8 DiKiBO behandelt op iedere kaart een bepaald soort som en aan de

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10 B M De getallenlijn 0 + = = + = = Nee 0 0 = 9 = 0 6 = = 9 = 6 = 6 = = C a b a b 0 = 0 0 = 0 a b < 0 ; a b < 0 ; a > b ; b > a = = = = C Nee, hij loopt steeds maar verder. < x H x < x < x < x + + = x +

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

Tussendoelen domein VERHOUDINGEN

Tussendoelen domein VERHOUDINGEN Tussendoelen domein VERHOUDINGEN Eind groep 2 Eind groep 3 Eind groep 4 Eind groep 5 beheerst de doelen van groep 2, ook op het niveau van groep 3 en beheerst de doelen van groep 2 en 3, ook op het niveau

Nadere informatie

Leerlijnen groep 8 Wereld in Getallen

Leerlijnen groep 8 Wereld in Getallen Leerlijnen groep 8 Wereld in Getallen 1 2 3 4 REKENEN Boek 8a: Blok 1 - week 1 Oriëntatie - uitspreken en schrijven van getallen rond 1 miljoen - introductie miljard - helen uit een breuk halen 5/4 = -

Nadere informatie

Overstapprogramma 6-7

Overstapprogramma 6-7 Overstapprogramma - Cijferend optellen 9 Verdeel het getal. Het getal 8 kun je verdelen in: duizendtallen honderdtallen tientallen eenheden D H T E 8 D H T E 8 = 8 9 9 9 = = = = Zet de getallen goed onder

Nadere informatie

havo/vwo: vooral breuken en bèta, maar met ruimte voor meer en anders Vincent Jonker Freudenthal Instituut

havo/vwo: vooral breuken en bèta, maar met ruimte voor meer en anders Vincent Jonker Freudenthal Instituut havo/vwo: vooral breuken en bèta, maar met ruimte voor meer en anders Vincent Jonker Freudenthal Instituut 0 PROGRAMMA Programma 1. Even rekenen 2. Breuken in uw vak 3. Breuken, kunnen ze het nog? 4. Breuken

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

Het weetjesschrift. Weetjesschrift Galamaschool

Het weetjesschrift. Weetjesschrift Galamaschool Het weetjesschrift Dit is het weetjesschrift. In dit schrift vind je heel veel weetjes over taal, rekenen en andere onderwerpen. Sommige weetjes zal je misschien al wel kennen en anderen leer je nog! Uiteindelijk

Nadere informatie

Toets gecijferdheid december 2004

Toets gecijferdheid december 2004 Toets gecijferdheid december 2004 Naam: Klas: score: Datum: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de tijd

Nadere informatie

Lesopbouw: instructie. Start. Instructie. Blok 4. Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen

Lesopbouw: instructie. Start. Instructie. Blok 4. Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen Week Blok Bijwerkboek 0 Les Rekenboek Lessen 0 0, 0 0, 0, keer 0, 0,, flesjes 0,, 0, 0 0 plankjes stukjes 0 0 Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen

Nadere informatie

Toets gecijferdheid augustus 2005

Toets gecijferdheid augustus 2005 Toets gecijferdheid augustus 2005 Naam: Klas: score: Datum: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de tijd

Nadere informatie

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar Vraag 1: (pg 64 oefening 2 - Basisboek LVS wiskunde toetsen 2) Het verschil tussen

Nadere informatie

RekenGroen Titel Rekenmodule Onderdeel Breuken Versie 20121907

RekenGroen Titel Rekenmodule Onderdeel Breuken Versie 20121907 RekenGroen Titel Onderdeel Versie Rekenmodule Breuken 202907 2_BREUKEN RECEPTEN Bij veel recepten worden breuken gebruikt om hoeveelheden van de ingrediënten aan te geven. A PPEL- KOMKOMMER SALADE Ingrediënten

Nadere informatie

spiekboek rekenen beter rekenen op de entreetoets van het Cito groep

spiekboek rekenen beter rekenen op de entreetoets van het Cito groep spiekboek rekenen beter rekenen op de entreetoets van het Cito groep 3 COLOFON 3 DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 6 groep 5 & 6 (een uittreksel van DiKiBO

Nadere informatie

2016 W. Danhof / P. Bandstra Bandstra Speciaal Rekenadvies

2016 W. Danhof / P. Bandstra  Bandstra Speciaal Rekenadvies Blad 1: Optellen Optellen Antwoord Tijd Overschr. IT1 Fase 1a M3 A. D. M. H. Voorbeeld: 3 + 5 = Check evt. getalbegrip tot 10 8 + 1 O Gebruik makend van omkering 3 + 5 >> 5 + 3 = 8 2 + 5 O Doortellend

Nadere informatie

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN OPTELLEN/AFTREKKEN Zet de getallen onder elkaar in je schrift eerst zelf proberen uit te rekenen bij aftrekken: denk om lenen bij optellen: denk om doorschuiven geen vergissingen? bij lang nadenken: rekenmachine

Nadere informatie

Antwoorden bij Rekenen met het hoofd

Antwoorden bij Rekenen met het hoofd Antwoorden bij Rekenen met het hoofd Hoofdstuk Basisbewerkingen. Bewerkingen in beeld a. : splitsen in 5 en. Eerst min 5, dan min 0 en tenslotte nog min : splitsen in 5 en, die uitvoeren en dan nog stapsgewijs

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

Opleiding docent rekenen MBO. 28 mei zesde bijeenkomst Groep 4 ROCmn

Opleiding docent rekenen MBO. 28 mei zesde bijeenkomst Groep 4 ROCmn Opleiding docent rekenen MBO 28 mei zesde bijeenkomst Groep 4 ROCmn Inhoud 1. ERWD Ceciel Borghouts 2. PorFolio vragen nav inhoudsopgave 3. Lunch 4. Breuken 5. Onderzoek 6. Vooruitblik afsluitende bijeenkomst

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

BLAD 21: AAN DE OPPERVLAKTE

BLAD 21: AAN DE OPPERVLAKTE BLAD 21: AAN DE OPPERVLAKTE 1. Maak het getal a. In de figuur hiernaast zie je zes getallen staan: één in het rondje, en vijf in de rechthoek. Probeer nu om het getal in de cirkel te 'maken' met de getallen

Nadere informatie

Hoe noemt het deel dat in het vet gedrukt staat? Hoe noemt het deel dat in het vet gedrukt staat? Hoe noemt het deel dat in het vet gedrukt staat?

Hoe noemt het deel dat in het vet gedrukt staat? Hoe noemt het deel dat in het vet gedrukt staat? Hoe noemt het deel dat in het vet gedrukt staat? Hoe noemt het deel dat in het vet gedrukt staat? Hoe noemt het deel dat in het vet gedrukt staat? 2 4 2 4 Hoe noemt het deel dat in het vet gedrukt staat? 2 4 Bij welke breuk is de teller het grootst?

Nadere informatie

Toets gecijferdheid april 2006 versie 1

Toets gecijferdheid april 2006 versie 1 Toets gecijferdheid april 2006 versie 1 Naam: Klas: score: Datum: Studentnummer: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing

Nadere informatie

Uitwerking toets rekenvaardigheid. Opgave 1 a. 7125,98 + 698,99 = Tip: Bij kommagetallen is het eenvoudiger om aan geld te denken.

Uitwerking toets rekenvaardigheid. Opgave 1 a. 7125,98 + 698,99 = Tip: Bij kommagetallen is het eenvoudiger om aan geld te denken. Uitwerking toets rekenvaardigheid Opgave a. 725,98 + 698,99 = Tip: Bij kommagetallen is het eenvoudiger om aan geld te denken. 725,98 + 698,99 = 725,98 + 700,0= 7824,97 Denk eraan ik doe er teveel bij

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam:

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam: Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs recept voor glazen bananenmilkshake bananen, l ijs, l melk,1 l limonadesiroop 1 cl ijs 1 liter Schil de bananen. Snijd ze in grote

Nadere informatie

1 Basisrekenen en letterrekenen.

1 Basisrekenen en letterrekenen. Uitwerkingen versie 0 Basisrekenen en letterrekenen. Opgave. Opbouw van getallen. a 605 6 00 + 5 b 3.78 3 000+ 00+ 7 0+ 8 c 56.890 56 000+ 8 00+ 9 0+ 0 d 900.30 900 000+ 00+ 0+ 0 e 3.56.675 3.000.000+

Nadere informatie

Procenten 75% 33% 10% 50% 40% 25% 50% 100%

Procenten 75% 33% 10% 50% 40% 25% 50% 100% Procenten 50% 75% 25% 100% 10% 40% 50% 33% Uitleg procenten & Hoofdstuk 1A: hele procenten Uitleg : Procent betekent: 1/100 deel Bij procentrekenen werken we met HOEVEELHEDEN Bij een hoeveelheid van iets

Nadere informatie

Hoe maak je nu van breuken procenten? Voorbeeld: Opgave: hoeveel procent van de onderstaande tekening is zwart gekleurd?

Hoe maak je nu van breuken procenten? Voorbeeld: Opgave: hoeveel procent van de onderstaande tekening is zwart gekleurd? Procenten Zoals op de basisschool is aangeleerd kunnen we een taart verdelen in een aantal stukken. Hierbij krijgen we een breuk. We kunnen ditzelfde stuk taart ook aangegeven als een percentage. Procenten:

Nadere informatie

BLAD 16: HAM EN KAAS. b. Bij de maatbeker horen verschillende inhoudsmaten. Hiernaast staan ze op een rij. Schrijf op de stippeltjes wat het betekent.

BLAD 16: HAM EN KAAS. b. Bij de maatbeker horen verschillende inhoudsmaten. Hiernaast staan ze op een rij. Schrijf op de stippeltjes wat het betekent. BLAD 16: HAM EN KAAS 1. Hoeveel is het goedkoper? a. Twee aanbiedingen bij de supermarkt. Hoeveel cent is het goedkoper? 6 witte bolletjes:... 10 scharreleieren:... b. Reken van deze aanbiedingen ook uit

Nadere informatie

Inhoud 1 Info coach Breuken exploreren met levensecht materiaal Zelf breuken tekenen... 11

Inhoud 1 Info coach Breuken exploreren met levensecht materiaal Zelf breuken tekenen... 11 Inhoud Info coach... Breuken exploreren met levensecht materiaal... 7. Exploreer in doe-activiteiten... 7. Hoe goedkoop is gratis... Zelf breuken tekenen.... Breuken die starten met de helft.... Breuken

Nadere informatie

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12 Tytsjerksteradiel Rekenportfolio Naam: cm 2 1 5 7 + = 5 10 10 m 3 1 _ 12 X 5 1 + = 5 1 + Inhoudsopgave Voorwoord 3 Domein getallen 4 - Optellen, aftrekken, vermenigvuldigen en delen 5 - Breuken 6 - Rekenvolgorde

Nadere informatie

SMART-finale 2017 Ronde 1: 5-keuzevragen

SMART-finale 2017 Ronde 1: 5-keuzevragen SMART-finale 2017 Ronde 1: 5-keuzevragen Ronde 1 bestaat uit 16 5-keuzevragen. Bij elke vraag is precies één van de vijf antwoorden juist. Geef op het antwoordformulier duidelijk jouw keuze aan, door per

Nadere informatie

Rekentijger - Groep 6 Tips bij werkboekje A

Rekentijger - Groep 6 Tips bij werkboekje A Rekentijger - Groep 6 Tips bij werkboekje A Puzzelvierkanten Werkblad 1 Vierkant linksboven Zoek eerst uit hoeveel één hartje waard is. Daarna kun je ook berekenen hoeveel een rondje waard is. Vierkant

Nadere informatie

RekenWijzer, oefenopdrachten hoofdstuk 1 Hele getallen. 1.1 Kennismaken met hele getallen. 1.1.1 Betekenis van getallen

RekenWijzer, oefenopdrachten hoofdstuk 1 Hele getallen. 1.1 Kennismaken met hele getallen. 1.1.1 Betekenis van getallen Oefenopdrachten hoofdstuk 1 Hele getallen 1.1 Kennismaken met hele getallen 1.1.1 Betekenis van getallen Opdracht 1 I Hoeveel cijfers telt het getal 1 020 031? A 4 B 7 C 3 D 1 020 031 II Hoeveel getallen

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

Opleiding docent rekenen MBO. Groep 1 1 november 2013 Vijfde bijeenkomst

Opleiding docent rekenen MBO. Groep 1 1 november 2013 Vijfde bijeenkomst Opleiding docent rekenen MBO Groep 1 1 november 2013 Vijfde bijeenkomst Onderdeel van domein getallen BREUKEN Waarom breuken? Moeilijk Kost veel onderwijscjd Nut is onduidelijk Wat wel en niet moet is

Nadere informatie

Overig nieuws Hulp ouders bij rekenen deel 3.

Overig nieuws Hulp ouders bij rekenen deel 3. Overig nieuws Hulp ouders bij rekenen deel 3. Het rekenonderwijs van tegenwoordig ziet er anders uit dan vroeger. Dat komt omdat er nieuwe inzichten zijn over hoe kinderen het beste leren. Vroeger lag

Nadere informatie

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam:

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam: Zwijsen jaargroep 6 naam: reken-wiskundemethode voor het basisonderwijs recept voor 6 glazen bananenmilkshake 2 bananen 0,25 l ijs 0,40 l melk 0,10 l limonadesiroop 100 cl 0 ijs 1 liter 0 Schil de bananen.

Nadere informatie

Kies uit: 10,25 11,5 11,125 10,875 11,875 10,125 10,50 11,001 10,99 11,75

Kies uit: 10,25 11,5 11,125 10,875 11,875 10,125 10,50 11,001 10,99 11,75 Blok les. Hoeveel kilometer is er gefietst? Wat stond er bij vertrek op de teller van Murat?. Zet in volgorde van klein naar groot. a,8 m b 0,7 km c, kg d, g,8 m 7 km kg, g 8 m 7, km 0,0 kg 0, g 0,8 m

Nadere informatie

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2.

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Rekenrijk doelen groep 1 en 2 De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Aantallen kunnen tellen De kinderen kunnen kleine aantallen tellen. De kinderen kunnen eenvoudige

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Toets gecijferdheid april 2006 versie 3

Toets gecijferdheid april 2006 versie 3 Toets gecijferdheid april 2006 versie 3 Naam: Klas: score: Datum: Studentnummer: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing

Nadere informatie

Leerstofoverzicht groep 3

Leerstofoverzicht groep 3 Leerstofoverzicht groep 3 Getallen en relaties Basisbewerkingen Verhoudingen Leerlijn Groep 3 uitspraak, schrijfwijze, kenmerken begrippen evenveel, minder/meer cijfer 1 t/m 10, groepjes aanvullen tot

Nadere informatie

Verhoudingen - Voorbeeldtoets bij 'Handig met getallen, 2', hoofdstuk 1

Verhoudingen - Voorbeeldtoets bij 'Handig met getallen, 2', hoofdstuk 1 Verhoudingen - Voorbeeldtoets bij 'Handig met getallen, 2', hoofdstuk 1 Deze toets bestaat uit 20 opgaven. Voor elke goede oplossing krijg je 2 punten; vanaf 28 punten is de toets voldoende. Je kunt de

Nadere informatie

Naam:... Datum:... 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =.

Naam:... Datum:... 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =. Opvraging Wiskunde W1 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =. 2 Goed lezen en oplossen. Ik koop in de supermarkt een krant (80 cent), een brood

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

DIT IS HET DiKiBO-BOEK VAN

DIT IS HET DiKiBO-BOEK VAN Groep 5 6 & 2 DIT IS HET DiKiBO-BOEK VAN TIP PAS OP 2 HOE? hoi, ik ben DiKiBO samen met mijn vrienden help ik jou bij het leren 3 COLOFON DiKiBO presenteert het complete reken-zakboek voor groep 5 & 6

Nadere informatie

Op stap naar 1 B Minimumdoelen wiskunde

Op stap naar 1 B Minimumdoelen wiskunde Campus Zuid Boomsesteenweg 265 2020 Antwerpen Tel. (03) 216 29 38 Fax (03) 238 78 31 www.vclbdewisselantwerpen.be VCLB De Wissel - Antwerpen Vrij Centrum voor Leerlingenbegeleiding Op stap naar 1 B Minimumdoelen

Nadere informatie

Op aarde wonen ongeveer zeven miljard mensen. 1 miljard = miljard is hetzelfde als

Op aarde wonen ongeveer zeven miljard mensen. 1 miljard = miljard is hetzelfde als Getallen 9 0 2 / Tel steeds verder met 0 000 tot aan 2 00 000. 0 2 00 000 7 2 Wat zijn de onderstreepte cijfers in de getallen waard? Op aarde wonen ongeveer zeven miljard mensen. miljard = 000 000 000.

Nadere informatie

Afspraken hoofdrekenen eerste tot zesde leerjaar

Afspraken hoofdrekenen eerste tot zesde leerjaar 24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is

Nadere informatie

Hoofdstuk 1 : REKENEN

Hoofdstuk 1 : REKENEN 1 / 6 H1 Rekenen Hoofdstuk 1 : REKENEN 1. Wat moet ik leren? (handboek p.3-34) 1.1 Het decimaal stelsel In verband met het decimaal stelsel: a) het grondtal van ons decimaal stelsel geven. b) benamingen

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam:

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam: Datum: Klas: Nr: Naam: Score G1 /5 /5 Opgave 1 G2 / / Opgave 2 G3 /10 /10 Opgave 3 G4 /5 /5 Opgave 4 G5 /4 /4 Opgave 5 G6 /5 /5 G7 /5 /5 G8 /10 /10 G9 /10 /10 G10 /7 /7 G11 /10 /10 Totaal Zelfevaluatie

Nadere informatie

Leerlijnen rekenen: De wereld in getallen

Leerlijnen rekenen: De wereld in getallen Leerlijnen rekenen: De wereld in getallen Groep 7(eerste helft) Getalbegrip - Telrij tot en met 1 000 000 - Uitspraak en schrijfwijze van de getallen (800 000 en 0,8 miljoen) - De opbouw en positiewaarde

Nadere informatie

Toets gecijferdheid maart 2004

Toets gecijferdheid maart 2004 Toets gecijferdheid maart 2004 Naam: Datum: Klas: score cijfer Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de

Nadere informatie

ZERO KOMMA NUL G.Dekimpe, 2013. Druk dit document af en geef een kopie aan de leerkracht van het vierde en vijfde leerjaar.

ZERO KOMMA NUL G.Dekimpe, 2013. Druk dit document af en geef een kopie aan de leerkracht van het vierde en vijfde leerjaar. ZERO KOMMA NUL G.Dekimpe, 2013 Druk dit document af en geef een kopie aan de leerkracht van het vierde en vijfde leerjaar. Waarom dit nieuw programma? Dit programma werd ontwikkeld op vraag van enkele

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

1. Hoeveel per stuk? a. Hiernaast zie je vier aanbiedingen uit de supermarkt. Hoeveel moet je per stuk ongeveer betalen?...

1. Hoeveel per stuk? a. Hiernaast zie je vier aanbiedingen uit de supermarkt. Hoeveel moet je per stuk ongeveer betalen?... BLAD 26: BREUKEN 1. Hoeveel per stuk? a. Hiernaast zie je vier aanbiedingen uit de supermarkt. Hoeveel moet je per stuk ongeveer betalen?............ b. Neem je rekenmachine en bepaal de precieze prijs

Nadere informatie

A. B. C. D. Opgave 3. In een groot vierkant is een kleiner vierkant getekend. Wat is de oppervlakte van het kleine vierkant? A. B. C. D.

A. B. C. D. Opgave 3. In een groot vierkant is een kleiner vierkant getekend. Wat is de oppervlakte van het kleine vierkant? A. B. C. D. FAJALOBI 2015 Opgave 1 Het getal heet een palindroom. Dat is een getal dat als je het van achter naar voren leest het hetzelfde is als van voor naar achter. Een palindroom begint niet met een nul. Wat

Nadere informatie

kommagetallen en verhoudingen

kommagetallen en verhoudingen DC 8Breuken, procenten, kommagetallen en verhoudingen 1 Inleiding Dit thema gaat over rekenen en rekendidactiek voor het oudere schoolkind en voor het voortgezet onderwijs. Beroepscontext: als onderwijsassistent

Nadere informatie

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg.

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg. Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs! jij rekentrainer Bezoek alle leuke dingen. Teken de weg. Groep blad 1 Hoe komt de hond bij het bot? Teken. Kleur de tegels. Kleur

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

Procenten en breuken, leren en oefenen 90 toetsopgaven met meerkeuze-antwoorden

Procenten en breuken, leren en oefenen 90 toetsopgaven met meerkeuze-antwoorden NL-211 CS Bodegraven Telefax +31(0)172-61 3 96 Honderd procent goed BLOEMLEZING Auteur en uitgever: Inhoud Deel 1 Deel 2 Inleiding Klaas van der Veen Procenten en breuken, leren en oefenen 90 toetsopgaven

Nadere informatie

Handleiding. Reken-wiskundemethode voor het primair onderwijs. Katern 1S en 1F

Handleiding. Reken-wiskundemethode voor het primair onderwijs. Katern 1S en 1F I Handleiding Reken-wiskundemethode voor het primair onderwijs Katern 1S en 1F Handleiding bij de katernen 1F en 1S 1 In 2010 hebben de referentieniveaus een wettelijk kader gekregen. Basisscholen moeten

Nadere informatie

MNEMOTECHNISCHE MIDDELTJES WISKUNDE. 2de 3de graad

MNEMOTECHNISCHE MIDDELTJES WISKUNDE. 2de 3de graad MNEMOTECHNISCHE MIDDELTJES WISKUNDE 2de 3de graad n.a.v. Personeelsvergadering 25/11/2014 Hoofdrekenen DELEN VAN NATUURLIJKE GETALLEN. Voorbeeld: 7800 : 6 = 1000 300 7800 : 6 = (6000 : 6) + (1800 : 6)

Nadere informatie

didactische vaardigheden rekenen ROC Albeda secretarieel & administratief

didactische vaardigheden rekenen ROC Albeda secretarieel & administratief didactische vaardigheden rekenen ROC Albeda secretarieel & administratief bijeenkomst 1 30 november 2011 monica wijers, ceciel borghouts Freudenthal Instituut Programma vervolgcursus Didactische vaardigheid

Nadere informatie

breuken 1.0 Inleiding 1.1 Natuurlijke getallen

breuken 1.0 Inleiding 1.1 Natuurlijke getallen 1 Natuurlijke getallen, breuken 1.0 Inleiding Dit hoofdstuk begint in paragraaf 1.1 met het rekenen met de getallen 0, 1, 2,, enzovoort. Dat heb je op de lagere school ook geleerd, alleen wordt er nu wat

Nadere informatie

Groep 3. Getalbegrip hele getallen. Optellen en aftrekken. Geld

Groep 3. Getalbegrip hele getallen. Optellen en aftrekken. Geld Groep 3 Getalbegrip hele getallen De leerlingen werken de eerste periode in het getallengebied tot 20 en 40. De tweede helft van het jaar ook tot 100. De leerlingen leren het verder- en terugtellen, tellen

Nadere informatie

Hoofdstuk 3 Antwoorden

Hoofdstuk 3 Antwoorden Hoofdstuk 3 Antwoorden In dit hoofdstuk zijn de antwoorden op de opgaven van hoofdstuk tot en met 4 opgenomen. Ze zijn per paragraaf gerangschikt en kort en bondig. Dat betekent dat de antwoorden geen

Nadere informatie