Het weetjesschrift. Weetjesschrift Galamaschool

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Het weetjesschrift. Weetjesschrift Galamaschool"

Transcriptie

1 Het weetjesschrift Dit is het weetjesschrift. In dit schrift vind je heel veel weetjes over taal, rekenen en andere onderwerpen. Sommige weetjes zal je misschien al wel kennen en anderen leer je nog! Uiteindelijk zal je eind groep 8 deze weetjes ongeveer moeten kennen en kunnen toepassen. Je kan dit schriftje gebruiken om iets op te zoeken als je iets niet of niet meer zeker weet. Voor in dit schriftje staat een inhoudsopgave, zo kan je makkelijk allerlei weetjes opzoeken. Het is handig om dit weetjesschrift altijd bij je te hebben, zodat je altijd dingen kan opzoeken en het weetjesschrift kan gebruiken! Dit kan zijn tijdens lessen op school, maar ook wanneer je thuis je huiswerk moet maken. Kom je toch nog sommen of opdrachten tegen die je niet begrijpt, dan mag je het natuurlijk altijd nog aan je meester of juf vragen!

2 Inhoudsopgave het weetjesschrift Pag. 2 Inhoudsopgave... Pag. 3 Afronden... Pag. 4 Breuken... pag. 5 Vereenvoudigen... pag. 6 Helen uit de breuk halen... pag. 7 + en van ongelijknamige breuken... pag. 8 Vermenigvuldigen (x) met breuken... pag. 9 Delen (:) met breuken... pag. 0 Delen (:) met breuken... Pag. Cijferend optellen-aftrekken... pag. 2 Cijferend vermenigvuldigen... pag. 3 Tafels... pag. 4 Welke munten kennen wij eigenlijk?... pag. 5 Gemiddelde... pag. 6 Groter dan of kleiner dan?... pag. 7 Weegmaten... pag. 8 Omtrek-Oppervlakte-Kilo-Pond-Ons... pag. 9 Inhoudsmaten-Ruimte-Vloeistof pag. 20 Inhoudsmaten Vloeistof en Ruimte... pag. 2 Lengtematen... pag. 22 oppervlaktematen... pag. 23 Omtrek, oppervlakte en inhoud... pag. 24 Kommagetallen... pag. 25 Priemgetallen... pag. 26 Kommagetal, Breuk, Procent.. pag. 27 Procenten pag. 28 Procenten berekenen... pag. 29 Maanden van het jaar... pag. 30 Digitale klok... pag. 3 Minuten van de digitale klok 2

3 Afronden Sommige getallen eindigen niet precies op een rond getal. In zo n geval kan het nodig zijn om af te ronden. Bij afronden moet je met de volgende afspraken rekening houden: Afspraak : Wanneer je een getal op bijvoorbeeld 2 plaatsen achter de komma moet afronden, dan kijk je daarvoor naar het daaropvolgende cijfer (in dit geval dus het 3e cijfer achter de komma). Afspraak 2: Is het cijfer een 5, 6, 7, 8 of 9, dan rond je af naar boven. Afspraak 3: Is het cijfer een 0,, 2, 3 of 4, dan rond je af naar beneden. Afronden naar boven wordt er meer. Het laatste cijfer van het getal dat je gaat opschrijven, Afronden naar beneden Het laatste cijfer van het getal dat je gaat opschrijven, verandert niet en blijft dus gelijk! Voorbeeld: Het getal 3,773 moet ik op plaats achter de komma afronden. Ik kijk dus naar het 2e getal achter de komma (dat is 7). Een 7 betekent: afronden naar boven. Afronden naar boven betekent dat het laatste cijfer van het getal dat je gaat opschrijven er meer wordt. Het antwoord is dus: 3,8. 3

4 B r e u k e n 4

5 Breuken Vereenvoudigen Soms is het mogelijk om de noemer van een breuk kleiner of eenvoudiger te maken. Dit vereenvoudigen doen we met behulp van een schema. Ik kan vereenvoudigen wanneer ik BOVEN en ONDER de breukstreep door hetzelfde getal kan delen. Je blijft altijd proberen of je kan vereenvoudigen! Voorbeeld: : 2 : 2 De TELLER en de De NOEMER kan je delen door 2! 5

6 Breuken rekenen Helen uit de breuk halen Wanneer de TELLER groter is dan de NOEMER, moet ik een hele uit de breuk halen! Een hele is een breuk waarbij de teller en de noemer gelijk zijn = --- = --- = --- = Maar let op! = = = en van gelijknamige breuken Een gelijknamige breukensom is een som waarbij je te maken hebt met gelijke noemers. Het optellen en aftrekken van dit soort sommen is niet zo moeilijk. Je hoeft namelijk alleen maar met de tellers van de breuken te werken. Voorbeeld: = = Afspraak : De noemer verandert dus niet. Afspraak 2: Let wel op het eruit halen van de helen. Voorbeeld: = --- =

7 Breuken rekenen + en van ongelijknamige breuken Deze sommen vragen wat meer werk. Dat komt doordat de noemers van de breuken NIET gelijk zijn. Wij moeten ervoor gaan zorgen dat dat wel het geval wordt. We doen dat door de breuk gelijknamig te maken.! Wanneer de noemers ongelijk zijn, mag ik NIET optellen of aftrekken. Voorbeeld: =??? 2 5 De noemers zijn ONGELIJK. Ik mag geen tellers bij elkaar doen. We gaan nu een noemer zoeken waarin de twee andere noemers passen. Het kan ook zijn dat het een noemer wordt, waarvan je er al hebt.! Wanneer je de twee noemers met elkaar vermenigvuldigt (keer), krijg je altijd een noemer waarin de andere twee passen. Bij de voorbeeldbreuk wordt de noemer dan een tiende. (5 x 2 = 0) Verander nu met een schema de twee breuken in breuken met de noemer tiende. Daarna kan je de breuken bij elkaar optellen. De breuken zijn dan gelijknamig. X 5 X X 5 X 5 Dus: wordt ---- en --- wordt Nu kan ik bij elkaar op gaan tellen: = Het kan bij sommige sommen voorkomen, dat je het antwoord weer kan vereenvoudigen. 7

8 Breuken rekenen Vermenigvuldigen (x) met breuken A) Een breuk vermenigvuldigen met een heel getal 4 28 Vermenigvuldig het hele getal met de teller. De noemer 7 x --- = ---- verandert dus niet! Denk wel altijd aan het eruit halen van 8 8 de helen. Tot slot, als het kan ook nog vereenvoudigen = = B) Twee breuken met elkaar vermenigvuldigen Onthoud dat je breuken vermenigvuldigt door de tellers en de noemers met elkaar te vermenigvuldigen. Voer altijd de volgende stappen uit: Stap : Wegstrepen (als dat kan tenminste!) Let op! Een teller gaat tegen een noemer. De teller en de noemer moeten door hetzelfde getal deelbaar zijn. Voorbeeld: x --- = --- x --- = --- x Stap 2: Stap 3: Het vermenigvuldigen De tellers x 2 = De noemers 8 x 3 = 24 Uitkomst vereenvoudigen Nu ga je de teller als noemer delen door hetzelfde getal =

9 Breuken rekenen Delen (:) met breuken A) Een breuk delen door een heel getal 24 4 Deel de teller door het hele getal. De noemer verandert ---- : 6 = --- dus NIET. Ook bij deze sommen moet je, als het nodig is, 7 7 de helen eruit halen en vereenvoudigen. B) Een breuk delen door een andere breuk Bij het delen van breuken moet je altijd aan de volgende regel denken:! Delen is vermenigvuldigen met het omgekeerde. Voorbeeldsom: : --- =??? 4 8 Voer altijd de volgende stappen uit: Stap : Wissel hele getallen in je breuk in voor stukken = Stap 2: Keer de tweede breuk om. En : wordt x! Stap 3: : --- = ---- : --- = ---- x Wegstrepen (als dat kan tenminste)! Altijd een teller tegen een noemer. Beide moeten deelbaar zijn door hetzelfde getal! x --- = ---- x --- = ---- x

10 Stap 4: Vermenigvuldigen.! De tellers met elkaar en de noemers met elkaar! x --- = Stap 5: Als het kan, de helen eruit halen = Stap 6: Als het kan, vereenvoudigen = (:2) 6 3 0

11

12 2

13 Het wordt nog iets moeilijker als de sommen boven de tafels uitkomen. Dan moet er namelijk eerst gesplitst worden. Voorbeelden: 98 : 8 = 96 splitsen in 80 (0 x 8) en 6 80 : 8 = 0, 6 : 8 = 2, = 2. Dus je antwoord is : 3 = 57 splitsen in 30 (0 x 3) en : 3 = 0, 27 : 3 = 9, = 9. Dus je antwoord is : 4 = 92 splitsen in 40 (0 x 4), nog een keer 40 (0 x 4) en : 4 = 0, 40 : 4 = 0, 2 : 4 = 3, = 23. Dus je antwoord is 23. Nu zijn we vanzelf bij het cijferend delen aangekomen. We moeten alleen de getallen nu nog onder elkaar zetten. Voorbeelden: 945 : 35 = 384 : 2 = x 20 0x x 20 0x x 20 0x x 24 2x 0 27x 0 32x Je hebt natuurlijk ook nog deelsommen met een rest. Ook deze sommen kan je oplossen door ze onder elkaar te zetten, dus door cijferend delen : 2 = 32 rest : 2 = 32 rest x x x x x 20 0x x 24 2x x 24 2x 4 32x 3

14 De euro ( ) Welke munten kennen wij eigenlijk? Muntstuk Waarde Muntstuk Waarde 2,- 0,0,- 0,05 0,05 0,50 0,02 0,20 0,0 Verder kennen we ook de briefjes van 5,-, 0,-, 20,-, 50,-, 00,-, 200,-, 500,-. Let bij de geldsommen op de volgende afspraken: Afspraak : Gebruik bij geldsommen altijd het - teken en de komma. Afspraak 2: Let op dat er nooit meer dan 2 cijfers achter de komma staan. 4

15 Gemiddelde Als je het gemiddelde uit moet rekenen, moet je je aan 2 afspraken houden: Afspraak : Tel alles bij elkaar op. Afspraak 2: Deel het antwoord van afspraak door het aantal getallen wat je bij afspraak hebt opgeteld. Voorbeeld: Voor je geschiedenistoetsen krijg je cijfers. Aan het einde van het jaar wil de meester of juf weten wat jouw gemiddelde cijfer is voor geschiedenis. Dit zijn je gehaalde cijfers: Blok 4 7,5 Blok 5 8,0 Blok 6 6,5 Ik ga nu eerst de cijfers bij elkaar op tellen. (7,5 + 8,0 + 6,5 = 22) Dit antwoord ga ik delen door 3, omdat je 3 cijfers hebt gehaald. 22 : 3 = 7 rest = ongeveer een 7,3 Je gemiddelde cijfer voor geschiedenis is een 7,3. 5

16 Groter dan of kleiner dan? > betekent: is groter dan < betekent: is kleiner dan = betekent: is gelijk aan > < = l< K van kleiner dan 6

17 7

18 8

19 9

20 2 0

21 2

22 2 2

23 2 3

24 Kommagetallen duizendtallen honderdtallen tientallen losse (eenheden) 3.462,738 tienden honderdsten duizendsten 0,23 = honderdrieëntwintig duizendsten 0,73 = drieënzeventig hondersten 0,5 = vijf tienden Afspraak : Links van de komma staan de hele getallen Afspraak 2: Rechts van de komma staan getallen kleiner dan Afspraak 3: Wanneer je + of doet met kommagetallen, zorg er dan altijd voor dat de komma s onder elkaar staan. Afspraak 4: Je kunt kommagetallen ook als een breuk schrijven. Zie de kommagetallen en breuken hieronder: 3 0,5 = ,25 = --- 0,75 = ,25 = --- 0, = ,2 = ---- =

25 Priemgetallen! Priemgetallen zijn getallen die ALLEEN deelbaar zijn door het getal en zichzelf! Het cijfer hebben ze niet mee laten doen. Voorbeelden van priemgetallen zijn: 2, 3, 5, 7,, 3, 7. Maar ook hele grote getallen als: 003, 22093, 3385, 43. Het getal 0 is geen priemgetal, omdat je 0 ook kunt delen door 5 en 2. En priemgetallen zijn dus alleen maar getallen die deelbaar zijn door het getal en zichzelf. Kijk maar eens of je zelf ook een priemgetal kunt vinden. 2 5

26 Kommagetal Breuk Procent 00 % 0, % 0, % 0,25 8 2,5 % 0, ,33 % 0, 0 0 % 0, % 2 6

27 2 7

28 2 8

29 2 9

30 3 0

31 3

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28 Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je

Nadere informatie

Reken zeker: leerlijn breuken

Reken zeker: leerlijn breuken Reken zeker: leerlijn breuken B = breuk H = hele HB = hele plus breuk (1 1/4) Blauwe tekst is theorie uit het leerlingenboek. De breuknotatie in Reken zeker is - anders dan in deze handout - met horizontale

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

Kommagetallen. Twee stukjes is

Kommagetallen. Twee stukjes is Kommagetallen Een kommagetal is een getal dat niet heel is. Het is een breuk. Voor de komma staan de helen, achter de komma staat de breuk. De cijfers achter de komma staan voor de tienden, honderdsten,

Nadere informatie

Rekentermen en tekens

Rekentermen en tekens Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste

Nadere informatie

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN OPTELLEN/AFTREKKEN Zet de getallen onder elkaar in je schrift eerst zelf proberen uit te rekenen bij aftrekken: denk om lenen bij optellen: denk om doorschuiven geen vergissingen? bij lang nadenken: rekenmachine

Nadere informatie

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl Breuken Breuk

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken Deel 1 78 & het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken 2 DIT IS HET DiKiBO-BOEK VAN TIP PAS OP 2 HOE? hoi, ik ben DiKiBO samen met mijn vrienden help ik jou bij

Nadere informatie

Afspraken hoofdrekenen eerste tot zesde leerjaar

Afspraken hoofdrekenen eerste tot zesde leerjaar 24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is

Nadere informatie

Toelichting bij de kaartjes van het opzoekboekje Rekenen

Toelichting bij de kaartjes van het opzoekboekje Rekenen Toelichting bij de kaartjes van het opzoekboekje Rekenen Algemene opmerkingen De volgorde van de toelichting bij van de kaartjes is willekeurig en heeft niets te maken met de volgorde waarop de kaartjes

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13

Nadere informatie

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken breuken breukentaal tekening getal een hele 1 een halve een kwart een achtste ½ of ½ ¼ of ¼ ⅛ of ⅛ 3 breuken breukentaal tekening getal een vijfde ⅕ of ⅕ een tiende

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 100 000 10 Les 2: Natuurlijke getallen kleiner dan 1 000 000

Nadere informatie

Inhoud kaartenbak groep 8

Inhoud kaartenbak groep 8 Inhoud kaartenbak groep 8 1 Getalbegrip 1.1 Ligging van getallen tussen duizendvouden 1.2 Plaatsen van getallen op de getallenlijn 1.3 Telrij t/m 100 000 1.4 Telrij t/m 100 000 1.5 Getallen splitsen en

Nadere informatie

INHOUDSTAFEL. inhoudstafel... 2

INHOUDSTAFEL. inhoudstafel... 2 INHOUDSTAFEL inhoudstafel... 2 getallenkennis waarde van cijfers in een getal... 6 grote getallen... 7 rekentaal... 8 rekentaal deel 2... 9 soorten getallen... 9 rekentaal deel 3... 10 de ongelijke verdeling...

Nadere informatie

Leerstofoverzicht groep 6

Leerstofoverzicht groep 6 Leerstofoverzicht groep 6 Getallen en relaties Basisbewerkingen Leerlijn Groep 6 Uitspraak, schrijfwijze, kenmerken getallen boven 10 000 in cijfers schrijven haakjesnotatie deler en deeltal breuknotatie

Nadere informatie

Rekenfolder o.b.s. Henri Dunant groep 7

Rekenfolder o.b.s. Henri Dunant groep 7 Extra informatie blok 1 Rekenfolder o.b.s. Henri Dunant groep 7 Bij getallen en bewerkingen verkennen de kinderen in dit blok o.a. de getallen tot 100.000 met behulp van de getallenlijn. Verder komen er

Nadere informatie

Aanbod rekenstof augustus t/m februari. Groep 3

Aanbod rekenstof augustus t/m februari. Groep 3 Aanbod rekenstof augustus t/m februari Groep 3 Blok 1 Oriëntatie: tellen van hoeveelheden tot 10, introductie van de getallenlijn tot en met 10, tellen en terugtellen t/m 20, koppelen van getallen aan

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Medische rekenen AJK

Medische rekenen AJK Medische rekenen AJK Herhaling Optellen, aftrekken en breuken Optellen Voorbeeld optellen 122

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

Het Breukenboekje. Alles over breuken

Het Breukenboekje. Alles over breuken Het Breukenboekje Alles over breuken 1 d elen colofon en hal eren Het ik maak DiKiBO de Breukenboekje som makkelijk Voor groep 6, 7 en 8 DiKiBO behandelt op iedere kaart een bepaald soort som en aan de

Nadere informatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deze mappen willen wegwijzers aanreiken om vanuit begrip en respect het beste te halen uit die leerlingen die de basis wiskundeleerstof uit

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

Leerlijnen groep 8 Wereld in Getallen

Leerlijnen groep 8 Wereld in Getallen Leerlijnen groep 8 Wereld in Getallen 1 2 3 4 REKENEN Boek 8a: Blok 1 - week 1 Oriëntatie - uitspreken en schrijven van getallen rond 1 miljoen - introductie miljard - helen uit een breuk halen 5/4 = -

Nadere informatie

Start u met zwiso in verschillende leerjaren tegelijkertijd?

Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Start u met zwiso in verschillende leerjaren tegelijkertijd? Geef dan eventueel aan het begin van het schooljaar enkele lessen uit het voorafgaande

Nadere informatie

Leerlijnen groep 7 Wereld in Getallen

Leerlijnen groep 7 Wereld in Getallen Leerlijnen groep 7 Wereld in Getallen 1 2 REKENEN Boek 7a: Blok 1 - week 1 in geldcontext 2 x 2,95 = / 4 x 2,95 = Optellen en aftrekken tot 10.000 - ciferend; met 2 of 3 getallen 4232 + 3635 + 745 = 1600

Nadere informatie

handelingswijzer rekenen

handelingswijzer rekenen handelingswijzer rekenen Naslagwerk Voor leerlingen en ouders HANDELINGSWIJZER REKENEN INHOUD HANDELINGSWIJZER REKENEN... 1 1 INHOUD... 1 HOOFDBEWERKINGEN... 2 OPTELLEN... 3 AFTREKKEN... 3 VERMENIGVULDIGEN...

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen Getallenkennis Target 1 Les 1: getalbegrip to 10 000 000 wb. p. 1+2, sb 1 Les 5: kommagetallen tot 0,001 wb. p. 8-9, sb 5 Les 12: breuken vergelijken en sorteren wb. p. 15-16, sb 10 Les 13: breuk als operator,getal,verhouding,

Nadere informatie

ALBERDINGK THIJM COLLEGE REKENGIDS. Basis en afspraken rekenen

ALBERDINGK THIJM COLLEGE REKENGIDS. Basis en afspraken rekenen ALBERDINGK THIJM COLLEGE REKENGIDS Basis en afspraken rekenen VOORWOORD Deze rekengids is bedoeld als overzichtelijk naslagwerk voor leerlingen, ouders, docenten en alle anderen die met rekenen te maken

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2.

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Rekenrijk doelen groep 1 en 2 De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Aantallen kunnen tellen De kinderen kunnen kleine aantallen tellen. De kinderen kunnen eenvoudige

Nadere informatie

RekenTrapperS Cool 1.1

RekenTrapperS Cool 1.1 RekenTrapperS Cool 1.1 Inhoud 1 Doe-activiteiten met kalender en klok... 5 1.1 Weetjes over de indeling van het jaar... 5 1.2 Kloklezen en rekenen met uren, minuten en seconden... 9 2 Getallenkennis tot

Nadere informatie

De laatste loodjes...

De laatste loodjes... De laatste loodjes... Hieronder vindt je een uittreksel van alles dat we met rekenen hebben geoefend. En nog een paar herhaalsommetjes. Om als laatste nog even door te lezen om te zien of je alles nog

Nadere informatie

D A G 1 : T W E E D O M E I N E N

D A G 1 : T W E E D O M E I N E N REKENEN 3F DAG 1 :TWEE DOMEINEN DAG 2 : TWEE DOMEINEN DAG 3: EXAMENTRAINING DAG 4:EXAMENTRAINING EN A FRONDING Programma: Voorstellen 13.30 uur 16.15 uur Pauze: 15 minuten Theorie dag 1: Domein Getallen

Nadere informatie

Leerlijnen voor groep 3-8

Leerlijnen voor groep 3-8 Leerlijnen voor groep 3-8 Groep 3, eerste half jaar de begrippen meer, minder, evenveel juist toepassen de ontbrekende getallen op de getallenlijn t/m 12 invullen van hoeveelheden t/m 20 groepjes van 5

Nadere informatie

Groep 6. Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Don Boscoschool groep 6 juf Kitty

Groep 6. Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Don Boscoschool groep 6 juf Kitty Groep 6 Uitleg voor ouders (en kinderen) over de manieren waarop rekenen in groep 6 aan bod komt. Getalbegrip Ging het in groep 5 om de hele getallen tot 1000, nu wordt de getallenwereld uitgebreid. Naast

Nadere informatie

Leerlijnen rekenen: De wereld in getallen

Leerlijnen rekenen: De wereld in getallen Leerlijnen rekenen: De wereld in getallen Groep 7(eerste helft) Getalbegrip - Telrij tot en met 1 000 000 - Uitspraak en schrijfwijze van de getallen (800 000 en 0,8 miljoen) - De opbouw en positiewaarde

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

Wereld in Getallen Blok 4A groep 6

Wereld in Getallen Blok 4A groep 6 Wereld in Getallen Blok 4A groep 6 Minimumtoets 1. Oriëntatie in de getallen tot en met 10.000. Als kinderen deze som moelijk vinden, kunnen ze het positieschema gebruiken. Daar vullen ze het getal in

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat. 92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,

Nadere informatie

havo/vwo: vooral breuken en bèta, maar met ruimte voor meer en anders Vincent Jonker Freudenthal Instituut

havo/vwo: vooral breuken en bèta, maar met ruimte voor meer en anders Vincent Jonker Freudenthal Instituut havo/vwo: vooral breuken en bèta, maar met ruimte voor meer en anders Vincent Jonker Freudenthal Instituut 0 PROGRAMMA Programma 1. Even rekenen 2. Breuken in uw vak 3. Breuken, kunnen ze het nog? 4. Breuken

Nadere informatie

Voorbereidend Cijferend rekenen Informatie voor ouders van leerlingen in groep 3 t/m 8

Voorbereidend Cijferend rekenen Informatie voor ouders van leerlingen in groep 3 t/m 8 nummer 2 bijgesteld in nov. 2013 Voorbereidend Cijferend rekenen Informatie voor ouders van leerlingen in groep 3 t/m 8 Hoe cijferend rekenen wordt aangeleerd Deze uitgave van t Hinkelpad gaat over het

Nadere informatie

INHOUDSOPGAVE. HOOFDSTUK 6 AFRONDEN Inleiding Cijfers Verstandig afronden 48 BLZ

INHOUDSOPGAVE. HOOFDSTUK 6 AFRONDEN Inleiding Cijfers Verstandig afronden 48 BLZ INHOUDSOPGAVE BLZ HOOFDSTUK 1 DOMEIN A: GETALLEN 15 1.1. Inleiding 15 1.2. Cijfers en getallen 15 1.3. Gebroken getallen 16 1.4. Negatieve getallen 17 1.5. Symbolen en vergelijken van getallen 19 HOOFDSTUK

Nadere informatie

mei 2009 Auteurs: P.C.M.M. Hosli B.D. De Wilde A.M.P. van de Luitgaarden Rekenvaardigheden: Inleiding bladzijde 1

mei 2009 Auteurs: P.C.M.M. Hosli B.D. De Wilde A.M.P. van de Luitgaarden Rekenvaardigheden: Inleiding bladzijde 1 mei 2009 Auteurs: P.C.M.M. Hosli B.D. De Wilde A.M.P. van de Luitgaarden Rekenvaardigheden: Inleiding bladzijde 1 Inhoud Inleiding met docentenhandleiding Handleiding voor leerlingen Werkbladen en antwoordbladen

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen Uitsluitend te gebruiken

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

Rekenen op maat 7. Doelgroepen Rekenen op maat 7. Doelgroepen Rekenen op maat 7

Rekenen op maat 7. Doelgroepen Rekenen op maat 7. Doelgroepen Rekenen op maat 7 Rekenen op maat 7 Rekenen op maat 7 richt zich op de belangrijkste vaardigheden die nodig zijn voor het rekenwiskundeonderwijs. Er wordt nauw aangesloten bij de oefenstof van de verschillende blokken van

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2 Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Joep van Vugt Anneke Wösten Handig optellen; tribunesom* Bij optellen van bijna ronde getallen zoals 39, 198, 2993,..

Nadere informatie

Overstapprogramma 6-7

Overstapprogramma 6-7 Overstapprogramma - Cijferend optellen 9 Verdeel het getal. Het getal 8 kun je verdelen in: duizendtallen honderdtallen tientallen eenheden D H T E 8 D H T E 8 = 8 9 9 9 = = = = Zet de getallen goed onder

Nadere informatie

DE basis WISKUNDE VOOR DE LAGERE SCHOOL

DE basis WISKUNDE VOOR DE LAGERE SCHOOL Inhoud GETALLENKENNIS 13 1 Getallen 13 2 Het decimale talstelsel 14 3 Breuken 16 Begrippen 16 Soorten breuken 16 Een breuk vereenvoudigen 17 4 Breuken, percenten, kommagetallen 18 Breuk omzetten in een

Nadere informatie

Aandachtspunten. blok 7, les 1 blok 7, les 3 blok 7, les 6 blok 7, les 8 blok 7, les 11 blok 9, les 1

Aandachtspunten. blok 7, les 1 blok 7, les 3 blok 7, les 6 blok 7, les 8 blok 7, les 11 blok 9, les 1 Aandachtspunten 291 Aandachtspuntenlijst 3, bij blok 7, 8 en 9 1 Getalbegrip. Het kind ziet de structuur niet tussen getallen boven en beneden 1 miljoen. uitspreken en opschrijven van grote getallen boven

Nadere informatie

Vrijdag 3, maandag 6 en dinsdag 7 april Kinderen vrij ivm met Pasen en studiedag team

Vrijdag 3, maandag 6 en dinsdag 7 april Kinderen vrij ivm met Pasen en studiedag team Algemeen De kinderen van groep 1-2 en 3 hebben deze week een lentewandeling gemaakt. De narcissen en krokussen lieten zich zien. Het voorjaar gaat beginnen! Vandaag (vrijdag 13 maart) hebben we tijdens

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker

Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker Verdiepingsmodule Getallen Tweede bijeenkomst maandag 8 april 2013 monica wijers en vincent jonker Programma Breuken PPON Leerlijn Didactiek van bewerkingen Breuken en kommagetallen in het echt Kommagetallen

Nadere informatie

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495.

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495. Bij vermenigvuldigen van twee grote getallen onder elkaar staan de rijen onder de streep elk voor een tussenstap. De eerste rij staat voor het vermenigvuldigen met het cijfer dat de eenheden van het onderste

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

spiekboek rekenen bereid je goed voor op de entreetoets van het Cito groep

spiekboek rekenen bereid je goed voor op de entreetoets van het Cito groep spiekboek rekenen bereid je goed voor op de entreetoets van het Cito groep 3 COLOFON DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 7 groep 5 & 6 (een uittreksel van DiKiBO

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

spiekboek rekenen de ultieme voorbereiding op de Citotoets groep

spiekboek rekenen de ultieme voorbereiding op de Citotoets groep spiekboek rekenen de ultieme voorbereiding op de Citotoets groep 3 COLOFON 3 DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 8 groep 5 & 6 (een uittreksel van DiKiBO Rekenen

Nadere informatie

Bij het cijferend optellen beginnen we bij de eenheden en werken we van rechts naar links:

Bij het cijferend optellen beginnen we bij de eenheden en werken we van rechts naar links: Cijferend optellen t/m 1000 Voor u ligt de verkorte leerlijn cijferend optellen groep 5 van Reken zeker. Deze verkorte leerlijn is bedoeld voor de leerlingen die nieuw instromen in groep 6 en voor de leerlingen

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

WISo. Handleiding breukendoos. www.zwiso.be. Inhoud breukendoos. Gebruik van de breukendoos. Inzicht in breuken

WISo. Handleiding breukendoos. www.zwiso.be. Inhoud breukendoos. Gebruik van de breukendoos. Inzicht in breuken Handleiding breukendoos Inhoud breukendoos De breukendoos bevat: - metalen breukenbord met vermelding van het geheel en de stambreuken van t.e.m. en ruimte voor de kommagetallen- en de procentstrook -

Nadere informatie

Leerlijnenpakket STAP incl. WIG. Rekenen Rekenen. Datum: 08-05-2014. Schooltype BAO (Regulier) Herkomst Landelijk Periode DL -20 t/m 200

Leerlijnenpakket STAP incl. WIG. Rekenen Rekenen. Datum: 08-05-2014. Schooltype BAO (Regulier) Herkomst Landelijk Periode DL -20 t/m 200 Leerlijnenpakket STAP incl. WIG Schooltype BAO (Regulier) Herkomst Landelijk Periode DL -20 t/m 200 Rekenen Rekenen 1.1 Getallen - Optellen en aftrekken tot 10 - Groep 3 BB/ KB GL + PRO 1.1.1 zegt de telrij

Nadere informatie

Wiskunde Werktuigbouwkunde & Metaal. Mechatronica

Wiskunde Werktuigbouwkunde & Metaal. Mechatronica Wiskunde 2-2016 Werktuigbouwkunde & Metaal Mechatronica Wiskunde 2-2016 Summa College Techniek Werktuigbouwkunde, Metaal en Mechatronica Auteurs: Ruud van Melis Jens Bijsterveld Inhoudsopgave 1. REKENEN...

Nadere informatie

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren Uren, Dagen, Maanden, Jaren,. Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren 1 minuut 60 seconden 1 uur 60 minuten 1 half uur 30 minuten 1 kwartier 15 minuten 1 dag (etmaal) 24 uren 1 week

Nadere informatie

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12 Tytsjerksteradiel Rekenportfolio Naam: cm 2 1 5 7 + = 5 10 10 m 3 1 _ 12 X 5 1 + = 5 1 + Inhoudsopgave Voorwoord 3 Domein getallen 4 - Optellen, aftrekken, vermenigvuldigen en delen 5 - Breuken 6 - Rekenvolgorde

Nadere informatie

Lesopbouw: instructie. Start. Instructie. Blok 4. Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen

Lesopbouw: instructie. Start. Instructie. Blok 4. Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen Week Blok Bijwerkboek 0 Les Rekenboek Lessen 0 0, 0 0, 0, keer 0, 0,, flesjes 0,, 0, 0 0 plankjes stukjes 0 0 Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen

Nadere informatie

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? deel

Nadere informatie

Optellen van twee getallen onder de 10

Optellen van twee getallen onder de 10 Splitsen tot 0 uit het hoofd 2 Optellen 2 7 6 2 5 3 4 Splitsen tot 20 3 2 8 7 2 6 3 5 4 4 4 3 2 2 9 8 2 7 3 6 4 5 5 4 2 3 0 9 2 8 3 7 4 6 5 5 6 5 2 4 3 3 Bij een aantal iets erbij doen heet optellen. Je

Nadere informatie

Antwoorden bij Rekenen met het hoofd

Antwoorden bij Rekenen met het hoofd Antwoorden bij Rekenen met het hoofd Hoofdstuk Basisbewerkingen. Bewerkingen in beeld a. : splitsen in 5 en. Eerst min 5, dan min 0 en tenslotte nog min : splitsen in 5 en, die uitvoeren en dan nog stapsgewijs

Nadere informatie

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden A Notatie en betekenis - Uitspraak, schrijfwijze en betekenis van, symbolen en relaties - Wiskundetaal gebruiken - de relaties groter/kleiner dan - breuknotatie met horizontale streep - teller, noemer,

Nadere informatie

Handleiding voor leerkrachten : AMBRASOFT REKENEN~ 1 ~

Handleiding voor leerkrachten : AMBRASOFT REKENEN~ 1 ~ Handleiding voor leerkrachten : AMBRASOFT REKENEN~ 1 ~ Algemeen Elke module start met een begintoets, tenzij deze wordt gedeactiveerd. Een begintoets bestaat uit minstens 10 opdrachten. Na het maken van

Nadere informatie

Deel C. Breuken. vermenigvuldigen en delen

Deel C. Breuken. vermenigvuldigen en delen Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt

Nadere informatie

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar

De Graankorrel Wervik. Mijn wiskundehulpschrift. van 1 tot 6 leerjaar De Graankorrel Wervik Mijn wiskundehulpschrift van 1 tot 6 leerjaar We gebruiken de rekenmethode Zo gezegd, zo gerekend! van het eerste tot het zesde leerjaar. Eerste leerjaar blz. 2 Tweede leerjaar blz.

Nadere informatie

Lesbrief groep 5/6. Beste ouders,

Lesbrief groep 5/6. Beste ouders, Lesbrief groep 5/6 Beste ouders, We starten met rekenen, taal en spelling weer met een nieuw blok. Hier dus weer een lesbrief om u op de hoogte te houden over wat uw kind de komende tijd zal leren/oefenen.

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

I I. Noordhoff Uitgevers bv Groningen/Houten

I I. Noordhoff Uitgevers bv Groningen/Houten H A N D L E I D I N G 7 I I Noordhoff Uitgevers bv Groningen/Houten H A N D L E I D I N G Lesbeschrijvingen Breuken en procenten Basisstof breuken procenten Lesdoelen De leerlingen kunnen: helen vermenigvuldigen

Nadere informatie

Toetsen oefenen Rekenen deel 1. INZAGE EXEMPLAAR Groep 7&8

Toetsen oefenen Rekenen deel 1. INZAGE EXEMPLAAR Groep 7&8 Toetsen oefenen Rekenen deel 1 Getallen en Verhoudingen INZAGE EXEMPLAAR Groep 7&8 Oefenen met vragen (getallen en verhoudingen) voor LVS-, Entree-, Citotoetsen versie 1.0 Uitgave voor het basisonderwijs

Nadere informatie

breuken 1.0 Inleiding 1.1 Natuurlijke getallen

breuken 1.0 Inleiding 1.1 Natuurlijke getallen 1 Natuurlijke getallen, breuken 1.0 Inleiding Dit hoofdstuk begint in paragraaf 1.1 met het rekenen met de getallen 0, 1, 2,, enzovoort. Dat heb je op de lagere school ook geleerd, alleen wordt er nu wat

Nadere informatie

leerjaar doelenkatern

leerjaar doelenkatern Blok Pagina Blok 1 2 tot 10 Blok 2 11 tot 20 Blok 3 21 tot 31 Blok 4 32 tot 40 Blok 5 41 tot 49 Blok 6 50 tot 57 Blok 7 58 tot 65 leerjaar 6 doelenkatern Voorafgaande toelichting bij doelenkatern, leerjaar

Nadere informatie

Begin situatie Wiskunde/Rekenen. VMBO BB leerling

Begin situatie Wiskunde/Rekenen. VMBO BB leerling VMBO BB leerling Verbanden en Hoge -bewerkingen onder 100 -tafels t/m 10 (x:) -bewerkingen met eenvoudige grote en -makkelijk rekenen -vergelijken/ordenen op getallenlijn -makkelijke breuken omzetten -deel

Nadere informatie

Overzicht rekenstrategieën

Overzicht rekenstrategieën Overzicht rekenstrategieën Groep 3 erbij tot tien Groep 3 eraf tot tien Groep 4 erbij tot twintigt Groep 4 eraf tot twintigt Groep 4 erbij tot honderd Groep 4 eraf tot honderd Groep 4 en 5 tafels tot tien

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Breuken met letters WISNET-HBO. update juli 2013

Breuken met letters WISNET-HBO. update juli 2013 Breuken met letters WISNET-HBO update juli 2013 De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers

Nadere informatie

Handboek Rekenen 3. hele getallen, kommagetallen en breuken bewerken. Extra uitleg bij Zakboek Rekenen 3

Handboek Rekenen 3. hele getallen, kommagetallen en breuken bewerken. Extra uitleg bij Zakboek Rekenen 3 Handboek Rekenen 3 hele getallen, kommagetallen en breuken bewerken LEERHULP.NL Extra uitleg bij Zakboek Rekenen 3 INLEIDING Dit handboek hoort bij de DiKiBO uitgave: Zakboek Rekenen 3 hele getallen, kommagetallen

Nadere informatie

Overzicht AmbraSoft: Taalbende, Taal en Rekenen

Overzicht AmbraSoft: Taalbende, Taal en Rekenen Overzicht AmbraSoft: Taalbende, Taal en Rekenen AmbraSoft is een methode-onafhankelijk oefenplatform voor Taal en Rekenen. Voor gebruikers van de taalmethode De Taalbende van uitgeverij Plantyn bevat het

Nadere informatie

spiekboek De beste basis voor het rekenen groep

spiekboek De beste basis voor het rekenen groep spiekboek De beste basis voor het rekenen groep 3 COLOFON 3 DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 5 groep 5 & 6 (een uittreksel van DiKiBO Rekenen Compleet groep

Nadere informatie

didactische vaardigheden rekenen ROC Albeda secretarieel & administratief

didactische vaardigheden rekenen ROC Albeda secretarieel & administratief didactische vaardigheden rekenen ROC Albeda secretarieel & administratief bijeenkomst 1 30 november 2011 monica wijers, ceciel borghouts Freudenthal Instituut Programma vervolgcursus Didactische vaardigheid

Nadere informatie