Deel C. Breuken. vermenigvuldigen en delen

Maat: px
Weergave met pagina beginnen:

Download "Deel C. Breuken. vermenigvuldigen en delen"

Transcriptie

1 Deel C Breuken vermenigvuldigen en delen -

2 0

3 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt na sprongen vanuit 0? En na 00 sprongen? Dezelfde vragen, maar nu is de eerste sprong van 0 naar 0. Na hoeveel sprongen bereik je voor het eerst een heel getal? 0 Welke hele getallen kun je bereiken als je almaar door blijft springen?. Maak de tafel van tot je voor het eerst een hele uitkomst krijgt Maak zelf nog een andere vermenigvuldigingstafel voor een breuk tot je een hele uitkomst krijgt.

4 Deel van een deel (). Vul in uur... minuten 0 van uur... minuten van uur... uur uur... minuten van uur... minuten van uur... uur. Vul passende breuken in van tablet... tablet van tablet... tablet van tablet... tablet van tablet... tablet. Vul passende breuken in de helft van -... de helft van -... een derde van... twee derde van... van... van... van... van...

5 Deel van een deel (). Welk deel van elk van de zes figuren is gekleurd? Vul passende breuken in... van van van van van van......

6 Heel maal deel en deel maal heel van Vul passende breuken in Vul passende hele getallen in

7 Breuk maal breuk () van is Vul passende breuken in en licht je antwoord toe met een plaatje van is van is van is

8 Breuk maal breuk (). Vul de passende breuken in. Vul de passende hele getallen of breuken in - 0 -

9 Teller maal teller en noemer maal noemer 0 -. Vul passende breuken of helen in Maak net zo n schema bij - en ook bij. Je weet natuurlijk + is minder dan Geldt nu ook - Licht je antwoord toe. + - is minder dan - -?. Vul in

10 Vermenigvuldigtabellen. Schrijf passende breuken of hele getallen in de vakjes Maak zelf twee vermenigvuldigtabellen met breuken.

11 Breukenbomen. Vul passende breuken in

12 Vind de letterwaarden. De letters a, b, c, d, e, f, g, h staan elk voor een heel getal. Vind die acht getallen. a a... b b... c 0 c... d d... e - e... f - f... g - g... - h h... Als je het goed hebt gedaan, geldt a + b + c + d e + f + g + h 0

13 Breuken en oppervlakte 0, Het gekleurde rechthoekje is cm bij cm. cm Hoeveel cm is de oppervlakte van dat rechthoekje? De rechthoek hiernaast is bij cm. De rechthoek is verdeeld in de delen A, B, C en D. Vul de tabel in deel A B C D C A D B oppervlakte Hoeveel cm is de oppervlakte van de gehele rechthoek? Vul in Klopt je antwoord met dat van de vorige vraag?. De rechthoek hieronder is bij cm Bereken de oppervlakte op twee manieren * door de rechthoek handig in vier stukken te verdelen. * door direct lengte maal breedte uit te rekenen. En natuurlijk ga je na of de twee uitkomsten met elkaar kloppen!. Bedenk zelf zo n soort opgave. Geef ook het antwoord.

14 Romeinse fontein. I III IV II Uit de bovenste schaal van de Romeinse fontein gaat van het water naar de schaal links eronder en naar de schaal rechts eronder. Bij elke schaal is aangegeven hoe de verdeling van het water naar links en rechts is. Van de hoeveelheid water uit de kraan gaat - naar schaal I. Laat met een berekening zien dat dit klopt. Bereken welk deel van het water uit de kraan naar schaal II gaat. Doe dat ook voor schaal III. En voor schaal IV. Tel de vier uitkomsten bij elkaar op.

15 Delen door een breuk (). Bij een rekentest die precies uur duurt, krijgt de leerling per opgave minuten de tijd. Het aantal vragen is dan dus 0 0. De leraar vindt bij nader inzien dat minuut per vraag voldoende tijd is. Dan kan hij meer opgaven vragen. Hoeveel opgaven kan hij nu geven in 0 minuten? Leg uit hoe je je antwoord gevonden hebt. Vul in Op de getallenlijn hieronder worden stappen van gemaakt. 0 0 Na hoeveel stappen kom je uit bij 0? Vul in Bereken Bereken ook

16 Delen door een breuk (). Vul in Leg uit dat dit klopt met behulp van de klok. 0 Vul passende breuken in en leg uit hoe je gerekend hebt

17 Delen door een breuk (). Hoe vaak gaat in? Hoe vaak gaat - in -? Wat is de uitkomst van - -? n staat voor een heel getal, maar je weet niet voor welk. Toch kun je de uitkomst weten van n! Wat is die uitkomst? n. n staat voor,,,,... Vul zo eenvoudig mogelijke breuken of helen in n n Bereken - 0. Bereken

18 Breedte, hoogte en oppervlakte. Bereken de oppervlakte van de rechthoek? Vul in... en.... Bereken de breedte van de rechthoek.? Hoe kun je je antwoord controleren?. Van een rechthoek is de oppervlakte cm. Als je weet dat de breedte en de hoogte een heel aantal cm is, welke mogelijkheden zijn er dan? Hieronder zie je een tabel, waarbij de breedte steeds midden tussen twee hele getallen in zit. Vul de bijpassende hoogte in breedte hoogte

19 Vermenigvuldigen en delen. Voorbeeld Vul in

20 Uitspraken over breuken. Schrijf bij elke uitspraak of deze WAAR of ONWAAR is. Delen door komt op hetzelfde neer als vermenigvuldigen met. Als je een getal deelt door kun je eerst delen door en daarna met vermenigvuldigen gaat even vaak in als in 0 is gelijk aan Een vijfde van een zesde is een elfde Twee breuken kun je vermenigvuldigen door ze gelijknamig te maken en dan de tellers te vermenigvuldigen. is groter dan Bedenk zelf ook ware en onware uitspreken over het vermenigvuldigen of delen van breuken.

21 Alles bij elkaar Breuken kun je met elkaar vermenigvuldigen door zowel de tellers als de noemers met elkaar te vermenigvuldigen. Voorbeelden Breuken met dezelfde noemer kun je op elkaar delen door de tellers op elkaar te delen. Voorbeelden Breuken met verschillende noemers kun je op elkaar delen door ze gelijknamig te maken en daarna de tellers op elkaar te delen. Voorbeelden Als je een heel getal door een breuk deelt, kun je een vermenigvuldiging maken van dat getal met het omgekeerde van die breuk. Voorbeeld Als je een breuk door een breuk deelt, kun je ook een vermenigvuldiging maken van de eerste breuk met het omgekeerde van de tweede breuk. Voorbeelden

22 Alles door elkaar. Vul in Als je van een breuk de teller met vermenigvuldigt, dan wordt de breuk... maal zo... Als je van een breuk de noemer met vermenigvuldigt, dan... Als je van een breuk de teller én de noemer met vermenigvuldigt, dan... Als je van een breuk de teller met én de noemer met vermenigvuldigt, dan.... Vul zo eenvoudig mogelijke breuken in Het vierkant is verdeeld in vier rechthoeken met verschillende oppervlakte. Schrijf in elke rechthoek de breuk die bij zijn oppervlakte hoort. Tel de vier breuken die je hebt ingevuld bij elkaar op. Hoe had je de uitkomst ook direct kunnen zien?. Je maakt vanuit het punt 0 sprongen van op de getallenlijn. Na hoeveel sprongen bereik je het punt 0?.... Vul zo eenvoudig mogelijke breuken of helen in - - 0

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen.

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen. Uitwerkingen hoofdstuk Gebroken getallen. Kennismaken met breuken.. Deel van geheel Opdracht. a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde

Nadere informatie

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10 B M De getallenlijn 0 + = = + = = Nee 0 0 = 9 = 0 6 = = 9 = 6 = 6 = = C a b a b 0 = 0 0 = 0 a b < 0 ; a b < 0 ; a > b ; b > a = = = = C Nee, hij loopt steeds maar verder. < x H x < x < x < x + + = x +

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Overstapprogramma 6-7

Overstapprogramma 6-7 Overstapprogramma - Cijferend optellen 9 Verdeel het getal. Het getal 8 kun je verdelen in: duizendtallen honderdtallen tientallen eenheden D H T E 8 D H T E 8 = 8 9 9 9 = = = = Zet de getallen goed onder

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Rekentaalkaart - toelichting

Rekentaalkaart - toelichting Rekentaalkaart - toelichting 1. Het rekendoel van de opgave In de handleiding van reken-wiskundemethodes beschrijft bij iedere opgave of taak wat het rekendoel voor leerlingen is. Een doel van een opgave

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Reken zeker: leerlijn breuken

Reken zeker: leerlijn breuken Reken zeker: leerlijn breuken B = breuk H = hele HB = hele plus breuk (1 1/4) Blauwe tekst is theorie uit het leerlingenboek. De breuknotatie in Reken zeker is - anders dan in deze handout - met horizontale

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel Opdracht 2 blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een heel blaadje.

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? deel

Nadere informatie

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28 Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

Het weetjesschrift. Weetjesschrift Galamaschool

Het weetjesschrift. Weetjesschrift Galamaschool Het weetjesschrift Dit is het weetjesschrift. In dit schrift vind je heel veel weetjes over taal, rekenen en andere onderwerpen. Sommige weetjes zal je misschien al wel kennen en anderen leer je nog! Uiteindelijk

Nadere informatie

Leerlijnen rekenen: De wereld in getallen

Leerlijnen rekenen: De wereld in getallen Leerlijnen rekenen: De wereld in getallen Groep 7(eerste helft) Getalbegrip - Telrij tot en met 1 000 000 - Uitspraak en schrijfwijze van de getallen (800 000 en 0,8 miljoen) - De opbouw en positiewaarde

Nadere informatie

Bijlage 1 Rekenen met wortels

Bijlage 1 Rekenen met wortels Bijlage Rekenen met wortels Deze bijlage hoort bij het hoofdstuk Meetkunde en Algebra juli 0 Opgaven gemarkeerd met kunnen worden overgeslagen. Uitgave juli 0 Colofon 0 ctwo Auteurs Aad Goddijn, Leon van

Nadere informatie

Afspraken hoofdrekenen eerste tot zesde leerjaar

Afspraken hoofdrekenen eerste tot zesde leerjaar 24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is

Nadere informatie

9.0 INTRO. Onder nul. In de nacht van 29 op 30 december was de temperatuur nog vier graden lager. a Hoe koud was het die nacht?

9.0 INTRO. Onder nul. In de nacht van 29 op 30 december was de temperatuur nog vier graden lager. a Hoe koud was het die nacht? 57 9.0 INTRO Onder nul 1 Temperaturen worden in ons land gemeten in graden Celsius ( C). Bij 0 C bevriest water. In de winter is het vaak kouder dan 0 C. Zo was de middagtemperatuur op 9 december 006 in

Nadere informatie

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl Breuken Breuk

Nadere informatie

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

LEERWERKBOEK. 2F Meten en meetkunde. Les Schaal

LEERWERKBOEK. 2F Meten en meetkunde. Les Schaal LEERWERKBOEK 2F Meten en meetkunde Les Schaal 1 REKENBLOKKEN LES 1 SCHAAL EVEN OEFENEN LENGTEWEETJES 10 10 10 10 10 10 km hm dam m dm cm mm : 10 : 10 : 10 : 10 : 10 : 10 1 Reken om naar de andere maat.

Nadere informatie

Ruitjes vertellen de waarheid

Ruitjes vertellen de waarheid Ruitjes vertellen de waarheid Opdracht 1 Van fouten kun je leren Van fouten kun je leren, jazeker. Vooral als je héél goed weet wat er fout ging. Vandaag leer je handige formules begrijpen door kijken

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

2003 De Wageningse Methode. Foto s De Wageningse Methode. Druk/Verkoop Tamminga bv, Postbus 176, 6920 AD Duiven

2003 De Wageningse Methode. Foto s De Wageningse Methode. Druk/Verkoop Tamminga bv, Postbus 176, 6920 AD Duiven INHOUDSOPGAVE Routes in Vakhorst 1 Oppervlakte 6 Formules 9 Roosterkwartier 11 Test 15 Op de grens van Roosterkwartier en Vakhorst 16 Met negatieve getallen 18 Formules uit plaatjes 0 Zonder plaatjes Terugblik

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2 Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Joep van Vugt Anneke Wösten Handig optellen; tribunesom* Bij optellen van bijna ronde getallen zoals 39, 198, 2993,..

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE 2014 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 00 1 (20 punten) Gegeven zijn drie aan elkaar rakende cirkels met straal 1. Hoe groot is de (donkergrijze) oppervlakte

Nadere informatie

Examen VMBO-GL en TL 2008 tijdvak 2 dinsdag 17 juni uur

Examen VMBO-GL en TL 2008 tijdvak 2 dinsdag 17 juni uur Examen VMBO-GL en TL 2008 tijdvak 2 dinsdag 17 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 7 punten

Nadere informatie

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam:

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam: Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs recept voor glazen bananenmilkshake bananen, l ijs, l melk,1 l limonadesiroop 1 cl ijs 1 liter Schil de bananen. Snijd ze in grote

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

Begin situatie Wiskunde/Rekenen. VMBO BB leerling

Begin situatie Wiskunde/Rekenen. VMBO BB leerling VMBO BB leerling Verbanden en Hoge -bewerkingen onder 100 -tafels t/m 10 (x:) -bewerkingen met eenvoudige grote en -makkelijk rekenen -vergelijken/ordenen op getallenlijn -makkelijke breuken omzetten -deel

Nadere informatie

Inhoud kaartenbak groep 8

Inhoud kaartenbak groep 8 Inhoud kaartenbak groep 8 1 Getalbegrip 1.1 Ligging van getallen tussen duizendvouden 1.2 Plaatsen van getallen op de getallenlijn 1.3 Telrij t/m 100 000 1.4 Telrij t/m 100 000 1.5 Getallen splitsen en

Nadere informatie

a a Hoe hoog is de kleinste toren op het plaatje? 97 m b d Hoe oud zijn de Martinitoren en de Eiffeltoren? De Martinitoren is meer dan

a a Hoe hoog is de kleinste toren op het plaatje? 97 m b d Hoe oud zijn de Martinitoren en de Eiffeltoren? De Martinitoren is meer dan les 14 59 Aan welke keersommen uit de tafels tot 10 denk je? b 9 70 = 630 6 80 = 480 9 7 en 6 8 a a 4 30 = 120 4 50 = 200 4 3 en 4 5 c 8 80 = 640 7 60 = 420 8 8 en 7 6 b d = 5600 = 7200 Meer antwoorden.

Nadere informatie

Eindexamen wiskunde vmbo gl/tl 2008 - II OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

Eindexamen wiskunde vmbo gl/tl 2008 - II OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2008 tijdvak 2 dinsdag 17 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

SMART-finale 2016 Ronde 1: 5-keuzevragen

SMART-finale 2016 Ronde 1: 5-keuzevragen SMART-finale 2016 Ronde 1: 5-keuzevragen Ronde 1 bestaat uit 16 5-keuzevragen. Bij elke vraag is precies één van de vijf antwoorden juist. Geef op het antwoordformulier duidelijk jouw keuze aan, door per

Nadere informatie

groep 8 blok 7 antwoorden Malmberg s-hertogenbosch

groep 8 blok 7 antwoorden Malmberg s-hertogenbosch blok 7 groep 8 antwoorden Malmberg s-hertogenbosch blok 7 les 3 3 Reken de omtrek en de oppervlakte van de figuren uit. Gebruik m en m 2. 1 m C Omtrek figuur C 20 m Oppervlakte figuur C 22 m 2 A B Omtrek

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

Getallen. 1 Doel: een getallenreeks afmaken De leerlingen maken de getallenreeks af met sprongen van 150 000.

Getallen. 1 Doel: een getallenreeks afmaken De leerlingen maken de getallenreeks af met sprongen van 150 000. Getallen Basisstof getallen Lesdoelen De leerlingen kunnen: een reeks afmaken; waarde van cijfers in een groot getal opschrijven; getallen op de getallenlijn plaatsen; afronden op miljarden; getallen in

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

Leerlijnen groep 7 Wereld in Getallen

Leerlijnen groep 7 Wereld in Getallen Leerlijnen groep 7 Wereld in Getallen 1 2 REKENEN Boek 7a: Blok 1 - week 1 in geldcontext 2 x 2,95 = / 4 x 2,95 = Optellen en aftrekken tot 10.000 - ciferend; met 2 of 3 getallen 4232 + 3635 + 745 = 1600

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE 2013 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Een lange rij Iemand schrijft alle jaartallen van 1 tot en met 2013 op een rij: Hoeveel cijfers

Nadere informatie

Leerroutes Passende Perspectieven Alles telt groep 5 blok 1

Leerroutes Passende Perspectieven Alles telt groep 5 blok 1 Leerroutes Passende Perspectieven Alles telt groep 5 blok Legenda kleuren Getalbegrip Optellen en aftrekken Vermenigvuldigen en delen Verhoudingen Meten Meten Tijd Meten Geld Meetkunde Verbanden Legenda

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

Oplossing zoeken kwadratisch verband vmbo-kgt34

Oplossing zoeken kwadratisch verband vmbo-kgt34 Auteur VO-content Laatst gewijzigd Licentie Webadres 23 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74207 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet. Wikiwijs

Nadere informatie

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12 Tytsjerksteradiel Rekenportfolio Naam: cm 2 1 5 7 + = 5 10 10 m 3 1 _ 12 X 5 1 + = 5 1 + Inhoudsopgave Voorwoord 3 Domein getallen 4 - Optellen, aftrekken, vermenigvuldigen en delen 5 - Breuken 6 - Rekenvolgorde

Nadere informatie

Medische rekenen AJK

Medische rekenen AJK Medische rekenen AJK Herhaling Optellen, aftrekken en breuken Optellen Voorbeeld optellen 122

Nadere informatie

rekentrainer jaargroep 5 Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Zwijsen naam:

rekentrainer jaargroep 5 Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Zwijsen naam: Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs rekentrainer Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Vul in. Groep blad 1 0 + 10

Nadere informatie

Leerlijnen groep 6 Wereld in Getallen

Leerlijnen groep 6 Wereld in Getallen Leerlijnen groep 6 Wereld in Getallen 1 REKENEN Boek 6a: Blok 1 - week 1 - buurgetallen - oefenen op de getallenlijn Geld - optellen van geldbedragen - aanvullen tot 10 105 : 5 = 2 x 69 = - van digitaal

Nadere informatie

deel B Vergroten en oppervlakte

deel B Vergroten en oppervlakte Vergroten en verkleinen - wiskunde deel B Vergroten en oppervlakte Als je een figuur door een fotokopieerapparaat laat vergroten dan worden alle afmetingen in de figuur met dezelfde factor vermenigvuldigd.

Nadere informatie

Rekentermen en tekens

Rekentermen en tekens Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste

Nadere informatie

breuken 1.0 Inleiding 1.1 Natuurlijke getallen

breuken 1.0 Inleiding 1.1 Natuurlijke getallen 1 Natuurlijke getallen, breuken 1.0 Inleiding Dit hoofdstuk begint in paragraaf 1.1 met het rekenen met de getallen 0, 1, 2,, enzovoort. Dat heb je op de lagere school ook geleerd, alleen wordt er nu wat

Nadere informatie

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam:

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam: Zwijsen jaargroep 6 naam: reken-wiskundemethode voor het basisonderwijs recept voor 6 glazen bananenmilkshake 2 bananen 0,25 l ijs 0,40 l melk 0,10 l limonadesiroop 100 cl 0 ijs 1 liter 0 Schil de bananen.

Nadere informatie

9.1 Oppervlakte-eenheden [1]

9.1 Oppervlakte-eenheden [1] 9.1 Oppervlakte-eenheden [1] De omtrek van een figuur bereken je door uit te rekenen hoe lang het is als je één keer langs de rand van de figuur gaat. Omtrek = l + l + l + l + l + l + l + l = 14 + 8 +

Nadere informatie

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat. 92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,

Nadere informatie

Routeboekje. bij Rekenrijk. Groep 7 Blok 6. Van...

Routeboekje. bij Rekenrijk. Groep 7 Blok 6. Van... Routeboekje bij Rekenrijk Groep 7 Blok 6 Van... Groep 7 Blok 6 Les 1 Leerkrachtgebonden LB 7a 142 1 Hoeveel bussen? meedoen LB 7a 142 2 Reken uit - LB 7a 142 3 Reken uit maken LB 7a 143 4 Schat eerst,

Nadere informatie

Lesopbouw: instructie. Start. Instructie. Blok 4. Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen

Lesopbouw: instructie. Start. Instructie. Blok 4. Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen Week Blok Bijwerkboek 0 Les Rekenboek Lessen 0 0, 0 0, 0, keer 0, 0,, flesjes 0,, 0, 0 0 plankjes stukjes 0 0 Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

Kommagetallen. Twee stukjes is

Kommagetallen. Twee stukjes is Kommagetallen Een kommagetal is een getal dat niet heel is. Het is een breuk. Voor de komma staan de helen, achter de komma staat de breuk. De cijfers achter de komma staan voor de tienden, honderdsten,

Nadere informatie

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen Uitwerkingen 2. Kennismaken met breuken 2.. Deel van geheel Opdracht B 8 deel. ( deel + 8 deel). Opdracht 2 C 5 deel Opdracht C Driehoek C past in driehoek A. Aangezien driehoek A deel is van de tekening,

Nadere informatie

Opdrachtbladen (I) Hoe komt een formule tot stand?

Opdrachtbladen (I) Hoe komt een formule tot stand? Opdrachtbladen (I) Hoe komt een formule tot stand? Adriaan Herremans Dag van de wiskunde Kortrijk 14/11/2015 Hieronder vinden jullie opdrachten. Je werkt samen met je buur en kan overleggen met je overburen.

Nadere informatie

rekentrainer jaargroep 5 Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Zwijsen naam:

rekentrainer jaargroep 5 Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Zwijsen naam: Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs rekentrainer Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Groep blad Vul in. 0 0 7 70

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

Opdrachtbladen (II) Hoe komt een formule tot stand?

Opdrachtbladen (II) Hoe komt een formule tot stand? Opdrachtbladen (II) Hoe komt een formule tot stand? Adriaan Herremans Dag van de wiskunde Kortrijk 14/11/2015 Hieronder vinden jullie opdrachten. Je werkt samen met je buur en kan overleggen met je overburen.

Nadere informatie

7 a patroonnummer a patroonnummer a h = z

7 a patroonnummer a patroonnummer a h = z Hoofdstuk 3 FORMULES 3.1 PATRONEN EN FORMULES 3 a 10 22 c? d De beweringen a b = b a en a + b = b + a zijn juist. e 15 a 12 a 18 a f a + 8 10 + a a + 14 b zijde vierkant 3 4 5 6 7 aantal gekleurde hokjes

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209.

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. 1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

1 Junior Wiskunde Olympiade: tweede ronde

1 Junior Wiskunde Olympiade: tweede ronde Junior Wiskunde Olympiade: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt hem

Nadere informatie

Kangoeroewedstrijd editie Springmuis: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Springmuis: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw 1. In de eerste figuur zijn er 3 gekleurde kangoeroes en 4 witte kangoeroes. Dit is dus een fout antwoord. In de tweede figuur zijn er 5 gekleurde kangoeroes en 4 witte kangoeroes. Dit is dus het juiste

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Uitdager van de maand. Rekenen Wiskunde, Groep 8. Algemeen

Uitdager van de maand. Rekenen Wiskunde, Groep 8. Algemeen Uitdager van de maand Breuken Rekenen Wiskunde, Groep 8 Algemeen Titel Breuken Cognitieve doelen en vaardigheden voor excellente leerlingen Met een breuk aangeven welk deel van een vorm gekleurd is (begrijpen).

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren Uren, Dagen, Maanden, Jaren,. Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren 1 minuut 60 seconden 1 uur 60 minuten 1 half uur 30 minuten 1 kwartier 15 minuten 1 dag (etmaal) 24 uren 1 week

Nadere informatie

MNEMOTECHNISCHE MIDDELTJES WISKUNDE. 2de 3de graad

MNEMOTECHNISCHE MIDDELTJES WISKUNDE. 2de 3de graad MNEMOTECHNISCHE MIDDELTJES WISKUNDE 2de 3de graad n.a.v. Personeelsvergadering 25/11/2014 Hoofdrekenen DELEN VAN NATUURLIJKE GETALLEN. Voorbeeld: 7800 : 6 = 1000 300 7800 : 6 = (6000 : 6) + (1800 : 6)

Nadere informatie

In dit boekje staan verschillende mogelijkheden om iets op te lossen.

In dit boekje staan verschillende mogelijkheden om iets op te lossen. In dit boekje staan verschillende mogelijkheden om iets op te lossen. Mochten er aanvullingen zijn, kunt u altijd een e-mail sturen naar info@obs-delandweert.nl. ONTLEDEN Taalkundig ontleden. benoem de

Nadere informatie

Hoe maak je nu van breuken procenten? Voorbeeld: Opgave: hoeveel procent van de onderstaande tekening is zwart gekleurd?

Hoe maak je nu van breuken procenten? Voorbeeld: Opgave: hoeveel procent van de onderstaande tekening is zwart gekleurd? Procenten Zoals op de basisschool is aangeleerd kunnen we een taart verdelen in een aantal stukken. Hierbij krijgen we een breuk. We kunnen ditzelfde stuk taart ook aangegeven als een percentage. Procenten:

Nadere informatie

Breuken met letters WISNET-HBO. update juli 2013

Breuken met letters WISNET-HBO. update juli 2013 Breuken met letters WISNET-HBO update juli 2013 De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers

Nadere informatie

Overig nieuws Hulp ouders bij rekenen deel 3.

Overig nieuws Hulp ouders bij rekenen deel 3. Overig nieuws Hulp ouders bij rekenen deel 3. Het rekenonderwijs van tegenwoordig ziet er anders uit dan vroeger. Dat komt omdat er nieuwe inzichten zijn over hoe kinderen het beste leren. Vroeger lag

Nadere informatie

wizsmart 2015 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan

wizsmart 2015 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 50 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie