Het Breukenboekje. Alles over breuken

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Het Breukenboekje. Alles over breuken"

Transcriptie

1 Het Breukenboekje Alles over breuken

2 breuken breukentaal tekening getal een hele 1 een halve een kwart een achtste ½ of ½ ¼ of ¼ ⅛ of ⅛ 3

3 breuken breukentaal tekening getal een vijfde ⅕ of ⅕ een tiende 1/10 of 110 een derde een zesde ⅓ of ⅓ ⅙ of ⅙ 4

4 breukenstroken 1 ½ ½ ⅓ ⅓ ⅓ ¼ ¼ ¼ ¼ ⅕ ⅕ ⅕ ⅕ ⅕ ⅙ ⅙ ⅙ ⅙ ⅙ ⅙ ⅛ ⅛ ⅛ ⅛ ⅛ ⅛ ⅛ ⅛

5 teller en noemer een breuk bestaat uit een teller en een noemer en ziet er zo uit: teller 1 1 hele delen door noemer 3 3 of zo: teller / noemer 1/3 noemer: - de naam van de breuk - het aantal stukken, waarin 1 hele is verdeeld - 1 hele delen door 3 teller: - telt het aantal delen - 1 van de 3 1/3-2 van de 3 2/3 6

6 breuken op de getallenlijn een breuk ligt tussen 2 hele getallen in de lijn is verdeeld in 8 stukjes achtsten =3 de lijn is verdeeld in 6 stukjes zesden TIP =5 tel de stukjes in plaats van de strepen 7

7 helen uit een breuk halen als de teller groter is dan de noemer dan kan ik een hele uit de breuk halen HOE? teller : noemer 82 8 : 2 = 4 82 = : 8 = 1 rest ⅜ 181 = 1 rest ⅜ 8

8 breuken vereenvoudigen ik maak de breuk zo klein mogelijk ik deel teller en noemer door hetzelfde getal 12 : : : : 2 5 verder delen kan niet of in 1 keer 12 : : 4 5 9

9 breuk en kommagetal een breuk een kommagetal 1 1, ,5 14 0, , , , , , ,01 10

10 eerlijk delen 2 kinderen verdelen 1 pizza 1 pizza 1 ieder krijgt 2 kinderen 2 pizza 6 kinderen verdelen 5 chocolade repen 5 repen 5 ieder krijgt 6 kinderen 6 reep de pizza ligt op de tafel 11

11 echte breuken een breuk ligt tussen twee hele getallen in een echte breuk is kleiner dan een hele 0 1/2 1 een gemengde breuk bestaat uit een hele en een breuk 3 31/4 4 dit zijn ook breuken: een procent een breuk met 100 als noemer 25% = 25/100 een kommagetal een decimale breuk 0,5 = 5/10 = 1/2 12

12 gemengd getal ik maak een breuk van het gemengde getal = de som is het hele getal x de noemer + de teller de som is 3 x x 2 = = 7 3 = 13

13 breuken gelijknamig maken ik maak de noemers hetzelfde HOE? ik kijk naar de tafels van de noemers 2. ik zoek het kleinste antwoord dat in allebei de tafels voorkomt 3. 4 x 6 = 24 en 3 x 8 =

14 breuken gelijknamig maken ik maak de noemers hetzelfde hiervoor zoek ik het kleinste gemeenschappelijke veelvoud, het kgv HOE? ik kijk naar de tafels van de noemers 2. ik zoek het kleinste antwoord dat in allebei de tafels voorkomt, dit is het kgv 3. 4 x 6 = 24 en 3 x 8 =

15 breuken vereenvoudigen ik deel teller en noemer door hetzelfde getal hiervoor zoek ik de grootste gemeenschappelijke deler, de ggd HOE? de teller kan ik delen door 2, 4 en 8 de noemer kan ik delen door 2, 3, 4, 6 en de grootste deler, die in allebei de tafels voorkomt is : 4 = 2 12 : 4 =

16 breuken optellen 2 ¾ + 3 ⅘ = 1. ik maak de breuken gelijknamig: ¾ = 1250 ⅘ = ik tel de helen bij elkaar op: = 5 3. ik tel de breuken bij elkaar op: = ik zet de breuk achter de hele: ik haal de helen uit de breuk = ik vereenvoudig de breuk als dat kan 2 ¾ + 3 ⅘ =

17 breuken aftrekken 3 ⅘ - 2 ¾ = 1. ik maak de breuken gelijknamig: ⅘ = 1260 ¾ = ik trek de helen van elkaar af: 3-2 = 1 3. ik trek de breuken van elkaar af: = ik zet de breuk achter de hele: ⅘ - 2 ¾ =

18 breuken aftrekken 3 ¼ - 2 ⅞ = 1. ik maak de breuken gelijknamig: ¼ = ⅞ kan niet 2. ik ga lenen bij de 3 = ¼ = 3 28 = de som is nu: ⅞ = ⅜ 3 ¼ - 2 ⅞ = ⅜ 19

19 breuken aftrekken 3 ¼ - 1 ⅞ = 1. ik maak de breuken gelijknamig: ¼ = ⅞ kan niet ik maak breuken van de helen 2. 3 ¼ = 3 28 = ⅞ = x = de som is nu = ¼ - 1 ⅞ = = 181 = 1 ⅜ 20

20 breuken vermenigvuldigen 3 8 x x ik vermenigvuldig het hele getal met de teller 2. ik deel door de noemer 3. ik vereenvoudig het antwoord 4. ik haal de helen uit het antwoord 21

21 wegstrepen vóór ik ga vermenigvuldigen ga ik wegstrepen wegstrepen = ik deel teller en noemer door hetzelfde getal 4 : 4 = 1 7 x 4 7 x 4 7 x x 9 8 x 9 2 x : 4 = 2 teller en noemer deel ik door 4 zo wordt de keersom kleiner dat rekent beter 22

22 delen door een breuk : x ik keer de breuk om en maak er een keersom van delen door een breuk is vermenigvuldigen met het omgekeerde 23

23 rekenen met breuken een breuk + een breuk ik maak de noemers gelijknamig een breuk - een breuk ik maak de noemers gelijknamig teller + teller noemer teller - teller noemer een breuk x een breuk een breuk : een breuk ik keer de tweede breuk om teller x teller noemer x noemer teller x noemer noemer x teller delen door een breuk is vermenigvuldigen met het omgekeerde 24

24 breuken als procent de breuk het procent 1 100% 50% 25% 12,5% 1333,33% 1616,66% 20% 10% 1% 25

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken 1 d elen colofon en hal eren Het ik maak DiKiBO de Breukenboekje som makkelijk Voor groep 6, 7 en 8 DiKiBO behandelt op iedere kaart een bepaald soort som en aan de

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl Breuken Breuk

Nadere informatie

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28 Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

Reken zeker: leerlijn breuken

Reken zeker: leerlijn breuken Reken zeker: leerlijn breuken B = breuk H = hele HB = hele plus breuk (1 1/4) Blauwe tekst is theorie uit het leerlingenboek. De breuknotatie in Reken zeker is - anders dan in deze handout - met horizontale

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Kommagetallen. Twee stukjes is

Kommagetallen. Twee stukjes is Kommagetallen Een kommagetal is een getal dat niet heel is. Het is een breuk. Voor de komma staan de helen, achter de komma staat de breuk. De cijfers achter de komma staan voor de tienden, honderdsten,

Nadere informatie

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen.

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen. Uitwerkingen hoofdstuk Gebroken getallen. Kennismaken met breuken.. Deel van geheel Opdracht. a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde

Nadere informatie

TOELICHTING REKENEN MET BREUKEN

TOELICHTING REKENEN MET BREUKEN TOELICHTING REKENEN MET BREUKEN 1 2 3 11628_rv_wb_breuken_bw.indd 2 13-11-12 23:2611628_rv_wb_breuken_bw.indd 3 13-11-12 23:27 4 5 6 Rekenvlinder Rekenen met breuken Toelichting Uitgeverij Zwijsen B.V.,

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken Deel 1 78 & het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken 2 DIT IS HET DiKiBO-BOEK VAN TIP PAS OP 2 HOE? hoi, ik ben DiKiBO samen met mijn vrienden help ik jou bij

Nadere informatie

Het weetjesschrift. Weetjesschrift Galamaschool

Het weetjesschrift. Weetjesschrift Galamaschool Het weetjesschrift Dit is het weetjesschrift. In dit schrift vind je heel veel weetjes over taal, rekenen en andere onderwerpen. Sommige weetjes zal je misschien al wel kennen en anderen leer je nog! Uiteindelijk

Nadere informatie

WISo. Handleiding breukendoos. www.zwiso.be. Inhoud breukendoos. Gebruik van de breukendoos. Inzicht in breuken

WISo. Handleiding breukendoos. www.zwiso.be. Inhoud breukendoos. Gebruik van de breukendoos. Inzicht in breuken Handleiding breukendoos Inhoud breukendoos De breukendoos bevat: - metalen breukenbord met vermelding van het geheel en de stambreuken van t.e.m. en ruimte voor de kommagetallen- en de procentstrook -

Nadere informatie

DIT IS HET DiKiBO-BOEK VAN

DIT IS HET DiKiBO-BOEK VAN Groep 5 6 & 2 DIT IS HET DiKiBO-BOEK VAN TIP PAS OP 2 HOE? hoi, ik ben DiKiBO samen met mijn vrienden help ik jou bij het leren 3 COLOFON DiKiBO presenteert het complete reken-zakboek voor groep 5 & 6

Nadere informatie

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? deel

Nadere informatie

Afspraken hoofdrekenen eerste tot zesde leerjaar

Afspraken hoofdrekenen eerste tot zesde leerjaar 24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is

Nadere informatie

spiekboek rekenen beter rekenen op de entreetoets van het Cito groep

spiekboek rekenen beter rekenen op de entreetoets van het Cito groep spiekboek rekenen beter rekenen op de entreetoets van het Cito groep 3 COLOFON 3 DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 6 groep 5 & 6 (een uittreksel van DiKiBO

Nadere informatie

spiekboek rekenen de ultieme voorbereiding op de Citotoets groep

spiekboek rekenen de ultieme voorbereiding op de Citotoets groep spiekboek rekenen de ultieme voorbereiding op de Citotoets groep 3 COLOFON 3 DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 8 groep 5 & 6 (een uittreksel van DiKiBO Rekenen

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

INHOUDSTAFEL. inhoudstafel... 2

INHOUDSTAFEL. inhoudstafel... 2 INHOUDSTAFEL inhoudstafel... 2 getallenkennis waarde van cijfers in een getal... 6 grote getallen... 7 rekentaal... 8 rekentaal deel 2... 9 soorten getallen... 9 rekentaal deel 3... 10 de ongelijke verdeling...

Nadere informatie

Spiekboekje. Knowledgebridge Onderwijs Hein v.d. Velden

Spiekboekje. Knowledgebridge Onderwijs Hein v.d. Velden Spiekboekje Knowledgebridge Onderwijs Hein v.d. Velden 1 rekenen tot 20 verliefde getallen verliefde getallen zijn samen 10 1+9= 2+8= 3+7= 10 4+6= 5+5= 0+10= 2 getallenlijn 20 + plus 7 + 6= 7 + 3 = 10

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Deel A. Breuken vergelijken

Deel A. Breuken vergelijken Deel A Breuken vergelijken - - 0 Breuken en brokken (). Kleur van elke figuur deel. Doe het zo nauwkeurig mogelijk.. Kleur van elke figuur deel. Doe het telkens anders.. Kleur steeds het deel dat is aangegeven.

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel Opdracht 2 blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een heel blaadje.

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat. 92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,

Nadere informatie

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen Uitwerkingen 2. Kennismaken met breuken 2.. Deel van geheel Opdracht B 8 deel. ( deel + 8 deel). Opdracht 2 C 5 deel Opdracht C Driehoek C past in driehoek A. Aangezien driehoek A deel is van de tekening,

Nadere informatie

Antwoorden bij Rekenen met het hoofd

Antwoorden bij Rekenen met het hoofd Antwoorden bij Rekenen met het hoofd Hoofdstuk Basisbewerkingen. Bewerkingen in beeld a. : splitsen in 5 en. Eerst min 5, dan min 0 en tenslotte nog min : splitsen in 5 en, die uitvoeren en dan nog stapsgewijs

Nadere informatie

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen Getallenkennis Target 1 Les 1: getalbegrip to 10 000 000 wb. p. 1+2, sb 1 Les 5: kommagetallen tot 0,001 wb. p. 8-9, sb 5 Les 12: breuken vergelijken en sorteren wb. p. 15-16, sb 10 Les 13: breuk als operator,getal,verhouding,

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

Rekentermen en tekens

Rekentermen en tekens Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste

Nadere informatie

Deel C. Breuken. vermenigvuldigen en delen

Deel C. Breuken. vermenigvuldigen en delen Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt

Nadere informatie

TOELICHTING BETEKENIS GEVEN AAN BREUKEN

TOELICHTING BETEKENIS GEVEN AAN BREUKEN TOELICHTING BETEKENIS GEVEN AAN BREUKEN 1 2 3 Rekenvlinder_betekenis_geven_aan_breuken.indd 2 27-06-13 21:57 4 5 6 13226_rv_wb_betekenis_geven_aan_breuken_bw.indd 3 04-07-13 17:26 liter 1 0 Rekenvlinder

Nadere informatie

Start u met zwiso in verschillende leerjaren tegelijkertijd?

Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Geef dan eventueel aan het begin van het schooljaar enkele lessen uit het voorafgaande

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

ALBERDINGK THIJM COLLEGE REKENGIDS. Basis en afspraken rekenen

ALBERDINGK THIJM COLLEGE REKENGIDS. Basis en afspraken rekenen ALBERDINGK THIJM COLLEGE REKENGIDS Basis en afspraken rekenen VOORWOORD Deze rekengids is bedoeld als overzichtelijk naslagwerk voor leerlingen, ouders, docenten en alle anderen die met rekenen te maken

Nadere informatie

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN OPTELLEN/AFTREKKEN Zet de getallen onder elkaar in je schrift eerst zelf proberen uit te rekenen bij aftrekken: denk om lenen bij optellen: denk om doorschuiven geen vergissingen? bij lang nadenken: rekenmachine

Nadere informatie

Breuken som en verschil

Breuken som en verschil Auteur Laatst gewijzigd Licentie Webadres Monique Faken 18 december 2014 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/56142 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet.

Nadere informatie

Van een percentage een breuk maken, is vaak nog eenvoudiger.

Van een percentage een breuk maken, is vaak nog eenvoudiger. breuken breuken en percentages wist je dat breuken en percentages op elkaar lijken Het geheel wordt steeds 100% genoemd. Met de helft wordt dan dus 50% bedoeld. Als men het heeft over 25%, dan bedoelt

Nadere informatie

Getallen en breuken. /1 Schrijf de helen als breuken, of haal de helen uit de breuk. 2 Verdeel de breuken. 3 Verdeel de breuken.

Getallen en breuken. /1 Schrijf de helen als breuken, of haal de helen uit de breuk. 2 Verdeel de breuken. 3 Verdeel de breuken. Getallen en breuken 9 0 0 / Scrijf de elen als breuken, of aal de elen uit de breuk. = =.. =.. 7 =.. =.. =.. 0 9 =.. 0 =.. 0 =.. 7 =.. 9 = = = 0 = 7 = = = = = 7 = 7 Verdeel de breuken. kinderen verdelen

Nadere informatie

RekenTrapperS Cool 1.1

RekenTrapperS Cool 1.1 RekenTrapperS Cool 1.1 Inhoud 1 Doe-activiteiten met kalender en klok... 5 1.1 Weetjes over de indeling van het jaar... 5 1.2 Kloklezen en rekenen met uren, minuten en seconden... 9 2 Getallenkennis tot

Nadere informatie

spiekboek rekenen bereid je goed voor op de entreetoets van het Cito groep

spiekboek rekenen bereid je goed voor op de entreetoets van het Cito groep spiekboek rekenen bereid je goed voor op de entreetoets van het Cito groep 3 COLOFON DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 7 groep 5 & 6 (een uittreksel van DiKiBO

Nadere informatie

Overstapprogramma 6-7

Overstapprogramma 6-7 Overstapprogramma - Cijferend optellen 9 Verdeel het getal. Het getal 8 kun je verdelen in: duizendtallen honderdtallen tientallen eenheden D H T E 8 D H T E 8 = 8 9 9 9 = = = = Zet de getallen goed onder

Nadere informatie

Breuken met letters WISNET-HBO. update juli 2013

Breuken met letters WISNET-HBO. update juli 2013 Breuken met letters WISNET-HBO update juli 2013 De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495.

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495. Bij vermenigvuldigen van twee grote getallen onder elkaar staan de rijen onder de streep elk voor een tussenstap. De eerste rij staat voor het vermenigvuldigen met het cijfer dat de eenheden van het onderste

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 100 000 10 Les 2: Natuurlijke getallen kleiner dan 1 000 000

Nadere informatie

breuken 1.0 Inleiding 1.1 Natuurlijke getallen

breuken 1.0 Inleiding 1.1 Natuurlijke getallen 1 Natuurlijke getallen, breuken 1.0 Inleiding Dit hoofdstuk begint in paragraaf 1.1 met het rekenen met de getallen 0, 1, 2,, enzovoort. Dat heb je op de lagere school ook geleerd, alleen wordt er nu wat

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

Hoofdstuk 9: NEGATIEVE GETALLEN

Hoofdstuk 9: NEGATIEVE GETALLEN 1 H9. Negatieve getallen Hoofdstuk 9: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 53 57) 9.1 Getallen onder 0 Het verschil verwoorden tussen positieve en negatieve getallen. Weten dat we 0 zowel

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

Jaaroverzicht Kompas zesde leerjaar

Jaaroverzicht Kompas zesde leerjaar Week 1 WB 6A 3 Jaaroverzicht Kompas zesde leerjaar Getallenkennis Bewerkingen Meten en Les 1 Getalbegrip tot 10 000 000 Week 2 Les 1 Kommagetallen tot op Week 3 Les 1 Breuken vergelijken en ordenen Soorten

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? 8

Nadere informatie

D A G 1 : T W E E D O M E I N E N

D A G 1 : T W E E D O M E I N E N REKENEN 3F DAG 1 :TWEE DOMEINEN DAG 2 : TWEE DOMEINEN DAG 3: EXAMENTRAINING DAG 4:EXAMENTRAINING EN A FRONDING Programma: Voorstellen 13.30 uur 16.15 uur Pauze: 15 minuten Theorie dag 1: Domein Getallen

Nadere informatie

Hoofdstuk 3: NEGATIEVE GETALLEN

Hoofdstuk 3: NEGATIEVE GETALLEN 1-6 H3. Negatieve getallen Hoofdstuk 3: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 96 123) 3.1 Positieve en negatieve getallen Het verschil verwoorden tussen positieve en negatieve getallen.

Nadere informatie

GETALLEN deel De waarde van een cijfer wordt bepaald door de. We lezen 1 E. .. vijf tientallen

GETALLEN deel De waarde van een cijfer wordt bepaald door de. We lezen 1 E. .. vijf tientallen GETALLEN deel Les 2 : Getallenkennis: getallen tot 00 000. De waarde van de cijfers in een getal: De waarde Je leest Besluit:..................... De waarde van een cijfer wordt bepaald door de in et getal.

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

Blok 1 GB les 2 K1: cijfers 2 en 3 overtrekken en zelf schrijven

Blok 1 GB les 2 K1: cijfers 2 en 3 overtrekken en zelf schrijven Blok GB les 2 K: cijfers 2 en 3 overtrekken en zelf schrijven Cijfers 2 en 3 overtrekken en zelf schrijven 2 3 Start Van richting veranderen Stop Start Van richting veranderen Stop Overtrek de cijfers.

Nadere informatie

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar De Graankorrel Wervik Mijn wiskundehulpschrift van 1 tot 6 leerjaar We gebruiken de rekenmethode Zo gezegd, zo gerekend! van het eerste tot het zesde leerjaar. Eerste leerjaar blz. 2 Tweede leerjaar blz.

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Handboek Rekenen 3. hele getallen, kommagetallen en breuken bewerken. Extra uitleg bij Zakboek Rekenen 3

Handboek Rekenen 3. hele getallen, kommagetallen en breuken bewerken. Extra uitleg bij Zakboek Rekenen 3 Handboek Rekenen 3 hele getallen, kommagetallen en breuken bewerken LEERHULP.NL Extra uitleg bij Zakboek Rekenen 3 INLEIDING Dit handboek hoort bij de DiKiBO uitgave: Zakboek Rekenen 3 hele getallen, kommagetallen

Nadere informatie

Wiskunde in vierde, vijfde en zesde klas Lezing

Wiskunde in vierde, vijfde en zesde klas Lezing Wiskunde in vierde, vijfde en zesde klas Lezing 14-02-2006 BREUKEN Nog eenmaal pannenkoeken verdelen. De cirkel als meest gebruikte beeld bij de breuken Breukentafels: ½ - 2/4 3/6 4/8 enz. De breukenregels:

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Eenvoudige breuken. update juli 2007 WISNET-HBO

Eenvoudige breuken. update juli 2007 WISNET-HBO Eenvoudige reuken update juli 2007 WISNET-HBO De edoeling van deze les is het repeteren met pen en papier van het werken met reuken. Steeds wordt ij geruik van letters verondersteld dat de noemers van

Nadere informatie

Op stap naar 1 B Minimumdoelen wiskunde

Op stap naar 1 B Minimumdoelen wiskunde Campus Zuid Boomsesteenweg 265 2020 Antwerpen Tel. (03) 216 29 38 Fax (03) 238 78 31 www.vclbdewisselantwerpen.be VCLB De Wissel - Antwerpen Vrij Centrum voor Leerlingenbegeleiding Op stap naar 1 B Minimumdoelen

Nadere informatie

BASISBOEK REKENEN. Jan van de Craats en Rob Bosch

BASISBOEK REKENEN. Jan van de Craats en Rob Bosch BASISBOEK REKENEN Jan van de Craats en Rob Bosch voorlopige versie, 0 oktober 00 ISBN- xxx ISBN-0 xxx NUR yyy Trefw rekenen, rekenonderwijs Illustraties en LATEX-opmaak Jan van de Craats Prof. dr. J. van

Nadere informatie

Deel B. Breuken. optellen en aftrekken

Deel B. Breuken. optellen en aftrekken Deel B Breuken optellen en aftrekken - 0 0 Parten optellen 0 tablet chocola klok. Vul in: tablet tablet... stukjes uur uur... minuten - tablet - uur Vul passende breuken in. Schrijf de breuken op zijn

Nadere informatie

Beter een half ei dan een lege dop

Beter een half ei dan een lege dop 5 3 Breuken in cartoons, als verdeling en verhouding Datum Cartoons, om zich een breuk te lachen Vul de juiste betekenis in Kies uit: beter iets dan niets / wie met velen deelt, krijgt weinig / heel hard

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

DE basis WISKUNDE VOOR DE LAGERE SCHOOL

DE basis WISKUNDE VOOR DE LAGERE SCHOOL Inhoud GETALLENKENNIS 13 1 Getallen 13 2 Het decimale talstelsel 14 3 Breuken 16 Begrippen 16 Soorten breuken 16 Een breuk vereenvoudigen 17 4 Breuken, percenten, kommagetallen 18 Breuk omzetten in een

Nadere informatie

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2 Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep

Nadere informatie

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 +

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 + I Getall 0 e π 8 9 Dit deel gaat over het rek met getall. Ze kom in allerlei soort voor: positieve getall, negatieve getall, gehele getall, rationale irrationale getall. De getall, π e zijn voorbeeld van

Nadere informatie

INSIGHT Rekentoets. Spoorboekje. Tijd voor rekenen!

INSIGHT Rekentoets. Spoorboekje. Tijd voor rekenen! INSIGHT Rekentoets Spoorboekje Tijd voor rekenen! Colofon Titel: Subtitel: Uitgave door: Adres: Insight Rekentoets Spoorboekje AMN b.v. Arnhem Oude Oeverstraat 120 6811 Arnhem Tel. 026-3557333 info@amn.nl

Nadere informatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deze mappen willen wegwijzers aanreiken om vanuit begrip en respect het beste te halen uit die leerlingen die de basis wiskundeleerstof uit

Nadere informatie

Oefening: Markeer de getallen die een priemgetal zijn.

Oefening: Markeer de getallen die een priemgetal zijn. Getallenkennis : Priemgetallen. Wat is een priemgetal? Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. (m.a.w. een priemgetal is een natuurlijk getal

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

2 NATUURLIJKE GETALLEN VOORSTELLEN IN EEN TABEL, LEZEN EN NOTEREN

2 NATUURLIJKE GETALLEN VOORSTELLEN IN EEN TABEL, LEZEN EN NOTEREN NATUURLIJKE GETALLEN IN DE REALITEIT Natuurlijke getallen zie en hoor je overal om je heen: Het is 0 uur. Tom woont in nummer 58. Mijn zus wordt morgen 6 jaar. Een broek van 0 euro Uitsluitend te gebruiken

Nadere informatie

DIT IS HET DiKiBO-ZAKBOEK VAN

DIT IS HET DiKiBO-ZAKBOEK VAN Groep 3 4 & 2 2 DIT IS HET DiKiBO-ZAKBOEK VAN HOE WAT PAS OP TIP 3 COLOFON DiKiBO presenteert het complete reken-zakboek voor groep 3 & 4 3 Auteur: Nicolette de Boer Vanderwel B.V. www.nicolettedeboer.com

Nadere informatie

Inhoud 1 Info coach Breuken exploreren met levensecht materiaal Zelf breuken tekenen... 11

Inhoud 1 Info coach Breuken exploreren met levensecht materiaal Zelf breuken tekenen... 11 Inhoud Info coach... Breuken exploreren met levensecht materiaal... 7. Exploreer in doe-activiteiten... 7. Hoe goedkoop is gratis... Zelf breuken tekenen.... Breuken die starten met de helft.... Breuken

Nadere informatie

tafels van 6,7,8 en 9 X

tafels van 6,7,8 en 9 X tafels van 6,7,8 en 9 X 6 7 8 9 6 36 42 48 54 7 42 49 56 63 8 48 56 64 72 9 54 63 72 81 1 alle tafels X 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 2 2 4 6 8 10 12 14 16 18 20 3 3 6 9 12 15 18 21 24 27

Nadere informatie

BASISBOEK REKENEN. Jan van de Craats en Rob Bosch

BASISBOEK REKENEN. Jan van de Craats en Rob Bosch BASISBOEK REKENEN Jan van de Craats en Rob Bosch ISBN: -0-0-- NUR: Trefw: rekenen, rekenonderwijs Dit is een uitgave van Pearson Education Benelux bv, Postbus, 00 AN Amsterdam Website: www.pearsoneducation.nl

Nadere informatie

1. Veelvouden en delers. 2. Vereenvoudigen. 3. Gelijknamig maken. 4. Optellen & aftrekken. 5. Vermenigvuldigen

1. Veelvouden en delers. 2. Vereenvoudigen. 3. Gelijknamig maken. 4. Optellen & aftrekken. 5. Vermenigvuldigen Naam: Datum: Leraar:. Veelvoud delers 2. Verevoudig. Gelijknamig mak. Optell & aftrekk. Vermigvuldig 6. Del . Veelvoud delers E veelvoud van e natuurlijk getal is e product van dat getal met 0,, 2,,,,...

Nadere informatie

spiekboek De beste basis voor het rekenen groep

spiekboek De beste basis voor het rekenen groep spiekboek De beste basis voor het rekenen groep 3 COLOFON 3 DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 5 groep 5 & 6 (een uittreksel van DiKiBO Rekenen Compleet groep

Nadere informatie

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2. Omschrijving Rekenen en Wiskunde Getallen 2

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2. Omschrijving Rekenen en Wiskunde Getallen 2 Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Thema 05: Breuken vmbo-b12. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie.

Thema 05: Breuken vmbo-b12. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd 25 May 2016 Licentie CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/56963 Dit lesmateriaal is gemaakt met Wikiwijs Maken van

Nadere informatie

WISNET-HBO. update aug. 2011

WISNET-HBO. update aug. 2011 Basiskennis van machten WISNET-HBO update aug. 0 Inleiding Deze les doorwerken met pen en papier! We noemen de uitdrukking a 4 (spreek uit: a tot de vierde macht) een macht van a (in dit geval de vierde

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i

Nadere informatie