GETALLEN deel De waarde van een cijfer wordt bepaald door de. We lezen 1 E. .. vijf tientallen

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "GETALLEN deel De waarde van een cijfer wordt bepaald door de. We lezen 1 E. .. vijf tientallen"

Transcriptie

1 GETALLEN deel Les 2 : Getallenkennis: getallen tot De waarde van de cijfers in een getal: De waarde Je leest Besluit: De waarde van een cijfer wordt bepaald door de in et getal. We lezen E _ 3 E _.. vijf tientallen 7 H _ 2. Getallen noteren en lezen: Je noteert Vanaf _ noteer je steeds groepjes van _ cijfers: H T E HD TD D Je leest _ Je leest steeds in groepjes van 3 cijfers: eerst HD TD D duizend dan H T E REKENEN 5 DE LEERJAAR teorie Pagina

2 Besluit:- Er bestaan _ cijfers, nl. _, _, _, _, _, _, _, _, _ en _. 3. Getallen vormen: 2HD 4TD 3D 6H 5T E _ Besluit: De getalwaarde wordt niet vermeld bij de ontleding van de getallen maar wordt wel genoteerd in et getal. 4. Getallen vergelijken: Als we getallen vergelijken, beginnen we te kijken vanaf de _ rang. We zoeken de oogste rang met een _ waarde. We gebruiken de symbolen is groter dan is kleiner dan is gelijk aan Voorbeeld: en Dus: en Dus: Les 3 : Getallenkennis: getallen tot De plaats van een getal tussen 2 buren: - tussen 2 tientallen: Voor de eerste buur vervang je de _ door _. Voor de tweede buur tel je er _ bij. Voorbeeld: 257 eerste buur: tweede buur: 3658 eerste buur: tweede buur: REKENEN 5 DE LEERJAAR teorie Pagina 2

3 - tussen 2 onderdtallen: Voor de eerste buur vervang je de _ en de _ door _. Voor de tweede buur tel je er bij. Voorbeeld: 257 eerste buur: tweede buur: 3658 eerste buur: tweede buur: - tussen 2 duizendtallen: Voor de eerste buur vervang je de,de en de door _. Voor de tweede buur tel je er bij. Voorbeeld: 2578 eerste buur: tweede buur: eerste buur: _ tweede buur: _ 2. Getallen plaatsen op een getallenas: Bereken de sprong die 2 opeenvolgende getallen maken Functies van getallen: Een getal kan dienen als - een aanduiding van een _ voorbeeld: - een aanduiding van een _ voorbeeld: de et _ - verouding / voorbeeld: - _ Voorbeeld: nummerplaat klas REKENEN 5 DE LEERJAAR teorie Pagina 3

4 Les 4 : Hoofdrekenen: optellen en aftrekken - Optellen doe je met een _ = De optelling kan je verwoorden met vermeerder, tel bij, voeg bij, maak de som - Aftrekken doe je met een _ = De aftrekking kan je verwoorden met verminder, trek af, zoek et verscil Les 6 : Hoofdrekenen: vermenigvuldigen en delen. De juiste benaming: - Vermenigvuldigen doe je met een _ 4 X 5000 = De vermenigvuldiging kan je verwoorden met neem et voud, zoek et product, maak keer groter REKENEN 5 DE LEERJAAR teorie Pagina 4

5 - Delen doe je met een _ 0 : 5 = De deling kan je verwoorden met neem et deel, zoek et quotiënt, maak keer kleiner 2. Werken met tussenstappen: - Factoren opsplitsen: 7 X 2300 = = = _ 460 : 4 = = = - Factoren afronden: 4 X 790 We moeten 4 keer _ nemen. We nemen gemakkelijker 4 keer Maar dan ebben we 4 keer teveel genomen. Dus moeten we 4 keer _ wegdoen. 4 X 790 = = = _ REKENEN 5 DE LEERJAAR teorie Pagina 5

6 2340 : 6 We moeten 2340 delen door 6. We kunnen gemakkelijker _ delen door 6. Maar dan ebben we teveel gedeeld door 6. Dus moeten we _ wegdoen : 6 = = = _ Opgelet: Aan beide kanten van et is-gelijk-aan-teken moet de waarde even _ zijn. Les 8 : Cijferen: optellen en aftrekken. De optelling: Voorbeeld: = Scatting : + + _ = Noteer steeds dezelfde rangen onder elkaar De aftrekking: Voorbeeld: = Scatting: - _ = Noteer steeds dezelfde rangen onder elkaar REKENEN 5 DE LEERJAAR teorie Pagina 6

7 Les 0 : Cijferen: vermenigvuldigen Voorbeeld:6 X = Scatting: 6 X _ = Bij de scatting beoud je meestal best je vermenigvuldiger en rond et vermenigvuldigtal af. Als je de getallen onder elkaar scrijft moet et laatste cijfer van de vermenigvuldiger onder et laatste cijfer van je vermenigvuldigtal staan Les 2 : Cijferen: delen Voorbeeld: : 6 = _ Scatting: : 6 = _ Bij de scatting beoud je meestal best je deler en je zoekt een veelvoud van de deler die et dictst ligt bij et getal dat gevormd wordt door de eerste twee (of 3) cijfers van je deeltal. _ REKENEN 5 DE LEERJAAR teorie Pagina 7

8 Les 4: Breuken. De benaming: 3 _ 4 _ 2. Verwoording: 3 of 4 3. Voorstellingen: vb. 3 4 Ik kijk eerst naar de _ en verdeel in zoveel gelijke delen. Daarna kijk ik naar de _ en ik duid zoveel delen aan. 4. Eén geeel: Bij een breuk drukken we uit welk deel wordt voorgesteld. Wanneer we _ delen nemen, ebben we één. We kijken eerst naar de. Die zegt in oeveel delen et geeel is verdeeld. Tel dan evenveel delen als de noemer aangeeft. Dan eb je één geeel. 3 één geeel is dan 4 8 één geeel is dan 9 REKENEN 5 DE LEERJAAR teorie Pagina 8

9 5. Soorten breuken: - Bij een _ is de teller altijd _. - Bij een _breuk is de teller de noemer. - Bij een _ breuk is de teller _de noemer. Elk geeel is verdeeld in gelijke delen. Mijn noemer is dus. Er zijn _ gelijke delen aan geduid. Dit is dus mijn _. De breuk is dus _. REKENEN 5 DE LEERJAAR teorie Pagina 9

10 6. Gelijkwaardige breuken: Deze breuken ebben dezelfde _. Om breuken gelijkwaardig te maken, moeten we de teller en de noemer met _ getal vermenigvuldigen of delen _ Breuken vereenvoudigen: Breuken kunnen we vereenvoudigen door de teller en de noemer te door getal. 24 _ 9_ Gelijknamige breuken: Breuken zijn gelijknamig als ze _ ebben. Om breuken gelijknamig te maken zoeken we eerst de _van elke noemer. kijken we welke veelvouden ze _ebben. gebruiken we zo een veelvoud als nieuwe _ kijken we met welk getal we elke noemer we moeten om telkens een gelijkwaardige breuk te bekomen. 3 en De veelvouden van zijn De veelvouden van zijn We ebben als gemeenscappelijk veelvoud van noemer 8 en 5 : 3 en 2 dus REKENEN 5 DE LEERJAAR teorie Pagina 0

11 9. Een breuk van een oeveeleid: 2 van 2= 3 Deel et aantal door de noemer. Vermenigvuldig dit quotiënt met de teller. 2 van 2= _ = = _ 3 Les 4: Breuken optellen en aftrekken.. Breuken optellen: Breuken kunnen we optellen als ze zijn. 2 + =? = + = Breuken aftrekken: Breuken kunnen we aftrekken als ze _ zijn. 2 - = - = 3 4 REKENEN 5 DE LEERJAAR teorie Pagina

12 Les 20 en 22: Getallenkennis: kommagetallen.. De waarde van de cijfers in een getal: E De waarde Je leest of één_ of één_ of één_ of één_ 2. Getallen noteren en lezen: E Je noteert Je leest _ _ 60 _ _ 3. Getallen vormen: 2TD 4D 3H 6T 5E _ ,004 Besluit: De getalwaarde wordt niet vermeld bij de ontleding van de getallen maar wordt wel genoteerd in et getal. Les 9: Hoofdrekenen: X0, X00, X5, X50.. Vermenigvuldigen met Als ik een getal vermenigvuldig met 0 dan verplaats ik de cijfers rang naar 2495 X 0 = REKENEN 5 DE LEERJAAR teorie Pagina 2

13 2. Vermenigvuldigen met Als ik een getal vermenigvuldig met 00 dan verplaats ik de cijfers 2 rangen naar 2705 X 00 = 3. Vermenigvuldigen met Vermenigvuldigen met Als ik een getal vermenigvuldig met 5 dan ik dat getal eerst met en dan _ ik dit door _ 4826 X 5 = X : = _ : = _ Als ik een getal vermenigvuldig met 50 dan _ ik dat getal eerst met en dan _ ik dit door _ 2468 X 50 = _ X : = : Les 3: Hoofdrekenen: :0, :00, :5, :50.. Delen door 0. = Als ik een getal deel door 0 dan verplaats ik de cijfers rang naar 2495 : 0 = REKENEN 5 DE LEERJAAR teorie Pagina 3

14 2. Delen door Als ik een getal deel door 00 dan verplaats ik de cijfers 2 rangen naar 2705 : 00 = _ 3. Delen door Als ik een getal deel door 5 dan ik dat getal eerst door en dan _ ik dit met _ 342 : 5 = _ : X = _ X = _ 4. Delen door Als ik een getal deel door 50 dan ik dat getal eerst door en dan _ ik dit met _ 243 : 50 = : X = X = REKENEN 5 DE LEERJAAR teorie Pagina 4

Afspraken hoofdrekenen eerste tot zesde leerjaar

Afspraken hoofdrekenen eerste tot zesde leerjaar 24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is

Nadere informatie

Op stap naar 1 B Minimumdoelen wiskunde

Op stap naar 1 B Minimumdoelen wiskunde Campus Zuid Boomsesteenweg 265 2020 Antwerpen Tel. (03) 216 29 38 Fax (03) 238 78 31 www.vclbdewisselantwerpen.be VCLB De Wissel - Antwerpen Vrij Centrum voor Leerlingenbegeleiding Op stap naar 1 B Minimumdoelen

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar De Graankorrel Wervik Mijn wiskundehulpschrift van 1 tot 6 leerjaar We gebruiken de rekenmethode Zo gezegd, zo gerekend! van het eerste tot het zesde leerjaar. Eerste leerjaar blz. 2 Tweede leerjaar blz.

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam:

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam: Datum: Klas: Nr: Naam: Score G1 /5 /5 Opgave 1 G2 / / Opgave 2 G3 /10 /10 Opgave 3 G4 /5 /5 Opgave 4 G5 /4 /4 Opgave 5 G6 /5 /5 G7 /5 /5 G8 /10 /10 G9 /10 /10 G10 /7 /7 G11 /10 /10 Totaal Zelfevaluatie

Nadere informatie

Afspraken cijferen derde tot zesde leerjaar

Afspraken cijferen derde tot zesde leerjaar 6/05/2013 Afspraken cijferen derde tot zesde leerjaar Sint-Ursula-Instituut Delen met natuurlijke getallen In het derde leerjaar werk ik volledig met potlood. Ik maak een verticaal lijstje van de tafelproducten.

Nadere informatie

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl Breuken Breuk

Nadere informatie

Getallen en breuken. /1 Schrijf de helen als breuken, of haal de helen uit de breuk. 2 Verdeel de breuken. 3 Verdeel de breuken.

Getallen en breuken. /1 Schrijf de helen als breuken, of haal de helen uit de breuk. 2 Verdeel de breuken. 3 Verdeel de breuken. Getallen en breuken 9 0 0 / Scrijf de elen als breuken, of aal de elen uit de breuk. = =.. =.. 7 =.. =.. =.. 0 9 =.. 0 =.. 0 =.. 7 =.. 9 = = = 0 = 7 = = = = = 7 = 7 Verdeel de breuken. kinderen verdelen

Nadere informatie

Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen

Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen 1.12 Kernbegrippen van de Kennisbasis Hele getallen, onderdeel Bewerkingen Aftrekker De aftrekker in een aftreksom is het getal dat aangeeft hoeveel

Nadere informatie

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat. 92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,

Nadere informatie

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28 Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je

Nadere informatie

Toetswijzer examen Cool 2.1

Toetswijzer examen Cool 2.1 Toetswijzer examen Cool 2.1 Cool 2.1 1 Getallenkennis: Grote natuurlijke getallen 86 a Ik kan grote getallen vlot lezen en schrijven. 90 b Ik kan getallen afronden. 91 c Ik ken de getalwaarde van een getal.

Nadere informatie

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken breuken breukentaal tekening getal een hele 1 een halve een kwart een achtste ½ of ½ ¼ of ¼ ⅛ of ⅛ 3 breuken breukentaal tekening getal een vijfde ⅕ of ⅕ een tiende

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

2 NATUURLIJKE GETALLEN VOORSTELLEN IN EEN TABEL, LEZEN EN NOTEREN

2 NATUURLIJKE GETALLEN VOORSTELLEN IN EEN TABEL, LEZEN EN NOTEREN NATUURLIJKE GETALLEN IN DE REALITEIT Natuurlijke getallen zie en hoor je overal om je heen: Het is 0 uur. Tom woont in nummer 58. Mijn zus wordt morgen 6 jaar. Een broek van 0 euro Uitsluitend te gebruiken

Nadere informatie

Hoofdstuk 3: NEGATIEVE GETALLEN

Hoofdstuk 3: NEGATIEVE GETALLEN 1-6 H3. Negatieve getallen Hoofdstuk 3: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 96 123) 3.1 Positieve en negatieve getallen Het verschil verwoorden tussen positieve en negatieve getallen.

Nadere informatie

Start u met zwiso in verschillende leerjaren tegelijkertijd?

Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Geef dan eventueel aan het begin van het schooljaar enkele lessen uit het voorafgaande

Nadere informatie

DE basis WISKUNDE VOOR DE LAGERE SCHOOL

DE basis WISKUNDE VOOR DE LAGERE SCHOOL Inhoud GETALLENKENNIS 13 1 Getallen 13 2 Het decimale talstelsel 14 3 Breuken 16 Begrippen 16 Soorten breuken 16 Een breuk vereenvoudigen 17 4 Breuken, percenten, kommagetallen 18 Breuk omzetten in een

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

Rekentermen en tekens

Rekentermen en tekens Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste

Nadere informatie

Download gratis de PowerPoint rekenen domein getallen:

Download gratis de PowerPoint rekenen domein getallen: Getallen Bron: Examenbladmbo.nl, SYLLABUS REKENEN 2F en 3F vo en mbo, Versie mei 2015 Download gratis de PowerPoint rekenen domein getallen: http://nielspicard.nl/download/powerpoint-rekenen-domein-getallen/

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

aantal evaluatielessen

aantal evaluatielessen Jaarplanning Rekensprong Plus Rekensprong Plus heeft voor elk leerjaar een eenduidig jaarwerkplan. Elk werkschriftje van Rekensprong Plus overspant een periode tussen twee schoolvakanties werkschrift a

Nadere informatie

Hoofdstuk 9: NEGATIEVE GETALLEN

Hoofdstuk 9: NEGATIEVE GETALLEN 1 H9. Negatieve getallen Hoofdstuk 9: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 53 57) 9.1 Getallen onder 0 Het verschil verwoorden tussen positieve en negatieve getallen. Weten dat we 0 zowel

Nadere informatie

Blok 1 GB les 2 K1: cijfers 2 en 3 overtrekken en zelf schrijven

Blok 1 GB les 2 K1: cijfers 2 en 3 overtrekken en zelf schrijven Blok GB les 2 K: cijfers 2 en 3 overtrekken en zelf schrijven Cijfers 2 en 3 overtrekken en zelf schrijven 2 3 Start Van richting veranderen Stop Start Van richting veranderen Stop Overtrek de cijfers.

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

2 NATUURLIJKE GETALLEN VOORSTELLEN IN EEN TABEL, LEZEN EN NOTEREN

2 NATUURLIJKE GETALLEN VOORSTELLEN IN EEN TABEL, LEZEN EN NOTEREN NATUURLIJKE GETALLEN IN DE REALITEIT Natuurlijke getallen zie en hoor je overal om je heen: Het is 0 uur. Tom woont in nummer 8. Mijn zus wordt morgen 6 jaar. Een broek van 0 euro Uitsluitend te gebruiken

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Jaarplanning WISKUNDE 1B schooljaar

Jaarplanning WISKUNDE 1B schooljaar 1 School: Vakleerkracht: Vak: wiskunde (4 lestijden per week) Klassen: Leerplannummer VVKSO: D/2011/7841/021 Jaarplanning WISKUNDE 1B schooljaar 2011-2012 Week LEERINHOUDEN Leerplandoelen DO-GB-ME-MK 35

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 100 000 10 Les 2: Natuurlijke getallen kleiner dan 1 000 000

Nadere informatie

Op aarde wonen ongeveer zeven miljard mensen. 1 miljard = miljard is hetzelfde als

Op aarde wonen ongeveer zeven miljard mensen. 1 miljard = miljard is hetzelfde als Getallen 9 0 2 / Tel steeds verder met 0 000 tot aan 2 00 000. 0 2 00 000 7 2 Wat zijn de onderstreepte cijfers in de getallen waard? Op aarde wonen ongeveer zeven miljard mensen. miljard = 000 000 000.

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen Uitsluitend te gebruiken

Nadere informatie

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495.

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495. Bij vermenigvuldigen van twee grote getallen onder elkaar staan de rijen onder de streep elk voor een tussenstap. De eerste rij staat voor het vermenigvuldigen met het cijfer dat de eenheden van het onderste

Nadere informatie

Bijlage 11 - Toetsenmateriaal

Bijlage 11 - Toetsenmateriaal Bijlage - Toetsenmateriaal Toets Module In de eerste module worden de getallen behandeld: - Natuurlijke getallen en talstelsels - Gemiddelde - mediaan - Getallenas en assenstelsel - Gehele getallen met

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13

Nadere informatie

Het weetjesschrift. Weetjesschrift Galamaschool

Het weetjesschrift. Weetjesschrift Galamaschool Het weetjesschrift Dit is het weetjesschrift. In dit schrift vind je heel veel weetjes over taal, rekenen en andere onderwerpen. Sommige weetjes zal je misschien al wel kennen en anderen leer je nog! Uiteindelijk

Nadere informatie

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken Deel 1 78 & het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken 2 DIT IS HET DiKiBO-BOEK VAN TIP PAS OP 2 HOE? hoi, ik ben DiKiBO samen met mijn vrienden help ik jou bij

Nadere informatie

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar Vraag 1: (pg 64 oefening 2 - Basisboek LVS wiskunde toetsen 2) Het verschil tussen

Nadere informatie

BEWERKINGEN. B0 Doelstellingen

BEWERKINGEN. B0 Doelstellingen BEWERKINGEN B0 Doelstellingen Deze doelstellingen zijn bedoeld voor de studenten kleuteronderwijs Arteveldehogeschool. Ze geven een beeld van wat verwacht wordt voor het examen. Toch is het ook voor anderen

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

S T A R T W I S K U N D E N 1 2 3 4 5 H. Karel de Grote-Hogeschool Katholieke Hogeschool Antwerpen Departement Lerarenopleiding

S T A R T W I S K U N D E N 1 2 3 4 5 H. Karel de Grote-Hogeschool Katholieke Hogeschool Antwerpen Departement Lerarenopleiding Karel de Grote-Hogeschool Katholieke Hogeschool Antwerpen Departement Lerarenopleiding S T A R T W I S K U N D E I C N 1 2 3 4 5 H L R O I O S P C F U L R O S R U U S S Basisleerstof wiskunde lager onderwijs

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

4 Jaarplan. 1 Leerplan

4 Jaarplan. 1 Leerplan Formule 1_Handleiding.indb 9 1/07/15 13:50 9 4 Jaarplan 1 Leerplan Het jaarplan is opgesteld volgens het leerplan VVKSO BRUSSEL D/2011/7841/021. De nummers van de doelstellingen in het jaarplan verwijzen

Nadere informatie

WISo. Handleiding breukendoos. www.zwiso.be. Inhoud breukendoos. Gebruik van de breukendoos. Inzicht in breuken

WISo. Handleiding breukendoos. www.zwiso.be. Inhoud breukendoos. Gebruik van de breukendoos. Inzicht in breuken Handleiding breukendoos Inhoud breukendoos De breukendoos bevat: - metalen breukenbord met vermelding van het geheel en de stambreuken van t.e.m. en ruimte voor de kommagetallen- en de procentstrook -

Nadere informatie

DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen

DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen DE STAARTDELING (cijferend rekenen) Derde leerjaar (groep 5) Luc Cielen Wat voorafgaat aan het leren van de staartdeling: De kinderen moeten al vertrouwd zijn met de schrijfwijze van de delingen (hoofdrekenen)

Nadere informatie

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

handelingswijzer rekenen

handelingswijzer rekenen handelingswijzer rekenen Naslagwerk Voor leerlingen en ouders HANDELINGSWIJZER REKENEN INHOUD HANDELINGSWIJZER REKENEN... 1 1 INHOUD... 1 HOOFDBEWERKINGEN... 2 OPTELLEN... 3 AFTREKKEN... 3 VERMENIGVULDIGEN...

Nadere informatie

CIJFEREN: DE TRAPVERMENIGVULDIGING

CIJFEREN: DE TRAPVERMENIGVULDIGING CIJFEREN: DE TRAPVERMENIGVULDIGING Luc Cielen Ik noem dit een trapvermenigvuldiging omdat deze bewerking een trap vormt als de vermenigvuldiger een getal is met 2 of meer cijfers. In een opbouw die 10

Nadere informatie

Beste Curriculumdifferentiatie-gebruiker,

Beste Curriculumdifferentiatie-gebruiker, MOTSTRAAT 32 2800 MECHELEN STEF VAN MALDEREN UITGEVER T 05 36 36 7 F 05 36 36 37 STEFVANMALDEREN@PLANTYNCOM Betreft: Curriculumdifferentiatie 5 - Errata Mechelen, 5 februari 202 Beste Curriculumdifferentiatie-gebruiker,

Nadere informatie

Wiskunde in vierde, vijfde en zesde klas Lezing

Wiskunde in vierde, vijfde en zesde klas Lezing Wiskunde in vierde, vijfde en zesde klas Lezing 14-02-2006 BREUKEN Nog eenmaal pannenkoeken verdelen. De cirkel als meest gebruikte beeld bij de breuken Breukentafels: ½ - 2/4 3/6 4/8 enz. De breukenregels:

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Extra oefeningen hoofdstuk 2: Natuurlijke getallen

Extra oefeningen hoofdstuk 2: Natuurlijke getallen Extra oefeningen hoofdstuk 2: Natuurlijke getallen 2.1 Natuurlijke getallen 1 Rangschik de volgende natuurlijke getallen van klein naar groot. 45 54 56 78 23 25 77 89 2 050 2 505 2 055 2 500 2 005 879

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

INHOUDSTAFEL. inhoudstafel... 2

INHOUDSTAFEL. inhoudstafel... 2 INHOUDSTAFEL inhoudstafel... 2 getallenkennis waarde van cijfers in een getal... 6 grote getallen... 7 rekentaal... 8 rekentaal deel 2... 9 soorten getallen... 9 rekentaal deel 3... 10 de ongelijke verdeling...

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

LEERLIJNEN VIERDE LEERJAAR

LEERLIJNEN VIERDE LEERJAAR LEERLIJNEN VIERDE LEERJAAR Uitwerking van de leerlijnen in het vierde leerjaar Inleiding Leerlijnen geven een mogelijk verloop van een ontwikkelingsproces aan. Een leerlijn beschrijft wat er geleerd wordt.

Nadere informatie

Groep 6. Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Don Boscoschool groep 6 juf Kitty

Groep 6. Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Don Boscoschool groep 6 juf Kitty Groep 6 Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Getalbegrip Ging het in groep 5 om de hele getallen tot 1000, nu wordt de getallenwereld uitgebreid. Naast

Nadere informatie

LEERLIJNEN ZESDE LEERJAAR

LEERLIJNEN ZESDE LEERJAAR LEERLIJNEN ZESDE LEERJAAR Uitwerking van de leerlijnen in het zesde leerjaar Inleiding Leerlijnen geven een mogelijk verloop van een ontwikkelingsproces aan. Een leerlijn beschrijft wat er geleerd wordt.

Nadere informatie

Resultaten/foutenanalyse Intergemeentelijke toets IGEAN. Hoofdrekenen Juni 2010. Stedelijke basisschool PRINS DRIES

Resultaten/foutenanalyse Intergemeentelijke toets IGEAN. Hoofdrekenen Juni 2010. Stedelijke basisschool PRINS DRIES Resultaten/foutenanalyse Intergemeentelijke toets IGEAN Hoofdrekenen Juni 2010 Stedelijke basisschool 1 Hoofdrekenen juni 2010 Prins Dries PRINS DRIES In deze bundel vind je a) De opdrachten waarbij de

Nadere informatie

LES 105 GETALLENKENNIS VEELVOUDEN, 2 VAN 3 N GEMEENSCHAPPELIJKE VEELVOUDEN, KLEINSTE GEMEENSCHAPPELIJK VEELVOUD

LES 105 GETALLENKENNIS VEELVOUDEN, 2 VAN 3 N GEMEENSCHAPPELIJKE VEELVOUDEN, KLEINSTE GEMEENSCHAPPELIJK VEELVOUD SPRONG 9 LES 5 GETALLENKENNIS VEELVOUDEN, 2 VAN 3 N GEMEENSCHAPPELIJKE VEELVOUDEN, KLEINSTE GEMEENSCHAPPELIJK VEELVOUD A. Situering van de les leerlijn 7 delers en veelvouden duur 50 minuten doelenverwijzing

Nadere informatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deze mappen willen wegwijzers aanreiken om vanuit begrip en respect het beste te halen uit die leerlingen die de basis wiskundeleerstof uit

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

Leerlijnopbouw Nieuwe Pluspunt 4

Leerlijnopbouw Nieuwe Pluspunt 4 Leerlijnopbouw Nieuwe Pluspunt 4 Getallenkennis Leerlijn 1: Ontwikkeling getalbegrip Getallen tot 1 000 - in een positietabel plaatsen - op de getallenas plaatsen - samenstellen en opsplitsen in H T E,

Nadere informatie

Leerstofoverzicht groep 6

Leerstofoverzicht groep 6 Leerstofoverzicht groep 6 Getallen en relaties Basisbewerkingen Leerlijn Groep 6 Uitspraak, schrijfwijze, kenmerken getallen boven 10 000 in cijfers schrijven haakjesnotatie deler en deeltal breuknotatie

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

leerjaar doelenkatern

leerjaar doelenkatern Blok Pagina Blok 1 2 tot 10 Blok 2 11 tot 20 Blok 3 21 tot 31 Blok 4 32 tot 40 Blok 5 41 tot 49 Blok 6 50 tot 57 Blok 7 58 tot 65 leerjaar 6 doelenkatern Voorafgaande toelichting bij doelenkatern, leerjaar

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Extra oefeningen Hoofdstuk 8: Rationale getallen

Extra oefeningen Hoofdstuk 8: Rationale getallen Extra oefeningen Hoofdstuk 8: Rationale getallen 1 Noteer met een breuk. a) Mijn stripverhaal is voor de helft uitgelezen. Een kamer is voor behangen. c) van de cirkel is gekleurd. 15 Gegeven : 18 teller

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

1 Info coach Rekentaal Schatten Delen met rest Cijferend optellen en aftrekken met komma...19

1 Info coach Rekentaal Schatten Delen met rest Cijferend optellen en aftrekken met komma...19 Inhoud 1 Info coach... 5 2 Rekentaal... 9 3 Schatten...11 4 Delen met rest...14 5 Cijferend optellen en aftrekken met komma...19 5.1 Instructies... 19 5.2 Oefen het optellen in... 22 5.3 Aftrekken... 24

Nadere informatie

JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10

JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10 JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10 Op basis van 5 wiskundelessen per week Week 44: herfstvakantie Week 52 en 1: Kerstvakantie Week 10: krokusverlof Week 15 en 16: Paasvakantie

Nadere informatie

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen Getallenkennis Target 1 Les 1: getalbegrip to 10 000 000 wb. p. 1+2, sb 1 Les 5: kommagetallen tot 0,001 wb. p. 8-9, sb 5 Les 12: breuken vergelijken en sorteren wb. p. 15-16, sb 10 Les 13: breuk als operator,getal,verhouding,

Nadere informatie

6 NEUZE-NEUZEBOEK REKENSPRONG. leerlijnen: Eric De Witte. Raf Lemmens. Paul Nijs. Hilde Van Iseghem. Viv Vingerhoets. Eric De Witte.

6 NEUZE-NEUZEBOEK REKENSPRONG. leerlijnen: Eric De Witte. Raf Lemmens. Paul Nijs. Hilde Van Iseghem. Viv Vingerhoets. Eric De Witte. leerlijnen: Eric De Witte Raf Lemmens Paul Nijs Hilde Van Iseghem Viv Vingerhoets auteurs: René De Cock Eric De Witte Myriam Neirynck Peter Van Cleemput Marc Verschraege 6 NEUZE-NEUZEBOEK REKENSPRONG Rekensprong

Nadere informatie

Proefwerken juni 2017

Proefwerken juni 2017 Proefwerken juni 2017 Donderdag 15 juni Bewerkingen & toepassingen Luisteren & taalsystematiek* Vrijdag 16 juni Begrijpend lezen * Getallenkennis & toepassingen Maandag 19 juni Dinsdag 20 juni Spelling

Nadere informatie

1. Veelvouden en delers. 2. Vereenvoudigen. 3. Gelijknamig maken. 4. Optellen & aftrekken. 5. Vermenigvuldigen

1. Veelvouden en delers. 2. Vereenvoudigen. 3. Gelijknamig maken. 4. Optellen & aftrekken. 5. Vermenigvuldigen Naam: Datum: Leraar:. Veelvoud delers 2. Verevoudig. Gelijknamig mak. Optell & aftrekk. Vermigvuldig 6. Del . Veelvoud delers E veelvoud van e natuurlijk getal is e product van dat getal met 0,, 2,,,,...

Nadere informatie

5 NEUZE-NEUZEBOEK REKENSPRONG. René De Cock. Raf Lemmens. Paul Nijs. Eric De Witte. Eline Govaert. Hilde Van Iseghem. Martien Hendrix.

5 NEUZE-NEUZEBOEK REKENSPRONG. René De Cock. Raf Lemmens. Paul Nijs. Eric De Witte. Eline Govaert. Hilde Van Iseghem. Martien Hendrix. leerlijnen: Eric De Witte auteurs: Kristel Croes Raf Lemmens René De Cock Paul Nijs Eric De Witte Hilde Van Iseghem Eline Govaert Viv Vingerhoets Martien Hendrix Greta Leunen Ann Missotten Myriam Neirynck

Nadere informatie

5 5d o e l e n k a t e r n

5 5d o e l e n k a t e r n Blok Pagina Blok 1 2 tot 10 Blok 2 11 tot 21 Blok 3 22 tot 32 Blok 4 33 tot 40 Blok 5 41 tot 50 Blok 6 51 tot 60 Blok 7 61 tot 68 leerjaar 5 5d o e l e n k a t e r n Voorafgaande toelichting bij doelenkatern,

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden A Notatie en betekenis - Uitspraak, schrijfwijze en betekenis van, symbolen en relaties - Wiskundetaal gebruiken - de relaties groter/kleiner dan - breuknotatie met horizontale streep - teller, noemer,

Nadere informatie

doelenkatern leerjaar Blok Pagina Blok 1 2 tot 11 Blok 2 12 tot 20 Blok 3 21 tot 29 Blok 4 30 tot 37 Blok 5 38 tot 44 Blok 6 45 tot 53

doelenkatern leerjaar Blok Pagina Blok 1 2 tot 11 Blok 2 12 tot 20 Blok 3 21 tot 29 Blok 4 30 tot 37 Blok 5 38 tot 44 Blok 6 45 tot 53 Blok Pagina Blok 1 2 tot 11 Blok 2 12 tot 20 Blok 3 21 tot 29 Blok 4 30 tot 37 Blok 5 38 tot 44 Blok 6 45 tot 53 Blok 7 54 tot 62 leerjaar 3 doelenkatern Voorafgaande toelichting bij doelenkatern, leerjaar

Nadere informatie

Extra oefeningen hoofdstuk 4: Deelbaarheid

Extra oefeningen hoofdstuk 4: Deelbaarheid Extra oefeningen hoofdstuk 4: Deelbaarheid 4.1 Delers en veelvouden 1 Bepaal door opsomming. a) del 84 =... b) del 13 =... c) del 44 =... d) del 89 =... e) del 1 =... f) del 360 =... 2 Bepaal de eerste

Nadere informatie

Jaaroverzicht Kompas zesde leerjaar

Jaaroverzicht Kompas zesde leerjaar Week 1 WB 6A 3 Jaaroverzicht Kompas zesde leerjaar Getallenkennis Bewerkingen Meten en Les 1 Getalbegrip tot 10 000 000 Week 2 Les 1 Kommagetallen tot op Week 3 Les 1 Breuken vergelijken en ordenen Soorten

Nadere informatie

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2 Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Joep van Vugt Anneke Wösten Handig optellen; tribunesom* Bij optellen van bijna ronde getallen zoals 39, 198, 2993,..

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Hoofdstuk 1 : REKENEN

Hoofdstuk 1 : REKENEN 1 / 6 H1 Rekenen Hoofdstuk 1 : REKENEN 1. Wat moet ik leren? (handboek p.3-34) 1.1 Het decimaal stelsel In verband met het decimaal stelsel: a) het grondtal van ons decimaal stelsel geven. b) benamingen

Nadere informatie

Analyse van getallen tot (2)

Analyse van getallen tot (2) WERKBOEK 5 Les 7 Analyse van getallen tot 1 000 000 (2) Dit kan ik al! Ik kan getallen tot 1 000 000 lezen en schrijven. Ik kan getallen tot 1 000 000 op een getallenas plaatsen. Ik kan getallen tot 1

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

Elementaire rekenvaardigheden

Elementaire rekenvaardigheden Hoofdstuk 1 Elementaire rekenvaardigheden De dingen die je niet durft te vragen, maar toch echt moet weten Je moet kunnen optellen en aftrekken om de gegevens van de patiënt nauwkeurig bij te kunnen houden.

Nadere informatie

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken 1 d elen colofon en hal eren Het ik maak DiKiBO de Breukenboekje som makkelijk Voor groep 6, 7 en 8 DiKiBO behandelt op iedere kaart een bepaald soort som en aan de

Nadere informatie

LEERLIJNEN VIJFDE LEERJAAR

LEERLIJNEN VIJFDE LEERJAAR LEERLIJNEN VIJFDE LEERJAAR Uitwerking van de leerlijnen in het vijfde leerjaar Inleiding Leerlijnen geven een mogelijk verloop van een ontwikkelingsproces aan. Een leerlijn beschrijft wat er geleerd wordt.

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

Kommagetallen. Twee stukjes is

Kommagetallen. Twee stukjes is Kommagetallen Een kommagetal is een getal dat niet heel is. Het is een breuk. Voor de komma staan de helen, achter de komma staat de breuk. De cijfers achter de komma staan voor de tienden, honderdsten,

Nadere informatie