RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen

Maat: px
Weergave met pagina beginnen:

Download "RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen"

Transcriptie

1 Uitwerkingen 2. Kennismaken met breuken 2.. Deel van geheel Opdracht B 8 deel. ( deel + 8 deel). Opdracht 2 C 5 deel Opdracht C Driehoek C past in driehoek A. Aangezien driehoek A deel is van de tekening, is driehoek C deel. Opdracht Een blaadje in 2 delen vouwen is de helft van een heel blaadje. Een blaadje in vieren, is het vorige blaadje weer dubbel vouwen. Het blaadje in 8 gelijke delen is blaadje 2 weer dubbel vouwen. Een blaadje in gelijke stukken is lastiger vouwen. Een beetje mikken Of zijde opmeten en die in gelijke stukken verdelen. Nu kun je wel gericht vouwen. ThiemeMeulenhoff, Amersfoort, 202

2 Opdracht 5 Waarschijnlijk pas je een van de volgende aanpakken toe: je deelt het blad eerst in tweeën en daarna elke helft in drieën; je deelt het blad eerst in drieën en daarna in tweeën. Zo zie je dat bestaat uit deel van 2 blaadje, respectievelijk 2 deel van blaadje. Opdracht Een reep van 5 het stukje dat gegeven is Eerlijk (ver)delen Opdracht 7 D Bij A, B en C. Ieder krijgt deel (denk bijvoorbeeld aan pannenkoeken die je eerlijk moet verdelen met kinderen). Opdracht 8 A Van de eerste repen kan ieder de helft krijgen. Dan blijft er 2 reep over. Die is ook eenvoudig over personen te verdelen door ieder nog reep te geven. Iedere persoon krijgt dus reep, oftewel driekwart reep. Opdracht 9 A De 2 tafels rechts. Ieder krijgt daar 2 pizza. ThiemeMeulenhoff, Amersfoort, 202 2

3 Opdracht 0 I Aan tafel krijg je de meeste pannenkoeken. II Aan tafel verdeel je pannenkoeken met z n vieren. Ieder krijgt deel. Aan tafel 2 verdeel je pannenkoeken met z n vijven. Ieder krijgt 5 deel. Aan tafel verdeel je 5 pannenkoeken met z n zessen. Ieder krijgt 5 deel. Maar wat is nu het meest? Als je het stuk pannenkoek dat je krijgt vergelijkt met een hele pannenkoek, mis je aan tafel deel van een hele pannenkoek. Aan tafel 2 mis je deel van een 5 hele pannenkoek en aan tafel mis je deel van een hele pannenkoek. Dit laatste is minder dan bij de andere 2 tafels. Bij tafel mis je het kleinste deel van een hele pannenkoek, dus daar krijg je het meest. 5 deel is dus meer dan deel en meer dan deel. 5 Opdracht Ieder kind krijgt liter limonade. Je kunt dit op verschillende manieren berekenen: Je kunt de hoeveelheid limonade zien als 9 liter. Dan is er dus per 2 kinderen 2 2 liter limonade te verdelen. Ook kun je eerst liter limonade over kinderen verdelen: dan krijgt ieder liter. Ook dan zie je dat voor de 2 overige kinderen 2 liter overblijft. Ten slotte kun je uitgaan van de verhouding 9 liter voor kinderen, die immers gelijk is aan liter voor 8 kinderen. Uit 9 liter voor kinderen volgt vervolgens 2 liter per kind. Opdracht 2 I 8 bekers II : = Meten Opdracht I 2 III 5 II IV kg 2 Opdracht I A 2 liter III C 2 liter II B 8 liter IV B liter Opdracht 5 I 2 III 2 II IV m (dit is hetzelfde als m of 2 m) 2 Opdracht a liter f 2 of liter k 7 liter b liter of liter g liter l 8 of liter c liter h of 2 liter m 9 liter d liter i of 0 2 liter n liter e liter j of liter ThiemeMeulenhoff, Amersfoort, 202

4 Opdracht 7 a 2 2 meter b meter c 5 5 meter d 2 meter e 7 meter Opdracht 8 I III 7 II 8 IV 5 strook 2.. Deel van hoeveelheid Opdracht 9 C 75 keer. Ongeveer de helft van de 50 draaien. Opdracht 20 I A deel III C deel II B 2 deel Opdracht meter Opdracht 22 Figuur D is 8 Opdracht 2 = 200 deel van de hele figuur. Dus figuur D is = 25 waard. 8 Opdracht 2 I deel van 7 miljoen is, miljoen (want deel van 5 miljoen deel van 2 miljoen). Dan is deel van 7 miljoen gelijk aan miljoen en nog 0, miljoen. Samen 2 miljoen en nog 5, miljoen =, miljoen. II deel al gelopen betekent dat je nog deel te gaan hebt. deel van 5 minuten is minuut, ofwel minuut en 5 seconden. 2.2 Gelijkwaardigheid 2.2. Gelijkwaardige breuken Opdracht 25 I B Niet waar. IV A Waar. II A Waar. V B Niet waar. III A Waar. Opdracht 2 B 5 ThiemeMeulenhoff, Amersfoort, 202

5 Opdracht 27 I B III A 0 of (allebei goed) 2 0 II C IV D 0 of (allebei goed) 9 0 Opdracht 28 I III 5 II Opdracht 29 I, 2 en zijn even groot II en zijn even groot; en 9 zijn even groot. 2 IV 5 Opdracht 0 I Bijvoorbeeld: 2 5 enzovoort II Bijvoorbeeld: (let op: de hele blijft dus gewoon staan). III 0,75 is hetzelfde als Vergelijken en ordenen. Gelijkwaardige breuken zijn dan 2 20 en 2, maar bijvoorbeeld ook. 20 Opdracht I A Waar. 7 = 0,2857 ; dat is dus groter dan 0,. II A Waar. Een mogelijke oplossing is om gelijkwaardige breuken te zoeken: 2 = 8 en = Ook kun je beide breuken omzetten in kommagetallen. Opdracht 2 D kg. 5 5 kg = 0, kg. Opdracht B 2 5. Een mogelijke oplossing is om gelijkwaardige breuken te zoeken. Bijvoorbeeld: = 20, 2 = 0, = en = Ook kun je alle breuken omzetten in kommagetallen. Opdracht I 20 blokjes. 20 is namelijk het kleinste gemene veelvoud van en 5. II 2 blokjes. 2 is namelijk het kleinste gemene veelvoud van en. Opdracht 5 I II III Soms staan er op dezelfde plaats dus verschillende breuken. Die breuken zijn gelijkwaardig. ThiemeMeulenhoff, Amersfoort, 202 5

6 Opdracht = 2, 2 = en 5 = 20. Daarmee hebben we de volgorde van de eerste breuken onderling bepaald. Van klein naar groot: Nu is de vraag, waar in dit rijtje komt. 8 0 Aangezien 7 = 2, 2 = 20 en 5 = 25 kunnen we de volgorde als volgt bepalen: Op de getallenlijn Opdracht 7 D Opdracht 8 9 I B. 9 is gelijk aan II A 9 III C. 0 0 is gelijk aan en is gelijk aan Opdracht = 8 ; = Hier past nog niets tussen. 8 2 = 2 ; 9 Opdracht 0 a d b e 8 2 c 2 f 9 2 = Opdracht I B III B 2 II B 7. Hier past 2 precies tussen. is kleiner dan, dus ligt dichter bij het vorige hele getal op de getallenlijn. Opdracht 2 Een breuk tussen en 5, dus tussen en. Daar ligt bijvoorbeeld 9 5 tussen, of 0. Maar ook en Kommagetallen 2.. Geld Opdracht I 0 keer III 00 keer II 00 keer Opdracht I A 2 euro en 90 cent III B,08 II D 2 euro en 80 cent IV D,2 ThiemeMeulenhoff, Amersfoort, 202

7 Opdracht 5 Tip: maak overal geldbedragen van, dan kun je de getallen makkelijker met elkaar vergelijken. I B 0,0 III A,28 II B,0 IV B,05 Opdracht I,09 III,9 II 2,02 IV,59 Opdracht 7 I 0, IV 0,007 II 0,98 V 5,09 III 0,2 Opdracht 8 I B,8 per liter III A,70 per liter II A,79 per liter 2..2 Meten Opdracht 9 I 0,0 kg 0, kg 0,0 kg,0 kg II 0,2 kg 0,7 kg 0,0 kg 0,9 kg III 0,08 m 0,98 m 0,8 m 0,8 m IV,05 km 9,0 km 9,29 km 9,0 km Opdracht 50 C acht en vijfendertig duizendsten Opdracht 5 B 0,75 ligt er net iets dichter bij. Opdracht 52 Bijvoorbeeld: I meter en 95 centimeter IV meter en 2 decimeter II kilometer en 95 meter V meter en 2 centimeter III meter en 20 centimeter Opdracht 5 I negen IV negen honderdsten II negen honderdsten V negen duizendsten III negen tienden Opdracht 5 0,95 meter en 5 centimeter 0,5 m, 0,25 m en 25 centimeter 0,5 m, 5 centimeter en 0,5 meter 0,5 m, 5 centimeter en,5 dm 0,25 m, 25 centimeter, 5 centimeter en 0,5 meter 0,25 m, 25 centimeter, 5 centimeter en,5 dm ThiemeMeulenhoff, Amersfoort, 202 7

8 2.. Op de getallenlijn Opdracht 55 7, Opdracht 5 0,75 Opdracht 57,5 m Opdracht 58 Opdracht 59 Opdracht 0 I,0 II, 2. Afronden en afbreken Opdracht I B Niet waar. 0,75 afgerond op tienden is 0,8. II A Waar. Je weet immers niet wat het vierde cijfer achter de komma is. III B Niet waar. 0,75 afgerond op een geheel getal is. IV B Niet waar. 0,75 afgerond op honderdsten nauwkeurig is 0,75. Opdracht 2 D 75,9 Opdracht A 2,78 afbreken op honderdsten geeft 2,. B is niet juist: je hebt verkeerd afgerond. C is niet juist: je hebt afgerond. D is niet juist, want je hebt verkeerd afgerond. Opdracht Het oorspronkelijke getal kan liggen tussen 2,005 en 2,0. Opdracht 5 5 Opdracht I kg II 0, kg III 0, kg ThiemeMeulenhoff, Amersfoort, 202 8

9 2.5 Breuken en kommagetallen omzetten 2.5. Kommagetallen omzetten in breuken Opdracht 7 I D III A 50 0 II C IV B 5 Opdracht 8 A is geen repeterende breuk (0,). 00 is wel een repeterende breuk, maar een andere dan de 9 gevraagde: 0,. = 0, en is geen repeterende breuk. 000 Opdracht 9 A 7 8 Opdracht 70 2 = 2 = Opdracht 7 I V II VI 2 III VII IV VIII Opdracht 72 I B 0,2 III B 0,7 II B Breuken omzetten in kommagetallen Opdracht 7 C = 0,7979. = 0, Opdracht 7 A. = 0, Opdracht 75 I F 0,5 IV C 0,0 II B 0,25 V D 0,25 III A 0,2 VI E 0,02 Opdracht 7 I 0, III 0,75 II 0,92 IV 0,05 ThiemeMeulenhoff, Amersfoort, 202 9

10 Opdracht 77 I 0, II 0,8888 III 0, Opdracht 78 0, = = 2 ; = a 20 b (of 7 ) Rekenen met breuken 2.. Optellen en aftrekken Opdracht 79 B + 9 ; het antwoord op deze opgave is 2 2. Opdracht 80 I B 8 9 III C 2 II A 7 IV D 2 Tip: maak deze opgaven in twee stappen. Eerst een gedeelte eraf om tot een rond getal te komen, daarna het resterende deel eraf. Opdracht 8 A 0,5 5 0, 00 Opdracht 82 I + > IV > 2 5 II + 2 < V < III + 5 > 2 Opdracht 8 ThiemeMeulenhoff, Amersfoort, 202 0

11 Opdracht 8 Manier 2 + = = 2 = = 2 Manier = = 2 = = 2 Manier + = = 2 = = Vermenigvuldigen Opdracht 85 I A 8 III C 2 II D 0 IV B 9 ThiemeMeulenhoff, Amersfoort, 202

12 Opdracht 8 I C. Tip: gebruik als hulpmiddel een eierdoos met eieren. 2 wordt met dat hulpmiddel 2 deel van 2 doos = deel van eieren. Dit zijn eieren. eieren uit een doos van geeft als breuk ofwel. Je kunt natuurlijk ook de tellers met elkaar vermenigvuldigen en de noemers 2 met elkaar vermenigvuldigen, waardoor je uitkomt op, wat hetzelfde is als. 2 2 II B III A Opdracht 87 I A = III B 2 + = 0 II D 8 + = 5 IV C 27 + = 0 Opdracht 88 I krat = krat. Of: flesjes = flesjes. II flesjes = flesjes. Ook mogelijk, maar minder voor de hand liggend: flesjes ( flesjes) = flesjes 0 flesjes = flesjes. III 0 dagen = 8 dagen. Tip: bereken eerst deel. 5 5 IV Bijvoorbeeld: je hebt 5 blikken verf van liter gekocht. Hoeveel liter verf heb je gekocht? V Bijvoorbeeld: wat is de oppervlakte van een tuin van 7 meter breed en 8 2 meter lang? VI Bijvoorbeeld: in de maand februari (28 dagen, geen schrikkeljaar) heeft het voor driekwart van de tijd geregend. Hoeveel dagen heeft het geregend? NB: kijk goed naar het verschil tussen de opgaven IV en VI. Opdracht 89 Je kunt bijvoorbeeld bij alle opgaven de breuken wegwerken. I (8 8 ) : 2 = : 2 = 5 2 II (5 7) : = 85 : = 2 III (2 ) : 5 = 72 : 5 = 2 5 IV (5 2) : = 0 : = Opdracht 90 I 20 ( 0 deel van 20 is gelijk aan 2). II 0 ( 2 0 = 5). 2.. Delen Opdracht 9 C : 5 = 2 0 liter. Let op: bij A is het antwoord wel correct, maar de rekenzin niet. Bij B is de rekenzin wel correct, maar het antwoord niet. Opdracht 92 B keer (2 : ). Je kunt de opgave bijvoorbeeld via handig rekenen uitrekenen door beide getallen te vermenigvuldigen met. Of met een verhoudingstabel: neem eerst keer drie kwartier, dat is uur. Enzovoort. ThiemeMeulenhoff, Amersfoort, 202 2

13 Opdracht 9 C 2 : =. Beide termen zijn keer groter. Bij de antwoorden A en B is vergroten en verkleinen toegepast, hetgeen niet van toepassing is bij een deling. Bij antwoord D is het verwisselen van termen toegepast, hetgeen ook niet van toepassing is bij een deling. Opdracht 9 Enkele voorbeelden: I Hoeveel kwartier passen er in uur? Of hoeveel glazen van liter kun je schenken uit liter? (Let op: niet liter verdelen met personen of iets dergelijks, dat is namelijk : ; zie ook opgave II.) II Je hebt nog taart die je eerlijk gaat verdelen over personen. Het hoeveelste deel van een hele taart krijgt ieder dan? III Je hebt nog een kilogram champignons die je gaat verpakken in bakjes van kilogram. Hoeveel 2 bakjes kun je maken? Opdracht 95 I 25 (bijvoorbeeld via handig rekenen: 25 :, beide 5 groter). (bijvoorbeeld via handig rekenen: : 25, beide 5 groter). II 25 III (bijvoorbeeld via :, beide 5 groter). IV (bijvoorbeeld via :, beide 5 groter; je kunt ook denken aan hoe vaak 5 past in 5 ). Opdracht 9 I ( reep past precies in reep) II ( 2 reep past in repen) 2.7 Rekenen met kommagetallen 2.7. Optellen en aftrekken Opdracht 97 I D 0, V A,5 II C 0, VI D 9,95 III B 0, VII C 2,9 IV A 0, VIII B 0 Tip: denk aan geldbedragen, maak er eurocenten van. Opdracht 98 C 2,075 en,925 Opdracht 99 I C m. 2,9 km is minimaal 2, km. Dat is afgerond 2,9 km. 2, km heen en 2, km terug is samen 25, km. Ofwel ,999 m, afgerond m. II A m. 2,9 km kan maximaal 2,99999 km zijn. Dat is afgerond 2,9 km. 2, km heen en 2,99999 km terug is samen 25,89999 km. Ofwel ,999 m, afgerond m. ThiemeMeulenhoff, Amersfoort, 202

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? 8

Nadere informatie

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen.

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen. Uitwerkingen hoofdstuk Gebroken getallen. Kennismaken met breuken.. Deel van geheel Opdracht. a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde

Nadere informatie

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? deel

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een heel blaadje.

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel Opdracht 2 blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl Breuken Breuk

Nadere informatie

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28 Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je

Nadere informatie

Leerlijnen groep 7 Wereld in Getallen

Leerlijnen groep 7 Wereld in Getallen Leerlijnen groep 7 Wereld in Getallen 1 2 REKENEN Boek 7a: Blok 1 - week 1 in geldcontext 2 x 2,95 = / 4 x 2,95 = Optellen en aftrekken tot 10.000 - ciferend; met 2 of 3 getallen 4232 + 3635 + 745 = 1600

Nadere informatie

Kommagetallen. Twee stukjes is

Kommagetallen. Twee stukjes is Kommagetallen Een kommagetal is een getal dat niet heel is. Het is een breuk. Voor de komma staan de helen, achter de komma staat de breuk. De cijfers achter de komma staan voor de tienden, honderdsten,

Nadere informatie

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren Uren, Dagen, Maanden, Jaren,. Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren 1 minuut 60 seconden 1 uur 60 minuten 1 half uur 30 minuten 1 kwartier 15 minuten 1 dag (etmaal) 24 uren 1 week

Nadere informatie

Leerlijnen groep 8 Wereld in Getallen

Leerlijnen groep 8 Wereld in Getallen Leerlijnen groep 8 Wereld in Getallen 1 2 3 4 REKENEN Boek 8a: Blok 1 - week 1 Oriëntatie - uitspreken en schrijven van getallen rond 1 miljoen - introductie miljard - helen uit een breuk halen 5/4 = -

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Leerlijnen rekenen: De wereld in getallen

Leerlijnen rekenen: De wereld in getallen Leerlijnen rekenen: De wereld in getallen Groep 7(eerste helft) Getalbegrip - Telrij tot en met 1 000 000 - Uitspraak en schrijfwijze van de getallen (800 000 en 0,8 miljoen) - De opbouw en positiewaarde

Nadere informatie

Uitwerking toets rekenvaardigheid. Opgave 1 a. 7125,98 + 698,99 = Tip: Bij kommagetallen is het eenvoudiger om aan geld te denken.

Uitwerking toets rekenvaardigheid. Opgave 1 a. 7125,98 + 698,99 = Tip: Bij kommagetallen is het eenvoudiger om aan geld te denken. Uitwerking toets rekenvaardigheid Opgave a. 725,98 + 698,99 = Tip: Bij kommagetallen is het eenvoudiger om aan geld te denken. 725,98 + 698,99 = 725,98 + 700,0= 7824,97 Denk eraan ik doe er teveel bij

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

Afspraken hoofdrekenen eerste tot zesde leerjaar

Afspraken hoofdrekenen eerste tot zesde leerjaar 24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

Antwoorden bij Rekenen met het hoofd

Antwoorden bij Rekenen met het hoofd Antwoorden bij Rekenen met het hoofd Hoofdstuk Basisbewerkingen. Bewerkingen in beeld a. : splitsen in 5 en. Eerst min 5, dan min 0 en tenslotte nog min : splitsen in 5 en, die uitvoeren en dan nog stapsgewijs

Nadere informatie

Leerlijnen groep 6 Wereld in Getallen

Leerlijnen groep 6 Wereld in Getallen Leerlijnen groep 6 Wereld in Getallen 1 REKENEN Boek 6a: Blok 1 - week 1 - buurgetallen - oefenen op de getallenlijn Geld - optellen van geldbedragen - aanvullen tot 10 105 : 5 = 2 x 69 = - van digitaal

Nadere informatie

kommagetallen en verhoudingen

kommagetallen en verhoudingen DC 8Breuken, procenten, kommagetallen en verhoudingen 1 Inleiding Dit thema gaat over rekenen en rekendidactiek voor het oudere schoolkind en voor het voortgezet onderwijs. Beroepscontext: als onderwijsassistent

Nadere informatie

Toets gecijferdheid december 2004

Toets gecijferdheid december 2004 Toets gecijferdheid december 2004 Naam: Klas: score: Datum: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de tijd

Nadere informatie

SAMENVATTING BASIS & KADER

SAMENVATTING BASIS & KADER SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,

Nadere informatie

Op stap naar 1 B Minimumdoelen wiskunde

Op stap naar 1 B Minimumdoelen wiskunde Campus Zuid Boomsesteenweg 265 2020 Antwerpen Tel. (03) 216 29 38 Fax (03) 238 78 31 www.vclbdewisselantwerpen.be VCLB De Wissel - Antwerpen Vrij Centrum voor Leerlingenbegeleiding Op stap naar 1 B Minimumdoelen

Nadere informatie

Groep 3. Getalbegrip hele getallen. Optellen en aftrekken. Geld

Groep 3. Getalbegrip hele getallen. Optellen en aftrekken. Geld Groep 3 Getalbegrip hele getallen De leerlingen werken de eerste periode in het getallengebied tot 20 en 40. De tweede helft van het jaar ook tot 100. De leerlingen leren het verder- en terugtellen, tellen

Nadere informatie

Hieronder ziet u per 2 blokken wat er getoetst wordt in groep 4

Hieronder ziet u per 2 blokken wat er getoetst wordt in groep 4 Hieronder ziet u per 2 blokken wat er getoetst wordt in groep 4 Blok 1A en 2A Telrij, uitspraak en notatie Getallenlijn en getalvolgorde Opbouw getallen tot 100 Sprongen van 1, 2 en 5 tussen 10 en 20 t/m

Nadere informatie

RekenGroen Titel Rekenmodule Onderdeel Breuken Versie 20121907

RekenGroen Titel Rekenmodule Onderdeel Breuken Versie 20121907 RekenGroen Titel Onderdeel Versie Rekenmodule Breuken 202907 2_BREUKEN RECEPTEN Bij veel recepten worden breuken gebruikt om hoeveelheden van de ingrediënten aan te geven. A PPEL- KOMKOMMER SALADE Ingrediënten

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

aantal tijd 2 s 1 min 1 uur 50 uur 2 dagen 20 dagen

aantal tijd 2 s 1 min 1 uur 50 uur 2 dagen 20 dagen Eerste domein: hele getallen 1 De basiskennis van getallen 1.1 Mijn bijzondere getal a b Om te zien of een getal even is hoef je alleen maar naar het laatste cijfer te kijken. Als dat even is, is het hele

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

Rekentermen en tekens

Rekentermen en tekens Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste

Nadere informatie

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12 Tytsjerksteradiel Rekenportfolio Naam: cm 2 1 5 7 + = 5 10 10 m 3 1 _ 12 X 5 1 + = 5 1 + Inhoudsopgave Voorwoord 3 Domein getallen 4 - Optellen, aftrekken, vermenigvuldigen en delen 5 - Breuken 6 - Rekenvolgorde

Nadere informatie

Overstapprogramma 6-7

Overstapprogramma 6-7 Overstapprogramma - Cijferend optellen 9 Verdeel het getal. Het getal 8 kun je verdelen in: duizendtallen honderdtallen tientallen eenheden D H T E 8 D H T E 8 = 8 9 9 9 = = = = Zet de getallen goed onder

Nadere informatie

Inhoud kaartenbak groep 8

Inhoud kaartenbak groep 8 Inhoud kaartenbak groep 8 1 Getalbegrip 1.1 Ligging van getallen tussen duizendvouden 1.2 Plaatsen van getallen op de getallenlijn 1.3 Telrij t/m 100 000 1.4 Telrij t/m 100 000 1.5 Getallen splitsen en

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE 2014 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 00 1 (20 punten) Gegeven zijn drie aan elkaar rakende cirkels met straal 1. Hoe groot is de (donkergrijze) oppervlakte

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

Leerstofoverzicht groep 3

Leerstofoverzicht groep 3 Leerstofoverzicht groep 3 Getallen en relaties Basisbewerkingen Verhoudingen Leerlijn Groep 3 uitspraak, schrijfwijze, kenmerken begrippen evenveel, minder/meer cijfer 1 t/m 10, groepjes aanvullen tot

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

Toets gecijferdheid maart 2004

Toets gecijferdheid maart 2004 Toets gecijferdheid maart 2004 Naam: Datum: Klas: score cijfer Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de

Nadere informatie

Aanbod rekenstof augustus t/m februari. Groep 3

Aanbod rekenstof augustus t/m februari. Groep 3 Aanbod rekenstof augustus t/m februari Groep 3 Blok 1 Oriëntatie: tellen van hoeveelheden tot 10, introductie van de getallenlijn tot en met 10, tellen en terugtellen t/m 20, koppelen van getallen aan

Nadere informatie

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2.

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Rekenrijk doelen groep 1 en 2 De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Aantallen kunnen tellen De kinderen kunnen kleine aantallen tellen. De kinderen kunnen eenvoudige

Nadere informatie

De laatste loodjes...

De laatste loodjes... De laatste loodjes... Hieronder vindt je een uittreksel van alles dat we met rekenen hebben geoefend. En nog een paar herhaalsommetjes. Om als laatste nog even door te lezen om te zien of je alles nog

Nadere informatie

Het metriek stelsel. Grootheden en eenheden.

Het metriek stelsel. Grootheden en eenheden. Het metriek stelsel. Metriek komt van meten. Bij het metriek stelsel gaat het om maten, zoals lengte, breedte, hoogte, maar ook om gewicht of inhoud. Er zijn verschillende maten die je moet kennen en die

Nadere informatie

Opleiding docent rekenen MBO. 28 mei zesde bijeenkomst Groep 4 ROCmn

Opleiding docent rekenen MBO. 28 mei zesde bijeenkomst Groep 4 ROCmn Opleiding docent rekenen MBO 28 mei zesde bijeenkomst Groep 4 ROCmn Inhoud 1. ERWD Ceciel Borghouts 2. PorFolio vragen nav inhoudsopgave 3. Lunch 4. Breuken 5. Onderzoek 6. Vooruitblik afsluitende bijeenkomst

Nadere informatie

ALBERDINGK THIJM COLLEGE REKENGIDS. Basis en afspraken rekenen

ALBERDINGK THIJM COLLEGE REKENGIDS. Basis en afspraken rekenen ALBERDINGK THIJM COLLEGE REKENGIDS Basis en afspraken rekenen VOORWOORD Deze rekengids is bedoeld als overzichtelijk naslagwerk voor leerlingen, ouders, docenten en alle anderen die met rekenen te maken

Nadere informatie

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 Inhoud Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 1/10 Eenheden Iedere grootheid heeft zijn eigen eenheid. Vaak zijn er meerdere eenheden

Nadere informatie

Reken zeker: leerlijn breuken

Reken zeker: leerlijn breuken Reken zeker: leerlijn breuken B = breuk H = hele HB = hele plus breuk (1 1/4) Blauwe tekst is theorie uit het leerlingenboek. De breuknotatie in Reken zeker is - anders dan in deze handout - met horizontale

Nadere informatie

Decimale getallen (1)

Decimale getallen (1) Decimale getallen (1) Rekenkundige achtergrond In dit blok leren de leerlingen decimale getallen herkennen, vergelijken en afronden op 1 of 2 decimale plaatsen. Ook zal het uitdrukken van een breuk, waarvan

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

Naam:... Datum:... 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =.

Naam:... Datum:... 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =. Opvraging Wiskunde W1 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =. 2 Goed lezen en oplossen. Ik koop in de supermarkt een krant (80 cent), een brood

Nadere informatie

RekenWijzer, oefenopdrachten hoofdstuk 1 Hele getallen. 1.1 Kennismaken met hele getallen. 1.1.1 Betekenis van getallen

RekenWijzer, oefenopdrachten hoofdstuk 1 Hele getallen. 1.1 Kennismaken met hele getallen. 1.1.1 Betekenis van getallen Oefenopdrachten hoofdstuk 1 Hele getallen 1.1 Kennismaken met hele getallen 1.1.1 Betekenis van getallen Opdracht 1 I Hoeveel cijfers telt het getal 1 020 031? A 4 B 7 C 3 D 1 020 031 II Hoeveel getallen

Nadere informatie

Overig nieuws Hulp ouders bij rekenen deel 3.

Overig nieuws Hulp ouders bij rekenen deel 3. Overig nieuws Hulp ouders bij rekenen deel 3. Het rekenonderwijs van tegenwoordig ziet er anders uit dan vroeger. Dat komt omdat er nieuwe inzichten zijn over hoe kinderen het beste leren. Vroeger lag

Nadere informatie

TOELICHTING BETEKENIS GEVEN AAN BREUKEN

TOELICHTING BETEKENIS GEVEN AAN BREUKEN TOELICHTING BETEKENIS GEVEN AAN BREUKEN 1 2 3 Rekenvlinder_betekenis_geven_aan_breuken.indd 2 27-06-13 21:57 4 5 6 13226_rv_wb_betekenis_geven_aan_breuken_bw.indd 3 04-07-13 17:26 liter 1 0 Rekenvlinder

Nadere informatie

TOETS REKENEN / WISKUNDE. Naam:... School:...

TOETS REKENEN / WISKUNDE. Naam:... School:... TOETS REKENEN / WISKUNDE Naam:... School:... Datum:... Groep:... 1A. Hoofdrekenen: optellen en aftrekken Reken de sommen op je eigen manier uit. Gebruik het kladblaadje als je een tussenstap wilt noteren.

Nadere informatie

Leerlijnen voor groep 3-8

Leerlijnen voor groep 3-8 Leerlijnen voor groep 3-8 Groep 3, eerste half jaar de begrippen meer, minder, evenveel juist toepassen de ontbrekende getallen op de getallenlijn t/m 12 invullen van hoeveelheden t/m 20 groepjes van 5

Nadere informatie

Rekentaalkaart - toelichting

Rekentaalkaart - toelichting Rekentaalkaart - toelichting 1. Het rekendoel van de opgave In de handleiding van reken-wiskundemethodes beschrijft bij iedere opgave of taak wat het rekendoel voor leerlingen is. Een doel van een opgave

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

Lesopbouw: instructie. Start. Instructie. Blok 4. Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen

Lesopbouw: instructie. Start. Instructie. Blok 4. Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen Week Blok Bijwerkboek 0 Les Rekenboek Lessen 0 0, 0 0, 0, keer 0, 0,, flesjes 0,, 0, 0 0 plankjes stukjes 0 0 Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen

Nadere informatie

(o.a. voor 2F en 3F) Inhoud

(o.a. voor 2F en 3F) Inhoud (o.a. voor 2F en 3F) Inhoud Optellen... 2 Aftrekken... 3 Vermenigvuldigen... 4 Delen... 5 Tot de macht... 6 Combinaties... 7 Wortels... 7 Afronden... 8 Breuken... 10 Procenten... 11 Verhoudingen... 12

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

Opleiding docent rekenen MBO. Groep 1 1 november 2013 Vijfde bijeenkomst

Opleiding docent rekenen MBO. Groep 1 1 november 2013 Vijfde bijeenkomst Opleiding docent rekenen MBO Groep 1 1 november 2013 Vijfde bijeenkomst Onderdeel van domein getallen BREUKEN Waarom breuken? Moeilijk Kost veel onderwijscjd Nut is onduidelijk Wat wel en niet moet is

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

BLAD 16: HAM EN KAAS. b. Bij de maatbeker horen verschillende inhoudsmaten. Hiernaast staan ze op een rij. Schrijf op de stippeltjes wat het betekent.

BLAD 16: HAM EN KAAS. b. Bij de maatbeker horen verschillende inhoudsmaten. Hiernaast staan ze op een rij. Schrijf op de stippeltjes wat het betekent. BLAD 16: HAM EN KAAS 1. Hoeveel is het goedkoper? a. Twee aanbiedingen bij de supermarkt. Hoeveel cent is het goedkoper? 6 witte bolletjes:... 10 scharreleieren:... b. Reken van deze aanbiedingen ook uit

Nadere informatie

Tafelkaart: tafel 1, 2, 3, 4, 5

Tafelkaart: tafel 1, 2, 3, 4, 5 Tafelkaart: tafel 1, 2, 3, 4, 5 1 2 3 4 5 1x1= 1 1x2= 2 1x3= 3 1x4= 4 1x5= 5 2x1= 2 2x2= 4 2x3= 6 2x4= 8 2x5=10 3x1= 3 3x2= 6 3x3= 9 3x4=12 3x5=15 4x1= 4 4x2= 8 4x3=12 4x4=16 4x5=20 5x1= 5 5x2=10 5x3=15

Nadere informatie

Bloemlezing uit 36 bladzijden voor een eerste indruk. inzicht in het complete metriek stelsel. Op een eenduidige

Bloemlezing uit 36 bladzijden voor een eerste indruk. inzicht in het complete metriek stelsel. Op een eenduidige Meten is weten Bloemlezing uit 36 bladzijden voor een eerste indruk Leer- Meten en is oefenboek weten Bloemlezing metriek uit stelsel 36 bladzijden voor ISBN: een 978-90-821249-1-0 eerste indruk Auteur

Nadere informatie

RekenWijzer, uitwerkingen hoofdstuk 1 Hele getallen

RekenWijzer, uitwerkingen hoofdstuk 1 Hele getallen Uitwerkingen hoofdstuk 1 Hele getallen 1.1 Kennismaken met hele getallen 1.1.1 Betekenis van getallen Opdracht 1.1 a 999 b 100 Opdracht 1.2 a 31 b Nee, voor 10 000 koop je geen huis. c 36 liter Opdracht

Nadere informatie

TOELICHTING REKENEN MET DECIMALE GETALLEN

TOELICHTING REKENEN MET DECIMALE GETALLEN TOELICHTING REKENEN MET DECIMALE GETALLEN LEERSTAP 1 LEERSTAP 2 LEERSTAP 3 LEERSTAP 4 LEERSTAP 5 LEERSTAP 6 Rekenvlinder Rekenen met decimale getallen Toelichting Uitgeverij Zwijsen B.V., Tilburg www.rekenvlinder.nl

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

Vervolgcursus Proeftuin Rekenen Tweede bijeenkomst 3 februari 2016 vincent jonker & monica wijers

Vervolgcursus Proeftuin Rekenen Tweede bijeenkomst 3 februari 2016 vincent jonker & monica wijers Vervolgcursus Proeftuin Rekenen Tweede bijeenkomst 3 februari 2016 vincent jonker & monica wijers 1 league is. miles 1 mile is.. furlongs 1 furlong is. chains 1 foot is.. inches 1 yard is inches 1 league

Nadere informatie

Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker

Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker Programma Breuken PPON Leerlijn Didactiek van bewerkingen Breuken en kommagetallen in het echt Kommagetallen

Nadere informatie

Het weetjesschrift. Weetjesschrift Galamaschool

Het weetjesschrift. Weetjesschrift Galamaschool Het weetjesschrift Dit is het weetjesschrift. In dit schrift vind je heel veel weetjes over taal, rekenen en andere onderwerpen. Sommige weetjes zal je misschien al wel kennen en anderen leer je nog! Uiteindelijk

Nadere informatie

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar Vraag 1: (pg 64 oefening 2 - Basisboek LVS wiskunde toetsen 2) Het verschil tussen

Nadere informatie

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2 Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Joep van Vugt Anneke Wösten Handig optellen; tribunesom* Bij optellen van bijna ronde getallen zoals 39, 198, 2993,..

Nadere informatie

Leerstofoverzicht groep 6

Leerstofoverzicht groep 6 Leerstofoverzicht groep 6 Getallen en relaties Basisbewerkingen Leerlijn Groep 6 Uitspraak, schrijfwijze, kenmerken getallen boven 10 000 in cijfers schrijven haakjesnotatie deler en deeltal breuknotatie

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

Medische rekenen AJK

Medische rekenen AJK Medische rekenen AJK Herhaling Optellen, aftrekken en breuken Optellen Voorbeeld optellen 122

Nadere informatie

Groep 5 Leerroute 3< 1F Leerroute 2= 1F (maatschrift) Leerroute 1 = 1S Periode 1

Groep 5 Leerroute 3< 1F Leerroute 2= 1F (maatschrift) Leerroute 1 = 1S Periode 1 Groep 5 Leerroute 3< 1F Leerroute 2= 1F (maatschrift) Leerroute 1 = 1S Periode 1 Normgerichte doelen: De kinderen behalen op de methodegebonden toetsen Maatschrift een 60% score. Blok 1: De kinderen kennen/kunnen/beheersen:

Nadere informatie

Procenten 75% 33% 10% 50% 40% 25% 50% 100%

Procenten 75% 33% 10% 50% 40% 25% 50% 100% Procenten 50% 75% 25% 100% 10% 40% 50% 33% Uitleg procenten & Hoofdstuk 1A: hele procenten Uitleg : Procent betekent: 1/100 deel Bij procentrekenen werken we met HOEVEELHEDEN Bij een hoeveelheid van iets

Nadere informatie

handelingswijzer rekenen

handelingswijzer rekenen handelingswijzer rekenen Naslagwerk Voor leerlingen en ouders HANDELINGSWIJZER REKENEN INHOUD HANDELINGSWIJZER REKENEN... 1 1 INHOUD... 1 HOOFDBEWERKINGEN... 2 OPTELLEN... 3 AFTREKKEN... 3 VERMENIGVULDIGEN...

Nadere informatie

RekenTrapperS Cool 1.1

RekenTrapperS Cool 1.1 RekenTrapperS Cool 1.1 Inhoud 1 Doe-activiteiten met kalender en klok... 5 1.1 Weetjes over de indeling van het jaar... 5 1.2 Kloklezen en rekenen met uren, minuten en seconden... 9 2 Getallenkennis tot

Nadere informatie

Draft THEORIEBOEK 1F 2F 3F

Draft THEORIEBOEK 1F 2F 3F Draft THEORIEBOEK 1F 2F 3F Voorwoord van de uitgever Waarom dit theorieboek? Hoe reken je dat ook alweer uit? Een herkenbare vraag voor iedereen. Binnen of buiten de rekenles, er komt een moment dat je

Nadere informatie

T O E L I C H T I N G R E K E N E N M E T V E R H O U D I N G E N

T O E L I C H T I N G R E K E N E N M E T V E R H O U D I N G E N TOELICHTING REKENEN MET VERHOUDINGEN LEERSTAP 1 LEERSTAP 2 LEERSTAP 3 Rekenvlinder_rekenen_met_verhoudingen.indd 2 08-02-13 10:54Rekenvlinder_rekenen_met_verhoudingen.indd 3 08-02-13 10:54 LEERSTAP 4 LEERSTAP

Nadere informatie

Deel C. Breuken. vermenigvuldigen en delen

Deel C. Breuken. vermenigvuldigen en delen Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt

Nadere informatie

TOELICHTING REKENEN MET BREUKEN

TOELICHTING REKENEN MET BREUKEN TOELICHTING REKENEN MET BREUKEN 1 2 3 11628_rv_wb_breuken_bw.indd 2 13-11-12 23:2611628_rv_wb_breuken_bw.indd 3 13-11-12 23:27 4 5 6 Rekenvlinder Rekenen met breuken Toelichting Uitgeverij Zwijsen B.V.,

Nadere informatie

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen.

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Het werkt als volgt, Je maakt een opgave bijv. opgave 1. Hoe gaat het ook al weer denk je dan. Nou,

Nadere informatie

Leerlijnenpakket STAP incl. WIG. Rekenen Rekenen. Datum: 08-05-2014. Schooltype BAO (Regulier) Herkomst Landelijk Periode DL -20 t/m 200

Leerlijnenpakket STAP incl. WIG. Rekenen Rekenen. Datum: 08-05-2014. Schooltype BAO (Regulier) Herkomst Landelijk Periode DL -20 t/m 200 Leerlijnenpakket STAP incl. WIG Schooltype BAO (Regulier) Herkomst Landelijk Periode DL -20 t/m 200 Rekenen Rekenen 1.1 Getallen - Optellen en aftrekken tot 10 - Groep 3 BB/ KB GL + PRO 1.1.1 zegt de telrij

Nadere informatie

Meten is weten ANTWOORDENBOEK. 88972 Meten is weten. Antwoordenboek. = 95 mm 6 cm = 60 mm 10 cm = 100 mm. 1 cm = 15 mm 9 cm

Meten is weten ANTWOORDENBOEK. 88972 Meten is weten. Antwoordenboek. = 95 mm 6 cm = 60 mm 10 cm = 100 mm. 1 cm = 15 mm 9 cm Meten is weten Antwoordenboek Opdracht 1 1 cm = 10 mm 4 cm = 40 mm 5 mm 4 cm = 45 mm 1 cm = 15 mm 9 cm = 95 mm 6 cm = 60 mm 10 cm = 100 mm Opdracht 2 1 cm = 10 mm 4 cm = 40 mm 1,5 cm = 15 mm 6,5 cm = 65

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Tal-uitwerking einddoelen breuken, verhoudingen, kommagetallen en procenten

Tal-uitwerking einddoelen breuken, verhoudingen, kommagetallen en procenten Tal-uitwerking einddoelen breuken, verhoudingen, kommagetallen en procenten Algemeen Inzicht, getalrelaties, redeneren, procedures Leerlingen kunnen bij opgaven op het gebied van breuken, procenten, kommagetallen

Nadere informatie

7. 123 187 45 - - - - - - + 355 8. 35/595\17 59 35 245 245

7. 123 187 45 - - - - - - + 355 8. 35/595\17 59 35 245 245 Antwoorden CITO 14-15 1. 295 187 - - - - - - + 482 2. 11/935\85 93 Hoe vaak past 11 in 93 88 8*11=88, dit is het grootste getal dat we van 93 af kunnen halen. 55 93-88=5 dan schuiven we de andere 5 ook

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen Uitsluitend te gebruiken

Nadere informatie

GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben.

GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben. Leerroute 3 Jaargroep: 8 GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben. Je bewust zijn dat getallen verschillende betekenissen kunnen hebben. (hoeveelheidsgetal,

Nadere informatie

Vervolgcursus Rekenen Tweede bijeenkomst 4 februari 2015 vincent jonker & monica wijers

Vervolgcursus Rekenen Tweede bijeenkomst 4 februari 2015 vincent jonker & monica wijers Vervolgcursus Rekenen Tweede bijeenkomst 4 februari 2015 vincent jonker & monica wijers Krant Programma 1. Terugblik en huiswerk 2. Kommagetallen 3. Meten 4. Huiswerk Deel 1 HUISWERK Huiswerk Neem een

Nadere informatie

Getallen en breuken. /1 Schrijf de helen als breuken, of haal de helen uit de breuk. 2 Verdeel de breuken. 3 Verdeel de breuken.

Getallen en breuken. /1 Schrijf de helen als breuken, of haal de helen uit de breuk. 2 Verdeel de breuken. 3 Verdeel de breuken. Getallen en breuken 9 0 0 / Scrijf de elen als breuken, of aal de elen uit de breuk. = =.. =.. 7 =.. =.. =.. 0 9 =.. 0 =.. 0 =.. 7 =.. 9 = = = 0 = 7 = = = = = 7 = 7 Verdeel de breuken. kinderen verdelen

Nadere informatie

Begin situatie Wiskunde/Rekenen. VMBO BB leerling

Begin situatie Wiskunde/Rekenen. VMBO BB leerling VMBO BB leerling Verbanden en Hoge -bewerkingen onder 100 -tafels t/m 10 (x:) -bewerkingen met eenvoudige grote en -makkelijk rekenen -vergelijken/ordenen op getallenlijn -makkelijke breuken omzetten -deel

Nadere informatie