d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut."

Transcriptie

1 Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat is naar boven afgerond 05 minuten. c. Kijk waar de grafiek het snelste daalt. Dat is op de tijdstippen t = t = 6 8,85 uur. 6,8 uur en op d. Met de dy/dx knop vind je dat op tijdstip t = 6,8 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,97 cm per minuut. I-. a. In Vlissingen is het getijdenverschil het grootst. b. Tot den Helder wordt het getijdenverschil kleiner, daarna neemt het getijdenverschil toe. c. In Delfzijl duurt eb ongeveer 6,5 uur en vloed duurt ongeveer 5,5 uur. d. De gemiddelde snelheid van de waterverandering is tijdens eb ongeveer,5 meter per 6,5 uur. (de verticale schaal ontbreekt, misschien heb je iets aan de, meter hoogte in Vlissingen) e. In IJmuiden is het verschil het grootst. I-. a,b. Omdat de verticale schaalverdeling ontbreekt, is het lastig om precieze uitspraken te doen. In Vlissingen lijkt de getijdenpoort korter dan in Den Helder. De stroomsnelheden in Vlissingen zijn groter dan in den Helder. Uitwerkingen vwo B deel, hoofdstuk A - -

2 . a. Hiernaast staan in één figuur getekend de grafieken van f(x) = sin(x) en g(x) =sin(x). De grafiek van g ontstaat door op de grafiek van f een verticale lijnvermenigvuldiging t.o.v. de x-as toe te passen met factor. De amplitude wordt daardoor keer zo groot. Hiernaast staan in één figuur getekend de grafieken van f(x) = sin(x) en h(x) = sin(x). De grafiek van h ontstaat door op de grafiek van f een horizontale lijnvermenigvuldiging t.o.v. de y-as toe te passen met factor. De periode wordt daardoor keer zo klein. b. Hiernaast staan in één figuur getekend de grafieken van k(x) = cos(x) en m(x) =+cos(x). De grafiek van m ontstaat door de grafiek van f omhoog te schuiven De periode en amplitude veranderen niet. Hiernaast staan in één figuur getekend de grafieken van k(x) = cos(x) en n(x) = cos(x +). De grafiek van n ontstaat door de grafiek van f naar links te schuiven De periode en amplitude veranderen niet.. a. g(x) = cos(6x) De grafiek van g ontstaat door op de grafiek van y = cos(x) een horizontale lijnvermenigvuldiging t.o.v. de y-as toe te passen met factor 6. De amplitude is en de periode is 6 =. b. k(x) =+cos(0,x) De grafiek van k ontstaat door op de grafiek van y = cos(x) eerst een horizontale lijnvermenigvuldiging t.o.v. de y-as toe te passen met factor 5 en daarna de grafiek omhoog te schuiven. De amplitude is en de periode is 0, =0. c. h(x) = cos(x + 0,) De grafiek van h ontstaat door op de grafiek van y = cos(x) 0, naar links te verschuiven De amplitude is en de periode is. d. m(x) = 5cos(x) De grafiek van m ontstaat door op de grafiek van y = cos(x) eerst een horizontale lijnvermenigvuldiging t.o.v. de y-as toe te passen met factor en daarna een verticale lijnvermenigvuldiging t.o.v. de x-as toe te passen met factor 5. De amplitude is 5 en de periode is =. Uitwerkingen vwo B deel, hoofdstuk A - -

3 . a. De periode van u is = 0,0 seconde. 00 b. De periode gedeeld door de frequentie. c. De periode is /50 seconde, dusu = sin(00t).. a. u = sin(500 t). De periode is =. De frequentie is 50 Hz b. v = 0,0 sin(00t). De periode is = 50. De frequentie is,75 Hz a. amplitude periode frequentie u =sin(0t) 0,05 0 Hz v =sin(0( t +0,0)) 0,05 0 Hz b. De grafiek van v is t.o.v. de grafiek van u met 0,0 naar links verschoven. c. Een periode is 0,05. De verschuiving is dus 0,6 = 60% van de periode. 0, 6. a. De periode is /0 = 0,05 en de amplitude is 0,5. b. De grafiek van u is 0,005 verschoven t.o.v. de grafiek van v. Dat is een faseverschil van 0,005/0,05 = 0,. c. Als het faseverschil 0, is, dan is de verschuiving 0, x 0,05 = 0,0075. Het functievoorschrift wordt: w = 0,8sin(80(t-0,0075)). 7. Als twee trillingen met gelijke frequentie en amplitude geen faseverschil hebben, dan wordt de amplitude verdubbeld. Voorbeeld: sin(t) + sin(t) =8sin(t) Als het faseverschil 0,5 is dan wordt de amplitude nul omdat de twee trillingen elkaar opheffen. Voorbeeld: sin(t) + sin((t-)) = 0 8. a. In de figuur hiernaast zijn de grafieken geplot van y = -0,5 en van f(x) = -0,5+ sin( x) en van g(x) = -0,5+ sin( (x- )). De periode van f en van g is. b. De amplitude is en de evenwichtsstand is -0,5. c. De grafiek van f moet een naar rechts geschoven worden om de grafiek van g te krijgen. Uitwerkingen vwo B deel, hoofdstuk A - -

4 9. a. De periode is 6, de amplitude is en de evenwichtsstand is 5. b. De grafiek van f ontstaat door een verschuiving van naar links. c. Het faseverschil is /6. 0. a. 8 - De amplitude is =, de evenwichtsstand is b. De periode is -(-) = (van top tot top) 8 + = Het getal b vindt je door = te berekenen. c. Mogelijke functievoorschriften zijn o.a.: y = + sin( (x - )) {de grafiek is verschoven t.o.v. y = + sin( x) } y = -sin( x) {een minteken omdat de sinuslijn begint met dalen} y = + cos( (x - )) {de grafiek is verschoven t.o.v. y = + cos( x). a. De evenwichtsstand is, de amplitude is en de periode is 8. b. Je kan c = nemen omdat de sinuslijn in (,) stijgend door de evenwichtsstand gaat. c. Bijvoorbeeld: y =+sin( (x -)) =+sin( (x -)) 8. links midden rechts amplitude,5 evenwichtsstand 0 - periode 6 formule y =sin( x) y = -+sin( (x -)) y =+ sin((x - )) andere formule y =cos( (x -)) y = --sin( (x-)) y =+ cos(x). a. Om 8.0 uur hoogwater en om. uur laagwater. Het tijdsverschil 6. uur (dat is 6, uur) is een halve periode. De periode is dus, uur. De hoogste waterstand is 6 meter en de laagste,5 meter. De amplitude is 6-,5 =,75 meter. De evenwichtsstand is 6+,5 =,5 meter. De sinuslijn gaat een kwart periode vóór 8.0 uur door de evenwichtsstand. Dat gebeurt dus om 8,5 -, = 5, uur. Een mogelijke formule is: H(t) =,5+,75sin( (t -5,)) =,5+,75sin(0,5067(t-5,))., In dit geval is het gemakkelijker om een cosinus te gebruiken: H(t) =,5+,75cos(0,5067(t-8,5)) (omdat het om 8,5 uur hoogwater is). a. Nee, omdat je niet of er nog andere toppen tussen zitten. b. Ja, want je kan de amplitude, en periode uitrekenen. c. nee, de amplitude is niet bekend. Uitwerkingen vwo B deel, hoofdstuk A - -

5 5. a. De grafiek staat hiernaast en heeft een periode gelijk aan. b. Een bijpassend functievoorschrift is f(x) = sin(x) c a. Je kan voor f ook nemen: f(x) = + sin((x - )) Voor g krijg je: g(x) = + sin((x + )). b. Samen zijn ze. Je krijgt een rechte lijn. 7. In een eenheidscirkel (dat is een cirkel met straal ) wijst elke hoek x een punt P aan. Van uit de derde klas herinner je dat de sinus van een hoek gelijk is aan de overstaande rechthoekszijde gedeeld door de schuine zijde. PQ PQ Je krijgt dus: sin(x) = = = PQ OP OQ OQ Zo vind je ook: cos(x) = = = OQ OP Omdat in een rechthoekige driehoek de stelling van Pythagoras geldt: OQ +PQ =OP = = Conclusie: (sinx) +(cosx) = Opmerking: de coördinaten van P zijn dus (cos x, sin x). 8. a. Er zijn verticale asymptoten als de noemer nul is. Dat zijn dus de nulpunten van cos x. b. De grafiek snijdt de x-as als de teller nul is, dat zijn dus de nulpunten van de sin x, namelijk (0,0), (,0) enz. 9. a. De grafieken van f(x) ++tan(x) en van y = staan hiernaast getekend. b. Met INTERSECT vind je x,9 en x,9. c. Omdat je weet dat tan(- ) = - kun je f(x)=0 exact oplossen. - < x - en < x, enz. 0. Ik kan het niet op leerling-niveau verklaren. Uitwerkingen vwo B deel, hoofdstuk A - 5 -

6 . a. f(x) =+ tan x =+(tan(x)). De asymptoten zijn x = -, x =, x =, enz. b. De periode van f is. c. sin x cos x sin x cos x +sin x f(x) =+ tan x =+ = + = = cos x cos x cos x cos x cos x. a. - b. Je kan naar de grafiek kijken; amplitude, evenwichtsstand en periode aflezen. Dan vind je f(x) = sin((x - )) Een totaal andere oplossing vind je met behulp van de formule: sin x +cos x = sin x +cos x = dus sin x =-cos x en cos x =-sin x dus f(x) = sin x-cos x = sin x -(-sin x) =sin x -.. a. Als n oneven is, dan is de periode. Als n even is, dan is de periode b. Als n= dan heb je een evenwichtsstand 0,5 en een amplitude 0,5 en een periode. Je probeert dan de grafiek van f(x) = - cos(x) te tekenen en je ziet dat het niet klopt. c. Alleen voor n= en n= is de grafiek een sinusoïde.. a. f(x) = sin(x) f'(x) = cos(x) b. f(x) = cos(x) f'(x) = -sin(x) 5. a. f(x) = 5cos(x) f'(x) = -5sin(x) b. g(x) =+ sin(x) g'(x) = cos(x) c. h(x) =-sin(x) h'(x) = -cos(x) 6. a. Met de dy/dx knop en x = vind je -, b. Als f'(x) = -sin(5x), dan verwacht je f'( ) = -sin(5 ) = Het antwoord uit opdracht a verschilt een factor 5. c a. f(x) = sin( x) f'(x) = cos( x) ( b. g(x) =cos( x) g'(x) = -sin( x)) = -sin( x) c. h(x) = sin(x) h'(x) = cos(x) d. k(x) = cos(x) k'(x) = ( -sin(x)) = -sin(x) Uitwerkingen vwo B deel, hoofdstuk A - 6 -

7 8. a. De grafiek van g ontstaat door een verschuiving naar links. b. f(x) =sin(x) f'(x) =cos(x) c. f'( ) is de helling van de raaklijn aan de grafiek van f in het punt (, ). Als je de grafiek verschuift (naar links, rechts, omhoog of omlaag) dan verandert de helling van de raaklijn niet. Dus moet f'( ) gelijk zijn aan g'( - ). d. Conclusie: g(x) =sin(x + ) f'(x) =cos(x + ). 9. a. f(x) = sin(x -0,75) f'(x) =cos(x -0,75) b. g(x) = -sin (x +) g'(x) = - cos (x +) = - cos (x +) c. h(x) =+sin (x -) h'(x) = - sin (x -) = - sin (x-) 0. a. De periode is 5 seconden; meet je eigen ademhaling op b. p(t) = -0sin t p'(t) = -0 cos t = -8cos t p'() -7,766 per seconde. De luchtdruk neemt af, dus wordt er uitgeademd. c. De maximale snelheid bij het uitademen is -8 op de tijdstippen t = 0, t =5, t =0, enz. De maximale snelheid bij het inademen is 8 op de tijdstippen t =,5 en t =7,5 en enz.. a. f(x) = d+ a sin(b(x -c)) De factoren a en b vertellen iets over de steilheid van de grafiek. Die factoren kom je dus tegen in de afgeleide. De d en c vertellen iets over verschuivingen. Die spelen geen echte rol bij de afgeleide. b. f(x) = d+ a sin(b(x -c)) f'(x) = ab cos(b(x -c)) c. De evenwichtsstand van f'(x) = ab cos(b(x-c)) is nul. De periode van de grafiek is ook de periode van de raaklijnen, dus ook de periode van de hellingen van de raaklijnen. Dus is de periode van de helling gelijk aan de periode van de functie.. a. Er zijn 9 snijpunten b,c Met INTERSECT vind je dat de twee eerste snijpunten zijn:(-,78;-0,5) en (-0,56;-0,5). Je kan in dit geval de snijpunten exact berekenen: 0,5+sin((x +)) = -0,5 sin((x +)) = -0,50 ((x +)) = - ((x +)) = x + = x + = x = - -,056 x = -,6 Deze waarden vallen buiten het domein, maar je mag bij beide uitkomsten net zo vaak / bijtellen of van af trekken. Dus je vindt: x = -, x = - + = -, x = - + = -, x = - + = -, x = - + = -, enz x = -, x = - + = -, x = - + = -, x = - + =, x = - + =, enz Uitwerkingen vwo B deel, hoofdstuk A - 7 -

8 . a. De periode van sin(x) is, de periode van sin(x) is. De gemeenschappelijke periode is. b. Van f passen er en van g passen er perioden in.. a. De periode van cos( x) is, de periode van sin(x - ) is, de gemeenschappelijke periode is. b. De periode van sin(x) is, de periode van cos( x) is, de gemeenschappelijke periode is. c. De periode van sin(x) is, de periode van cos( x) is, de gemeenschappelijke periode is a. De periode van sin( x) is, de periode van cos( x) is 6, de gemeenschappelijke periode is. b. Hiernaast staan de grafieken op [0,] getekend Snijpunten zijn alleen te vinden met INTERSECT. x,0, x 7,7, x,8, x 7,55, x,65 en x,90. c. Dezelfde waarden en de andere waarden kun je vinden door er bij op te tellen. 6. a. cos(-x) = sin(x). Je kunt de oplossingen van deze vergelijking exact berekenen Als je met INTERSECT werkt vind je: - -,7; - -,6; - -0,5;,57; 7,9. b. sin( x) = cos( x). Je kunt de oplossingen van deze vergelijking exact berekenen. Als je met INTERSECT werkt vind je: -9; -6,6; -,; -,8; 0,6; ; 5,; 7,8. Dit zijn wel exacte oplossingen! c. De perioden van sin( x) en van cos( x) zijn en 6. De gemeenschappelijke periode is dus. 7. In [-00,500] zitten 50 perioden. Op elke periode zijn er 5 gemeenschappelijke punten. In totaal zul je dus 50 oplossingen vinden. a. Als de periode van f gelijk is aan, dan is de waarde van a =. Als de gemeenschappelijke periode van f en g gelijk aan is, dan kan de periode van g bijvoorbeeld of zijn. In deze gevallen is a = of a=. Uitwerkingen vwo B deel, hoofdstuk A - 8 -

9 8. a. sin(x) =cos(x). Je kunt de oplossingen van deze vergelijking niet exact berekenen. Als je met INTERSECT werkt vind je: -5,0; -,89;,5 en,9. b. sin(x) =cos(x) als je beide kanten delen door cos(x), dan krijg je: sin(x) cos(x) = tan(x) = cos(x) cos(x) c. Bij de sinus en bij de cosinus moet tussen de haakjes hetzelfde staan. G-. a. f(x) = asin(bx) f'(x) = abcos(bx) f'(0) = ab De helling van de lijn is, dus moet ab = zijn. b. Als het maximum 5 is, dan a =5 en dus is b = 0,6, maar dat is geen geheel getal. c. Alleen de combinaties a = & b = en andersom zijn toegestaan. G-. a. De lengte van een kwartaal is ongeveer 9,5 dagen als je geen rekening houdt met schrikkeljaren. Dus na 9,5 - = 80,5 dagen snijdt de grafiek de evenwichtsstand. b. De amplitude is (7-8)/ =,5 uren De evenwichtsstand is,5 uur De periode is 65 dagen. De formule: D(t) =,5+,5sin( 65 (t-80,5)) c. D'(t) =,5 cos( (t -80,5)) 0,0775cos( (t-80,5)) d. D'(t) = 0 cos( (t-80,5)) = ( (t-80,5)) = ( (t-80,5)) = t-80,5 = 9,5 t-80,5 =7,75 t =7,5 t =5 De 7 e of de 7 e is de langste dag en de 5 e dag is de kortste dag. 65 e. D'(80) 0,0775cos( (80-80,5)) 0,0775 uren per dag. De daglengte neemt met 0,0775 uur (ongeveer,6 minuten) op die dag toe. G-. a. De helling f'(0) =. De raaklijn is dus y = x. b. Er is één snijpunt als a > of als a < -0,76. (benaderd) c. Twee snijpunten komt nooit voor. d. Zeven snijpunten heb je als (bij benadering) 0,07 < a < 0,8 G-. a. Dat komt niet voor; wel staan ze elke,8 dagen in één lijn met Jupiter en met elkaar. b. Ze staan niet steeds aan dezelfde kant; hun omlooptijden verhouden zich als :. Op het moment t =,8 bijvoorbeeld is Io als weer terug in de uitgangspositie, terwijl Europa een half rondje heeft gemaakt. c. Om de 7, dagen staat Ganymedes in één lijn met Jupiter, Io en Europa. d. Io zie je het snelst bewegen. I'(0)=7 het grootst. Opmerking van je docent: als het op een winteravond helder is, kun je met een gewone verrekijker de manen van Jupiter zien. Een indrukwekkend gezicht. Uitwerkingen vwo B deel, hoofdstuk A - 9 -

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

2012 I Onafhankelijk van a

2012 I Onafhankelijk van a 0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Inleiding goniometrie

Inleiding goniometrie Inleiding goniometrie We bekijken de volgende twee hellingen: 1 2 Duidelijk is dat de tweede helling steiler is dan de eerste helling. Ook zien we dat hellingshoek 2 groter is dan hellingshoek 1. Er bestaat

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Eindexamen wiskunde b 1-2 havo 2002 - II

Eindexamen wiskunde b 1-2 havo 2002 - II Pompen of... Een cilindervormig vat met een hoogte van 32 dm heeft een inhoud van 8000 liter (1 liter = 1 dm 3 ). figuur 1 4p 1 Bereken de diameter van het vat. Geef je antwoord in gehele centimeters nauwkeurig.

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 2 Regels voor differentiëren

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 2 Regels voor differentiëren De Wageningse Methode &6 WO wiskunde B Uitgebreide antwoorden Hoofdstuk egels voor differentiëren Paragraaf Opnieuw sinus en inus a. -, 0, ; -, ; -, ; -, b. (,sin) (-0, ; 0,9), met de G Op dezelfde hoogte:,

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Functies. Verdieping. 6N-3p 2010-2011 gghm

Functies. Verdieping. 6N-3p 2010-2011 gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de ijehorende grafiek. Je mag de GRM hierij geruiken. Y f ( x) x X

Nadere informatie

De twee schepen komen niet precies op hetzelfde moment in S aan.

De twee schepen komen niet precies op hetzelfde moment in S aan. Gevaar op zee Schepen die elkaar te dicht naderen worden gewaarschuwd door de kustwacht. Wanneer schepen niet op zo n waarschuwing hebben gereageerd, stelt de Inspectie Verkeer en Waterstaat een onderzoek

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen.

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Achter dit eamen is een erratum opgenomen. Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2001-I VAK: WISKUNDE B 1,2 EXAMEN: 2001-I

UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2001-I VAK: WISKUNDE B 1,2 EXAMEN: 2001-I UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2001-I VAK: WISKUNDE B 1,2 NIVEAU: HAVO EXAMEN: 2001-I De uitgever heeft ernaar gestreefd de auteursrechten te regelen volgens de wettelijke bepalingen.

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 009 tijdvak woensdag 4 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking.

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking. G&R havo B deel Differentiaalrekening C von Schwartzenberg /0 Toets voorkennis EXTRA: Differentiëren op bladzijde 56 aan het einde van deze uitwerking a f ( ) 5 7 f '( ) 8 5 b g( ) ( 5) 5 g '( ) 6 0 c

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 015 tijdvak 1 woensdag 13 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Met behulp van deze gegevens kan worden berekend welke maximale totale behoefte aan elektrische energie in Nederland er voor 2050 wordt voorspeld.

Met behulp van deze gegevens kan worden berekend welke maximale totale behoefte aan elektrische energie in Nederland er voor 2050 wordt voorspeld. Windenergie Er wordt steeds meer gebruikgemaakt van windenergie. Hoewel de bijdrage van windenergie nu nog klein is, kan windenergie in de toekomst een grote bijdrage aan onze elektriciteitsvoorziening

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2009 - I

Eindexamen wiskunde B1-2 vwo 2009 - I en benadering van een nulpunt Voor elke positieve startwaarde 0 is een rij 0,, 2, gegeven door de volgende recursievergelijking: n+ = 2 n +. n Deze recursievergelijking kunnen we ook schrijven als n+ =

Nadere informatie

Examen HAVO. wiskunde B 1,2

Examen HAVO. wiskunde B 1,2 wiskunde 1, Examen HVO Hoger lgemeen Voortgezet Onderwijs Tijdvak Woensdag 1 juni 13.30 16.30 uur 0 06 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit 18 vragen. Voor elk vraagnummer

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur Examen HVO 2013 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1.0 16.0 uur 20 02 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

29 Parabolen en hyperbolen

29 Parabolen en hyperbolen 39 0 1 9 Paraolen en hyperolen 6 5 5 6 3 3 1 5 h = 0,065 0 = 100 meter + (5 ) = 5 6,5 ; 5 ; 56,5 ; 100 meter ( 3 9 ) + (3 ) = 8 16,96.. afstand PE < afstand P tot de x-as Nee! y (alleen als y > 0) 0,065

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer

Nadere informatie

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1 Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2012 tijdvak 2 woensdag 20 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage.. Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor

Nadere informatie

Examen HAVO. Wiskunde B (oude stijl)

Examen HAVO. Wiskunde B (oude stijl) Wiskunde B (oude stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1330 1630 uur 20 02 Voor dit examen zijn maximaal 90 punten te behalen; het examen bestaat uit 18 vragen

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

Zomercursus Wiskunde. Grafieken van functies en krommen (versie 14 augustus 2008)

Zomercursus Wiskunde. Grafieken van functies en krommen (versie 14 augustus 2008) Katholieke Universiteit Leuven September 8 Grafieken van functies en krommen (versie 4 augustus 8) Grafieken van functies en krommen Inleiding In deze module bestuderen we grafieken van functies van reële

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Sinusoïden

Uitwerkingen bij 1_0 Voorkennis: Sinusoïden Uitwerkingen ij _ Voorkennis: Sinusoïden V_ a A( π, ), B( π, ), C( π, ) en D(π, ) Met de rekenmachine : Y = sinx Y = Met CALC, Intersect of G-Solve, ISCT: c V_ a x,6, x,5 of x,67 Bij een verschuiving van

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen HAVO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Vliegende parkieten Opgave 1. Het energieverbruik van de parkiet als deze vliegt met

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 008 tijdvak woensdag 18 juni 13.30-16.30 wiskunde B1, Bij dit examen hoort een uitwerkbijlage. it examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 81 punten te behalen. Voor elk

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2010 WISKUNDE 5 PERIODEN DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Eindexamen wiskunde B1 vwo 2002-I

Eindexamen wiskunde B1 vwo 2002-I Eindexamen wiskunde B1 vwo 00-I Verschuivend zwaartepunt Een kubusvormige bak met deksel heeft binnenmaten 10 bij 10 bij 10 cm en weegt 1 kilogram. Het zwaartepunt B van de bak ligt in het centrum van

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Hoofdstuk 2 - Algebra of rekenmachine

Hoofdstuk 2 - Algebra of rekenmachine Hoofdstuk - Algebra of rekenmachine Voorkennis: kwadratische vergelijkingen bladzijde V-a pp ( + ) b kk ( 0) c xx ( + ) d k( 8k 7) e qq ( + 9) f 0, tt+ ( ) g 7r( 9r) h p( 7p+ ) V-a fx () = x( x + ) b Nt

Nadere informatie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE Vaardigheden 1: Informatievaardigheden X X : Onderzoeksvaardigheden

Nadere informatie

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk

Nadere informatie

Ook de volledige spiraal van de stroken van lengte 1, 3, 5,, 99 past precies in een rechthoek.

Ook de volledige spiraal van de stroken van lengte 1, 3, 5,, 99 past precies in een rechthoek. Een spiraal In deze opgave bekijken we rechthoekige stroken van breedte en oneven lengte:, 3, 5,..., 99. Door deze stroken op een bepaalde manier aan elkaar te leggen, maken we een spiraal. In figuur is

Nadere informatie

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1 Herhalingsoefeningen Tweedegraadsfuncties Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband tussen

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 donderdag 24 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 1 donderdag 24 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 202 tijdvak donderdag 24 mei 3.30-6.30 uur wiskunde B (pilot) Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 82 punten te behalen. Voor

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 19 juni 13.30-16.30 uur

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 19 juni 13.30-16.30 uur Examen HVO 2013 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Examen VWO. wiskunde B1

Examen VWO. wiskunde B1 wiskunde B Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Dinsdag 3 mei 3.3 6.3 uur 5 Voor dit eamen zijn maimaal 87 punten te behalen; het eamen bestaat uit vragen. Voor elk vraagnummer is

Nadere informatie

Examen VWO. wiskunde B1,2

Examen VWO. wiskunde B1,2 wiskunde B, Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Dinsdag 3 mei 3.3 6.3 uur 6 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 9 vragen. Voor elk vraagnummer

Nadere informatie

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude 1 De sinus van een hoek Eenheidscirkel In de figuur hiernaast

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 2 woensdag 20 juni 13.30-16.30 uur

Examen VWO. wiskunde B1. tijdvak 2 woensdag 20 juni 13.30-16.30 uur Examen VWO 2007 tijdvak 2 woensdag 20 juni 13.30-16.30 uur wiskunde B1 Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 81 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2009 tijdvak 2 woensdag 24 ji 3.30-6.30 uur wiskde B,2 Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 7 vragen. Voor dit examen zijn maximaal 80 pten te behalen. Voor elk vraagnummer

Nadere informatie

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 zie havo vwo aantonen 1 aanzicht absolute waarde afgeleide (functie) notatie met accent: bijvoorbeeld f'(x), f' notatie met

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 007 VK : WISKUNE TUM: WOENSG 04 JULI 007 TIJ : 09.45.5 UUR (TOELTING VWO/HVO/NTIN) 09.45.45

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 0 tijdvak woensdag 0 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage.. Dit eamen bestaat uit 0 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

IJkingstoets burgerlijk ingenieur september 2013: algemene feedback

IJkingstoets burgerlijk ingenieur september 2013: algemene feedback IJkingstoets burgerlijk ingenieur 6 september 203 - reeks - p. IJkingstoets burgerlijk ingenieur september 203: algemene feedback In totaal namen 245 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

In een zware tornado worden maximale windsnelheden van ongeveer 280 km/u bereikt.

In een zware tornado worden maximale windsnelheden van ongeveer 280 km/u bereikt. Tornadoschalen In tornado s kunnen hoge windsnelheden bereikt worden. De zwaarte of heftigheid van een tornado wordt intensiteit genoemd. Er zijn verschillende schalen om de intensiteit van een tornado

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur wiskunde B Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 22 juni 3.30 6.30 uur 20 05 Voor dit eamen zijn maimaal 86 punten te behalen; het eamen bestaat uit 9 vragen. Voor elk vraagnummer

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Eerste en derdegraadsfunctie

Eerste en derdegraadsfunctie Eerste en derdegraadsfunctie Gegeven zijn f (x) = (x 2 1)(x 1½) en g (x) = x + 1½ ; De grafieken van f en g snijden beide de y-as in A(0, 1½) en de x-as in B(1½, 0). De grafiek van g raakt in punt A aan

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

Leerlijnen REKENEN WISKUNDE (BB)

Leerlijnen REKENEN WISKUNDE (BB) Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij

Nadere informatie

Oef 1. Oef 2. Ontbind, indien mogelijk, de veeltermen in factoren.

Oef 1. Oef 2. Ontbind, indien mogelijk, de veeltermen in factoren. Herhalingsoefeningen Problemen oplossen Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Elk

Nadere informatie

GONIOMETRIE MAAR DAN ANDERS. Dit materiaal is gemaakt binnen de Leergang Wiskunde schooljaar 2013/14

GONIOMETRIE MAAR DAN ANDERS. Dit materiaal is gemaakt binnen de Leergang Wiskunde schooljaar 2013/14 GONIOMETRIE MAAR DAN ANDERS Inhoudsopgave Achtergrondinformatie... 3 Docentenhandleiding... 5 BIJLAGEN... 10 Goniometrie, leerling blad 1... 10 INTRODUCTIE sinusoïde... 11 WISKUNDIGE DENKACTIVITEIT GONIOMETRIE...

Nadere informatie

Het opstellen van een lineaire formule.

Het opstellen van een lineaire formule. Het opstellen van een lineaire formule. Gegeven is onderstaande lineaire grafiek (lijn b). Van deze grafiek willen wij de lineaire formule weten. Met deze formule kunnen we gaan rekenen. Je kan geen lineaire

Nadere informatie

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies Basisvormen (algeraische denkeenheden) van algeraische epressies/functies,,,..,,, g g, log( ), sin(), cos() polynoomfuncties gerokenfuncties, vermenigvuldigingsfunctie Soort functies Standaardvormen met

Nadere informatie

1 Vlaamse Wiskunde Olympiade: tweede ronde

1 Vlaamse Wiskunde Olympiade: tweede ronde Vlaamse Wiskunde Olympiade: tweede ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt

Nadere informatie

begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie domein subdomein in CE moet in SE mag in SE A Vaardigheden A1: Informatievaardigheden A2:

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

Examen VWO. wiskunde B1

Examen VWO. wiskunde B1 wiskunde Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak Dinsdag 3 mei 3.3 6.3 uur 6 Voor dit eamen zijn maimaal 7 punten te behalen; het eamen bestaat uit vragen. Voor elk vraagnummer is aangegeven

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2008 WISKUNDE 5 PERIODEN DATUM : 5 juni 2008 ( s morgens) DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN Formuleboekje voor de Europese scholen Niet-programmeerbare,

Nadere informatie