De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar"

Transcriptie

1 De Graankorrel Wervik Mijn wiskundehulpschrift van 1 tot 6 leerjaar

2 We gebruiken de rekenmethode Zo gezegd, zo gerekend! van het eerste tot het zesde leerjaar. Eerste leerjaar blz. 2 Tweede leerjaar blz. 5 Derde leerjaar blz. 10 Breuken blz. 12 Cijferen blz. 16 Vraagstukken blz. 22 Waar vind ik de gepaste hulp? Zie ook leerboek Zo gezegd, zo gerekend! 5/6 inhoud 1

3 Getalbeelden: doos 20 (die Keure) Eerste leerjaar Symbolen < minder dan kleiner dan > meer dan groter dan = evenveel gelijk aan =/= niet evenveel niet gelijk aan 2 = 2 2 is evenveel als = 2 1 plus 1 is 2 Splitsen 5 3 Ik splits 5 of Hoe maak ik 5? In rekenboek We gebruiken de pootjes beentjes 2

4 Optellen /aftrekken over de 10 Eerst: = Ik maak Ik splits + 3 Ik denk Daarna: = 2 3 is 10 met lange weg/ met tussenstappen 8+5= = 17 9 = = 10 Eerste leerjaar 3

5 Kleine en grote broer 17 3 = ik denk aan 7-3 = kleine broer is 7 3 =. dus 17-3 =.. dus 17 3 =. Eerste leerjaar 4

6 Getalbeelden: doos 20 (die Keure) optellen en aftrekken tot 20 Tweede leerjaar 8 het getalbeeld = = 1. Ik maak het kaartje Ik splits/ ik zoek de vriendjes 3. Ik tel op/ ik trek af 15-9 = = 5 4 Noteren: = = 2 5 we maken een zakje van 10 5

7 Optellen en aftrekken tot 100 De eerste term wordt nooit gesplitst: niet bij het optellen, niet bij het aftrekken! We gebruiken de spoorkaart vanuit de methode Zo gezegd, zo gerekend. T= grote stations TE= kleine stations/stationnetjes (of tussenstations) 96-4 = a) Moeten we voorbij een groot station? b) Neen, geen pootjes/beentjes c) We plaatsen TE en E boven de getallen TE E Voorbeeld: 96-4 =... Tweede leerjaar 6

8 96 9 = a) Moeten we voorbij een groot station? b) Ja, we plaatsen de pootjes/beentjes. 90 Voorbeeld: 96 9 = = 90 3 = (we noteren de lange weg/ tussenstappen) 6 3 We keren eerst terug naar groot station 9 bestaat uit 6 en door 6 stationnetjes terug te keren = a) We splitsen de tweede term eerst in T en E. Daarna schrijven we de oefening over met boogje. TE TE Voorbeeld: = = 43-7 = 50 7 Tweede leerjaar 7

9 b) Daarna terug : moeten we voorbij een groot station? Nee? We plaatsen TE en E Ja? We plaatsen pootjes/ beentjes. 40 TE TE Voorbeeld: = = 43-7 = 43 7 = = Tweede leerjaar 8

10 Stipoefeningen 17 = We spreken van een weegschaal. Aan beide zijden moet er evenveel. We maken het gelijkteken groter: Voorbeeld: Of we gaan naar de spiegeloefening Voorbeeld: = 6 Bij twijfel maken we de pijlenvoorstelling en verwoorden we de oefening: mm plus is want min is.. +2 Voorbeeld: mm plus twee is 6 want (omgekeerde pijl) 6 min 2 is Tweede leerjaar 9

11 Derde leerjaar Optellen tot 1000 De pootjes mogen ze erbij zetten. De lange weg/tussenstappen voeren ze uit in het hoofd. Voor sommige leerlingen (sticordi dyscalculie) is het noteren van deze tussenstappen een moet-opdracht = ( )+ 6 = = 30 6 We gaan eerst naar het volgend honderdtal = ( ) + 3 = = = ( ) + 19 = =

12 Aftrekken tot = (87 30) 4 = 57 4 = = (53 20 ) 7 = 33 7 = 20 7 We gaan terug naar het vorig honderdtal = (824 24) 53 = = Derde leerjaar 11

13 Breuken 1/3 lezen we als één van de drie gelijke delen Vanaf derde trimester derde leerjaar gebruiken we ook : één derde. Bij problemen vallen we terug op de langere omschrijving: één van de drie gelijke delen. 1/6 van 12 = 12 : 6 = 2 2 x 5 van 12 = 10 6 : 12

14 3/8 + 2/8 = 5/8 Breuken optellen en aftrekken Om gelijknamige breuken op te tellen, maak je de som van de tellers. De noemer verandert niet 3/8-2/8 = 1/8 Om gelijknamige breuken af te trekken, maak je het verschil van de tellers. De noemer verandert niet 2/6 + 3/8 = 2/6 3/8 = Om ongelijknamige breuken op te tellen/ af te trekken, maak je ze eerst gelijknamig. Daarna maak je de som of het verschil van de tellers. De noemer verandert niet. breuken 13

15 4 x 1/7 = 4/7 3 x 2/9 = 6/9 Breuken en vermenigvuldigen Een breuk vermenigvuldigen met een natuurlijk getal doe je door de teller te vermenigvuldigen met dat getal. De noemer verandert niet. 9/10 : 3 = 3/10 Breuken en delen Een breuk delen door een natuurlijk getal doe je door de teller te delen door het getal. De noemer verandert niet. 2/5 : 3 = 6/15 : 3 = 2/15 De teller (2) is niet deelbaar door de deler (3). De teller (2) is geen veelvoud van de deler (3) Je zoekt een gelijkwaardige breuk voor 2/5, waarvan de teller wel een veelvoud van 3 is. 2/ 5 = 6/15 Nu kunnen we de teller delen door het getal. De noemer verandert niet. breuken 14

16 1 = 100 /100 = 100% breuken procenten kommagetallen breuk kommagetal procent 1/5 4/5 1/4 3/4 0,2 0,8 0,25 0,75 20% 80% 25% 75% 6% van 300 = (300 : 100) x 6 = 18 3 x 6% van 300 = : Als het kan zetten we de procenten om in een eenvoudigere breuk: 25% van 300 = ¼ van 300= breuken 15

17 Cijferen We hanteren de schema s van de methode: zo gezegd, zo gerekend Bij het inoefenen werken we op geruit papier. 1 cijfer per ruitje. Het bewerkingsteken: komt steeds voor de laatste term te staan. Cijferen 16

18 Optelling H T E Regel vrij laten voor onthoudcijfers Bij begin derde leerjaar worden de rangen (HTE) aangeduid. Onthoudcijfers worden steeds genoteerd. Vanaf het zesde leerjaar hangt het af van de mate van automatisering. Iedere leerkracht kijkt wie in zijn klas nood heeft aan het noteren van de onthoudcijfers. Bij sommige leerlingen zijn ze een onmisbare hulp. Zij moeten de onthoudcijfers noteren. 17

19 Cijferen Aftrekking Regel vrij laten voor onthoudcijfers Een stip heeft steeds de waarde van De onthoudcijfers van het ontlenen worden in alle klassen genoteerd. De cijfers waarvan ontleend wordt, worden duidelijk doorstreept. 18

20 Cijferen Vermenigvuldiging a) Vermenigvuldiger is één cijfer x Onthoudcijfers worden steeds genoteerd. Vanaf het zesde leerjaar hangt het af van de mate van automatisering. Iedere leerkracht kijkt wie in zijn klas nood heeft aan het noteren van de onthoudcijfers. Bij sommige leerlingen zijn ze een onmisbare hulp. Zij moeten de onthoudcijfers noteren. 19

21 Cijferen b) Vermenigvuldiger met twee/ drie cijfers x Onthoudcijfers worden steeds genoteerd. Vanaf het zesde leerjaar hangt het af van de mate van automatisering. Iedere leerkracht kijkt wie in zijn klas nood heeft aan het noteren van de onthoudcijfers. Bij sommige leerlingen zijn ze een onmisbare hulp. Zij moeten de onthoudcijfers noteren. Cijferen 20

22 Deling Rest= Rest = 2 We laten de drie dalen. We plaatsen een boogje als we in het deeltal twee of meer cijfers samen nemen. 2 We noteren steeds de rest onder het quotiënt Indien bij de laatste aftrekking 0 van toepassing is, wordt deze wel geschreven en verrekend. Cijferen 21

23 Stappenplan tweede leerjaar: 1. Opdracht lezen. Vraagstukken/ Toepassingen 2. Vraag onderstrepen en vraagwoord omkringen. Voorbeeld: Hoeveel kinderen zitten in de klas van Miet? 3. Vraagstuk navertellen en/of spelen en/of tekenen. 4. Formule noteren, oplossing boven het omkringde vraagwoord schrijven. 26 Voorbeeld: Hoeveel kinderen zitten in de klas van Miet? 5. Antwoordzin schrijven met getal i.p.v. vraagwoord en dezelfde woorden als de vraagzin gebruiken, vraagteken wordt punt. Zin luidop herlezen. Voorbeeld: 26 kinderen zitten in de klas van Miet. 22

24 Stappenplan vanaf derde leerjaar: 1. Ik kijk, ik luister of ik lees aandachtig 2. Wat zal ik zoeken? We onderlijnen (markeren) dit met groen. 3. Wat weet ik al? We onderlijnen (markeren) dit met blauw 23

25 Vraagstukken/toepassingen 4. Hoe los ik het vraagstuk op? 5. Ik controleer of mijn antwoord juist is. 6. Ik zeg of schrijf het antwoord 24

26 Vraagstukken/toepassingen Na stap 1, 3 en 5 kan ik kiezen om het vraagstuk te spelen of te tekenen. 25

27 Vraagstukken/toepassingen 26

28 Kapitaal = bedrag dat je leent of spaart Kapitaal en intrest, sparen en lenen Intrest of rente = de vergoeding die je krijgt voor geld dat je spaart of die je betaalt voor geld dat je leent. Intrestvoet of rentevoet = procent waarmee de intrest of de rente wordt berekend. Sparen: Voor haar verjaardag krijgt Kaat 500 euro cadeau. Ze zet dit geld op haar spaarrekening aan een rentevoet van 4%. Hoeveel rente krijgt Kaat na een jaar? Voor elke 100 euro krijgt je 4 euro intrest X5 X5 Dus voor 500 euro krijg je 20 euro intrest. Vraagstukken/toepassingen 27

29 Lenen: Sahib koopt een nieuwe wagen en leent hiervoor nog 800 euro tegen 6% Hoeveel intrest moet hij na 1 jaar betalen? Voor elke 100 euro betaal je 6 euro intrest X8 X8 Dus voor 800 euro betaal je 48 euro intrest. Vraagstukken/toepassingen 28

Afspraken hoofdrekenen eerste tot zesde leerjaar

Afspraken hoofdrekenen eerste tot zesde leerjaar 24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen Uitsluitend te gebruiken

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

Afspraken cijferen derde tot zesde leerjaar

Afspraken cijferen derde tot zesde leerjaar 6/05/2013 Afspraken cijferen derde tot zesde leerjaar Sint-Ursula-Instituut Delen met natuurlijke getallen In het derde leerjaar werk ik volledig met potlood. Ik maak een verticaal lijstje van de tafelproducten.

Nadere informatie

GETALLEN deel De waarde van een cijfer wordt bepaald door de. We lezen 1 E. .. vijf tientallen

GETALLEN deel De waarde van een cijfer wordt bepaald door de. We lezen 1 E. .. vijf tientallen GETALLEN deel Les 2 : Getallenkennis: getallen tot 00 000. De waarde van de cijfers in een getal: De waarde Je leest Besluit:..................... De waarde van een cijfer wordt bepaald door de in et getal.

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

Blok 1 GB les 2 K1: cijfers 2 en 3 overtrekken en zelf schrijven

Blok 1 GB les 2 K1: cijfers 2 en 3 overtrekken en zelf schrijven Blok GB les 2 K: cijfers 2 en 3 overtrekken en zelf schrijven Cijfers 2 en 3 overtrekken en zelf schrijven 2 3 Start Van richting veranderen Stop Start Van richting veranderen Stop Overtrek de cijfers.

Nadere informatie

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat. 92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,

Nadere informatie

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl Breuken Breuk

Nadere informatie

Blok 4 G/B vraag 1: een kommagetal cijferend delen door een natuurlijk getal < 100

Blok 4 G/B vraag 1: een kommagetal cijferend delen door een natuurlijk getal < 100 Blok 4 G/B vraag 1: een kommagetal cijferend delen door een natuurlijk getal < 100 Een kommagetal cijferend delen door een natuurlijk getal < 100 510,8 : 23 =? Ik schat 500 : 20 = 25 Ik noteer de rekenhulp.

Nadere informatie

WISo. Handleiding breukendoos. www.zwiso.be. Inhoud breukendoos. Gebruik van de breukendoos. Inzicht in breuken

WISo. Handleiding breukendoos. www.zwiso.be. Inhoud breukendoos. Gebruik van de breukendoos. Inzicht in breuken Handleiding breukendoos Inhoud breukendoos De breukendoos bevat: - metalen breukenbord met vermelding van het geheel en de stambreuken van t.e.m. en ruimte voor de kommagetallen- en de procentstrook -

Nadere informatie

Start u met zwiso in verschillende leerjaren tegelijkertijd?

Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Geef dan eventueel aan het begin van het schooljaar enkele lessen uit het voorafgaande

Nadere informatie

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken breuken breukentaal tekening getal een hele 1 een halve een kwart een achtste ½ of ½ ¼ of ¼ ⅛ of ⅛ 3 breuken breukentaal tekening getal een vijfde ⅕ of ⅕ een tiende

Nadere informatie

Het weetjesschrift. Weetjesschrift Galamaschool

Het weetjesschrift. Weetjesschrift Galamaschool Het weetjesschrift Dit is het weetjesschrift. In dit schrift vind je heel veel weetjes over taal, rekenen en andere onderwerpen. Sommige weetjes zal je misschien al wel kennen en anderen leer je nog! Uiteindelijk

Nadere informatie

Resultaten/foutenanalyse Intergemeentelijke toets IGEAN. Hoofdrekenen Juni 2010. Stedelijke basisschool PRINS DRIES

Resultaten/foutenanalyse Intergemeentelijke toets IGEAN. Hoofdrekenen Juni 2010. Stedelijke basisschool PRINS DRIES Resultaten/foutenanalyse Intergemeentelijke toets IGEAN Hoofdrekenen Juni 2010 Stedelijke basisschool 1 Hoofdrekenen juni 2010 Prins Dries PRINS DRIES In deze bundel vind je a) De opdrachten waarbij de

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Reken zeker: leerlijn breuken

Reken zeker: leerlijn breuken Reken zeker: leerlijn breuken B = breuk H = hele HB = hele plus breuk (1 1/4) Blauwe tekst is theorie uit het leerlingenboek. De breuknotatie in Reken zeker is - anders dan in deze handout - met horizontale

Nadere informatie

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28 Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

mei 2009 Auteurs: P.C.M.M. Hosli B.D. De Wilde A.M.P. van de Luitgaarden Rekenvaardigheden: Inleiding bladzijde 1

mei 2009 Auteurs: P.C.M.M. Hosli B.D. De Wilde A.M.P. van de Luitgaarden Rekenvaardigheden: Inleiding bladzijde 1 mei 2009 Auteurs: P.C.M.M. Hosli B.D. De Wilde A.M.P. van de Luitgaarden Rekenvaardigheden: Inleiding bladzijde 1 Inhoud Inleiding met docentenhandleiding Handleiding voor leerlingen Werkbladen en antwoordbladen

Nadere informatie

5 5d o e l e n k a t e r n

5 5d o e l e n k a t e r n Blok Pagina Blok 1 2 tot 10 Blok 2 11 tot 21 Blok 3 22 tot 32 Blok 4 33 tot 40 Blok 5 41 tot 50 Blok 6 51 tot 60 Blok 7 61 tot 68 leerjaar 5 5d o e l e n k a t e r n Voorafgaande toelichting bij doelenkatern,

Nadere informatie

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

Bijlage 11 - Toetsenmateriaal

Bijlage 11 - Toetsenmateriaal Bijlage - Toetsenmateriaal Toets Module In de eerste module worden de getallen behandeld: - Natuurlijke getallen en talstelsels - Gemiddelde - mediaan - Getallenas en assenstelsel - Gehele getallen met

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

Rekentermen en tekens

Rekentermen en tekens Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Op stap naar 1 B Minimumdoelen wiskunde

Op stap naar 1 B Minimumdoelen wiskunde Campus Zuid Boomsesteenweg 265 2020 Antwerpen Tel. (03) 216 29 38 Fax (03) 238 78 31 www.vclbdewisselantwerpen.be VCLB De Wissel - Antwerpen Vrij Centrum voor Leerlingenbegeleiding Op stap naar 1 B Minimumdoelen

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

Kommagetallen. Twee stukjes is

Kommagetallen. Twee stukjes is Kommagetallen Een kommagetal is een getal dat niet heel is. Het is een breuk. Voor de komma staan de helen, achter de komma staat de breuk. De cijfers achter de komma staan voor de tienden, honderdsten,

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen

DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen Wat voorafgaat aan het leren van de staartdeling: De kinderen moeten al vertrouwd zijn met de schrijfwijze van de delingen (hoofdrekenen)

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13

Nadere informatie

Hoofdstuk 3: NEGATIEVE GETALLEN

Hoofdstuk 3: NEGATIEVE GETALLEN 1-6 H3. Negatieve getallen Hoofdstuk 3: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 96 123) 3.1 Positieve en negatieve getallen Het verschil verwoorden tussen positieve en negatieve getallen.

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 100 000 10 Les 2: Natuurlijke getallen kleiner dan 1 000 000

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

Hoofdstuk 9: NEGATIEVE GETALLEN

Hoofdstuk 9: NEGATIEVE GETALLEN 1 H9. Negatieve getallen Hoofdstuk 9: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 53 57) 9.1 Getallen onder 0 Het verschil verwoorden tussen positieve en negatieve getallen. Weten dat we 0 zowel

Nadere informatie

1. Veelvouden en delers. 2. Vereenvoudigen. 3. Gelijknamig maken. 4. Optellen & aftrekken. 5. Vermenigvuldigen

1. Veelvouden en delers. 2. Vereenvoudigen. 3. Gelijknamig maken. 4. Optellen & aftrekken. 5. Vermenigvuldigen Naam: Datum: Leraar:. Veelvoud delers 2. Verevoudig. Gelijknamig mak. Optell & aftrekk. Vermigvuldig 6. Del . Veelvoud delers E veelvoud van e natuurlijk getal is e product van dat getal met 0,, 2,,,,...

Nadere informatie

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen Getallenkennis Target 1 Les 1: getalbegrip to 10 000 000 wb. p. 1+2, sb 1 Les 5: kommagetallen tot 0,001 wb. p. 8-9, sb 5 Les 12: breuken vergelijken en sorteren wb. p. 15-16, sb 10 Les 13: breuk als operator,getal,verhouding,

Nadere informatie

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495.

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495. Bij vermenigvuldigen van twee grote getallen onder elkaar staan de rijen onder de streep elk voor een tussenstap. De eerste rij staat voor het vermenigvuldigen met het cijfer dat de eenheden van het onderste

Nadere informatie

2 NATUURLIJKE GETALLEN VOORSTELLEN IN EEN TABEL, LEZEN EN NOTEREN

2 NATUURLIJKE GETALLEN VOORSTELLEN IN EEN TABEL, LEZEN EN NOTEREN NATUURLIJKE GETALLEN IN DE REALITEIT Natuurlijke getallen zie en hoor je overal om je heen: Het is 0 uur. Tom woont in nummer 58. Mijn zus wordt morgen 6 jaar. Een broek van 0 euro Uitsluitend te gebruiken

Nadere informatie

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken 1 d elen colofon en hal eren Het ik maak DiKiBO de Breukenboekje som makkelijk Voor groep 6, 7 en 8 DiKiBO behandelt op iedere kaart een bepaald soort som en aan de

Nadere informatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deze mappen willen wegwijzers aanreiken om vanuit begrip en respect het beste te halen uit die leerlingen die de basis wiskundeleerstof uit

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

Toetswijzer examen Cool 2.1

Toetswijzer examen Cool 2.1 Toetswijzer examen Cool 2.1 Cool 2.1 1 Getallenkennis: Grote natuurlijke getallen 86 a Ik kan grote getallen vlot lezen en schrijven. 90 b Ik kan getallen afronden. 91 c Ik ken de getalwaarde van een getal.

Nadere informatie

Antwoorden bij Rekenen met het hoofd

Antwoorden bij Rekenen met het hoofd Antwoorden bij Rekenen met het hoofd Hoofdstuk Basisbewerkingen. Bewerkingen in beeld a. : splitsen in 5 en. Eerst min 5, dan min 0 en tenslotte nog min : splitsen in 5 en, die uitvoeren en dan nog stapsgewijs

Nadere informatie

Deel 3 t.e.m. 11 van De Wiskanjers Zorg: Rekenmonsters

Deel 3 t.e.m. 11 van De Wiskanjers Zorg: Rekenmonsters Deel 3 t.e.m. 11 van De Wiskanjers Zorg: Rekenmonsters Het is onze taak als leerkracht om ervoor te zorgen dat we onze kinderen zodanig ondersteunen en begeleiden dat ze voor moeilijke vakonderdelen hun

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

Beste Curriculumdifferentiatie-gebruiker,

Beste Curriculumdifferentiatie-gebruiker, MOTSTRAAT 32 2800 MECHELEN STEF VAN MALDEREN UITGEVER T 05 36 36 7 F 05 36 36 37 STEFVANMALDEREN@PLANTYNCOM Betreft: Curriculumdifferentiatie 5 - Errata Mechelen, 5 februari 202 Beste Curriculumdifferentiatie-gebruiker,

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

Handleiding voor leerkrachten : AMBRASOFT REKENEN~ 1 ~

Handleiding voor leerkrachten : AMBRASOFT REKENEN~ 1 ~ Handleiding voor leerkrachten : AMBRASOFT REKENEN~ 1 ~ Algemeen Elke module start met een begintoets, tenzij deze wordt gedeactiveerd. Een begintoets bestaat uit minstens 10 opdrachten. Na het maken van

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden A Notatie en betekenis - Uitspraak, schrijfwijze en betekenis van, symbolen en relaties - Wiskundetaal gebruiken - de relaties groter/kleiner dan - breuknotatie met horizontale streep - teller, noemer,

Nadere informatie

Jaaroverzicht Kompas zesde leerjaar

Jaaroverzicht Kompas zesde leerjaar Week 1 WB 6A 3 Jaaroverzicht Kompas zesde leerjaar Getallenkennis Bewerkingen Meten en Les 1 Getalbegrip tot 10 000 000 Week 2 Les 1 Kommagetallen tot op Week 3 Les 1 Breuken vergelijken en ordenen Soorten

Nadere informatie

leerjaar doelenkatern

leerjaar doelenkatern Blok Pagina Blok 1 2 tot 10 Blok 2 11 tot 20 Blok 3 21 tot 31 Blok 4 32 tot 40 Blok 5 41 tot 49 Blok 6 50 tot 57 Blok 7 58 tot 65 leerjaar 6 doelenkatern Voorafgaande toelichting bij doelenkatern, leerjaar

Nadere informatie

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken Deel 1 78 & het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken 2 DIT IS HET DiKiBO-BOEK VAN TIP PAS OP 2 HOE? hoi, ik ben DiKiBO samen met mijn vrienden help ik jou bij

Nadere informatie

Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker

Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker Programma Breuken PPON Leerlijn Didactiek van bewerkingen Breuken en kommagetallen in het echt Kommagetallen

Nadere informatie

i TiPDenk aan de rechthoeksstrategie!

i TiPDenk aan de rechthoeksstrategie! .------------ GetaUenkennis Wat leerde ik? Getallen tot een miljard Kommagetallen tot een duizendste - getallen interpreteren Verhoudingen binnen een context Breuken delen door een natuurlijk getal (De

Nadere informatie

Rekenvaardigheden voor klas 3 en 4 VWO

Rekenvaardigheden voor klas 3 en 4 VWO Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

handelingswijzer rekenen

handelingswijzer rekenen handelingswijzer rekenen Naslagwerk Voor leerlingen en ouders HANDELINGSWIJZER REKENEN INHOUD HANDELINGSWIJZER REKENEN... 1 1 INHOUD... 1 HOOFDBEWERKINGEN... 2 OPTELLEN... 3 AFTREKKEN... 3 VERMENIGVULDIGEN...

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

TOELICHTING REKENEN MET BREUKEN

TOELICHTING REKENEN MET BREUKEN TOELICHTING REKENEN MET BREUKEN 1 2 3 11628_rv_wb_breuken_bw.indd 2 13-11-12 23:2611628_rv_wb_breuken_bw.indd 3 13-11-12 23:27 4 5 6 Rekenvlinder Rekenen met breuken Toelichting Uitgeverij Zwijsen B.V.,

Nadere informatie

JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10

JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10 JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10 Op basis van 5 wiskundelessen per week Week 44: herfstvakantie Week 52 en 1: Kerstvakantie Week 10: krokusverlof Week 15 en 16: Paasvakantie

Nadere informatie

breuken 1.0 Inleiding 1.1 Natuurlijke getallen

breuken 1.0 Inleiding 1.1 Natuurlijke getallen 1 Natuurlijke getallen, breuken 1.0 Inleiding Dit hoofdstuk begint in paragraaf 1.1 met het rekenen met de getallen 0, 1, 2,, enzovoort. Dat heb je op de lagere school ook geleerd, alleen wordt er nu wat

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

leerjaar WISo wijsen wiskunde onderwijs leerjaar doelenkatern reken- en wiskundemethode voor het lager onderwijs

leerjaar WISo wijsen wiskunde onderwijs leerjaar doelenkatern reken- en wiskundemethode voor het lager onderwijs leerjaar 1 WISo wijsen wiskunde onderwijs leerjaar 1 doelenkatern reken- en wiskundemethode voor het lager onderwijs Voorafgaande toelichting bij doelenkatern, leerjaar 1 leerjaar 1 Beste leerkracht Voor

Nadere informatie

4 Jaarplan. 1 Leerplan

4 Jaarplan. 1 Leerplan Formule 1_Handleiding.indb 9 1/07/15 13:50 9 4 Jaarplan 1 Leerplan Het jaarplan is opgesteld volgens het leerplan VVKSO BRUSSEL D/2011/7841/021. De nummers van de doelstellingen in het jaarplan verwijzen

Nadere informatie

Voorbereidend Cijferend rekenen Informatie voor ouders van leerlingen in groep 3 t/m 8

Voorbereidend Cijferend rekenen Informatie voor ouders van leerlingen in groep 3 t/m 8 nummer 2 bijgesteld in nov. 2013 Voorbereidend Cijferend rekenen Informatie voor ouders van leerlingen in groep 3 t/m 8 Hoe cijferend rekenen wordt aangeleerd Deze uitgave van t Hinkelpad gaat over het

Nadere informatie

aantal evaluatielessen

aantal evaluatielessen Jaarplanning Rekensprong Plus Rekensprong Plus heeft voor elk leerjaar een eenduidig jaarwerkplan. Elk werkschriftje van Rekensprong Plus overspant een periode tussen twee schoolvakanties werkschrift a

Nadere informatie

Spiekboekje. Knowledgebridge Onderwijs Hein v.d. Velden

Spiekboekje. Knowledgebridge Onderwijs Hein v.d. Velden Spiekboekje Knowledgebridge Onderwijs Hein v.d. Velden 1 rekenen tot 20 verliefde getallen verliefde getallen zijn samen 10 1+9= 2+8= 3+7= 10 4+6= 5+5= 0+10= 2 getallenlijn 20 + plus 7 + 6= 7 + 3 = 10

Nadere informatie

Groep 6. Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Don Boscoschool groep 6 juf Kitty

Groep 6. Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Don Boscoschool groep 6 juf Kitty Groep 6 Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Getalbegrip Ging het in groep 5 om de hele getallen tot 1000, nu wordt de getallenwereld uitgebreid. Naast

Nadere informatie

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2 Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Joep van Vugt Anneke Wösten Handig optellen; tribunesom* Bij optellen van bijna ronde getallen zoals 39, 198, 2993,..

Nadere informatie

LEERLIJNEN VIERDE LEERJAAR

LEERLIJNEN VIERDE LEERJAAR LEERLIJNEN VIERDE LEERJAAR Uitwerking van de leerlijnen in het vierde leerjaar Inleiding Leerlijnen geven een mogelijk verloop van een ontwikkelingsproces aan. Een leerlijn beschrijft wat er geleerd wordt.

Nadere informatie

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar Vraag 1: (pg 64 oefening 2 - Basisboek LVS wiskunde toetsen 2) Het verschil tussen

Nadere informatie

oefenbundel voor het zesde leerjaar

oefenbundel voor het zesde leerjaar oefbundel voor het zesde leerjaar leerinhoud aard bron deelbaarheid door 3 9 kommagetall vermigvuldig vermigvuldig del met natuurlijke getall kommagetall oppervlakte berek oppervlakte / vlakke figur omstructurer

Nadere informatie

oefenbundel voor het vierde leerjaar

oefenbundel voor het vierde leerjaar oefenbundel voor het vierde leerjaar leerinhoud aard bron gelijkwaardige breuken breuken gelijkwaardig maken, vergelijken, ordenen cijferen: optellen en aftrekken tijdsduur (digitale klok) vierkant, rechthoek,

Nadere informatie

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN OPTELLEN/AFTREKKEN Zet de getallen onder elkaar in je schrift eerst zelf proberen uit te rekenen bij aftrekken: denk om lenen bij optellen: denk om doorschuiven geen vergissingen? bij lang nadenken: rekenmachine

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

BEWERKINGEN. B0 Doelstellingen

BEWERKINGEN. B0 Doelstellingen BEWERKINGEN B0 Doelstellingen Deze doelstellingen zijn bedoeld voor de studenten kleuteronderwijs Arteveldehogeschool. Ze geven een beeld van wat verwacht wordt voor het examen. Toch is het ook voor anderen

Nadere informatie

Aanbod rekenstof augustus t/m februari. Groep 3

Aanbod rekenstof augustus t/m februari. Groep 3 Aanbod rekenstof augustus t/m februari Groep 3 Blok 1 Oriëntatie: tellen van hoeveelheden tot 10, introductie van de getallenlijn tot en met 10, tellen en terugtellen t/m 20, koppelen van getallen aan

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

leerjaar doelenkatern

leerjaar doelenkatern Blok Pagina Blok 1 2 tot Blok 2 9 tot 18 Blok 3 19 tot 28 Blok 4 29 tot 37 Blok 5 38 tot 47 Blok 6 48 tot 59 Blok 7 60 tot 68 8 leerjaar 4 doelenkatern Voorafgaande toelichting bij doelenkatern, leerjaar

Nadere informatie

2 NATUURLIJKE GETALLEN VOORSTELLEN IN EEN TABEL, LEZEN EN NOTEREN

2 NATUURLIJKE GETALLEN VOORSTELLEN IN EEN TABEL, LEZEN EN NOTEREN NATUURLIJKE GETALLEN IN DE REALITEIT Natuurlijke getallen zie en hoor je overal om je heen: Het is 0 uur. Tom woont in nummer 8. Mijn zus wordt morgen 6 jaar. Een broek van 0 euro Uitsluitend te gebruiken

Nadere informatie

oefenbundel voor het eerste leerjaar

oefenbundel voor het eerste leerjaar oefenbundel voor het eerste leerjaar leerinhoud aard bron getallen tot ordenen optellen en aftrekken tot optellen en aftrekken tot optellen en aftrekken tot optellen en aftrekken tot automatiseren Rekensprong

Nadere informatie

Inhoud kaartenbak groep 8

Inhoud kaartenbak groep 8 Inhoud kaartenbak groep 8 1 Getalbegrip 1.1 Ligging van getallen tussen duizendvouden 1.2 Plaatsen van getallen op de getallenlijn 1.3 Telrij t/m 100 000 1.4 Telrij t/m 100 000 1.5 Getallen splitsen en

Nadere informatie

Deel C. Breuken. vermenigvuldigen en delen

Deel C. Breuken. vermenigvuldigen en delen Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt

Nadere informatie

Meting. Werkbladen, antwoorden, scoring, interpretatie

Meting. Werkbladen, antwoorden, scoring, interpretatie Werkbladen, antwoorden, scoring, interpretatie Dit is versie 2.0 van de methode Reken Remedie en is met de grootste zorgvuldigheid samengesteld. Mochten er onverhoopt fouten in voor komen, zou u zo vriendelijk

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2 Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30

Nadere informatie

HMd TMd Md HM TM M HD TD D H T E, t h d. 84 (optelling) : 4 (het aantal getallen) (het gemiddelde)

HMd TMd Md HM TM M HD TD D H T E, t h d. 84 (optelling) : 4 (het aantal getallen) (het gemiddelde) POSITIETABEL HMd TMd Md HM TM M HD TD D H T E, t h d GEMIDDELDE Tel alle getallen bij elkaar op en deel het totaal door het aantal getallen. Bv. 4 + 0 + + 4 4 (optelling) : 4 (het aantal getallen) (het

Nadere informatie

GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben.

GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben. Leerroute 3 Jaargroep: 8 GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben. Je bewust zijn dat getallen verschillende betekenissen kunnen hebben. (hoeveelheidsgetal,

Nadere informatie