Getaltheorie II. ax + by = c, a, b, c Z (1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Getaltheorie II. ax + by = c, a, b, c Z (1)"

Transcriptie

1 Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen te vinden, d.w.z. gehele getallen x en y die aan de vergelijking voldoen. Hierbij kunnen a en b beide niet-negatief worden verondersteld. (Substitueer anders x = x of y = y.) Als a = 0 of b = 0 is het onderzoek van (1) geen probleem. Stel daarom ax + by = c, a, b, c Z, a, b > 0. (2) Als d een gemeenschappelijke deler van a en b is, volgt uit (2) dat d ook een deler van c moet zijn. Stelling 1.1 (2) heeft geen gehele oplossingen als c geen veelvoud van ggd(a, b) is. In de eerste lesbrief over getaltheorie is al bewezen dat er gehele getallen m en n zijn zo, dat am + bn = ggd(a, b). Als dus c = k ggd(a, b) voor een zekere gehele k, dan is (x = km, y = kn) een oplossing van (2). Zijn er nog meer oplossingen? Stel dat (x 1, y 1 ) en (x 2, y 2 ) beide oplossingen zijn. Substitueer deze oplossingen in (2) en trek de vergelijkingen van elkaar af, dan ontstaat met de notatie u = x 1 x 2, v = y 1 y 2 de vergelijking au + bv = 0. (3) Deel deze vergelijking door ggd(a, b) en schrijf a = a ggd(a,b), b = b ggd(a,b), dan krijgen we: a u + b v = 0, ggd(a, b ) = 1. (4) Het getal A = a u = b v is een gemeenschappelijk veelvoud van a en b. Het is dus ook een veelvoud van (a, b ). We weten dat (a, b ) ggd(a, b ) = a b. Omdat ggd(a, b ) = 1 is het dus voor zekere gehele r waar dat A = ra b. Hieruit volgt: u = rb, v = ra. (5) Omgekeerd voldoet ook ieder paar (u, v) van de vorm (5) voor elke gehele r aan (4), dus ook aan (3), zodat (5) alle gehele oplossingen van (3) beschrijft. Stelling 1.2 De collectie van alle paren (u, v) van de vorm u = rb ggd(a, b), v = ra ggd(a, b), r Z is gelijk aan de collectie van alle gehele oplossingen van (3). 1

2 Het gevolg hiervan is: Stelling 1.3 Vergelijking (2) heeft slechts gehele oplossingen indien voor zekere gehele k geldt dat c = kggd(a, b). Als in dat geval (x 0, y 0 ) een gehele oplossing is, wordt de collectie van alle gehele oplossingen gegeven door: x = x 0 + rb ggd(a, b), y = y 0 + ra ggd(a, b), r Z. Opgave 1.1 Bepaal alle gehele oplossingen (indien aanwezig) van: (a) 3x 2y = 0 (e) 6x + 3y = 1 (b) 3x 2y = 2 (f) 23x + 59y = 2 (c) 6x 2y = 2 (g) 9x 51y = 7 (d) 4x + 3y = 1 (h) 14x 63y = 91 2 Congruenties en restklassen Definitie 2.1 Stel a, b, m Z, m > 1. Indien a en b bij deling door m dezelfde rest geven, d.w.z. indien a b = cm voor zekere c Z, heten a en b congruent modulo m. Notatie: a b mod m. Voorbeelden: 29 9 mod 10, 3 63 mod 5, 7 1 mod 8, mod 13. Stelling 2.2 Als a b mod m en b c mod m dan is a c mod m. Stelling 2.3 Als a b mod m en c d mod m dan is a + c b + d mod m. Stelling 2.4 Als a b mod m dan is voor elke gehele c ook ac bc mod m. Gevolg: als a b mod m en c d mod m dan is ac bd mod m. Opgave 2.1 Bewijs de vorige drie stellingen. Rekenen met congruenties lijkt dus erg op het rekenen met vergelijkingen. Er is echter een belangrijk verschil: uit ac bc mod m met c 0 mod m hoeft niet te volgen dat a b mod m. Voorbeeld: mod 10, maar 12 7 mod 10. In andere gevallen gaat het wel: mod 5 en 12 7 mod 5. Stelling 2.5 Als ac bc mod m en ggd(c, m) = 1, dan is a b mod m. Bewijs. ac bc mod m betekent dat voor zekere gehele k geldt (a b)c = km. Aangezien ggd(c, m) = 1 moet elke priemfactor van c in k bevat zijn, d.w.z. k = lc voor zekere gehele l, dus (a b)c = lcm. Omdat ggd(c, m) = 1 geldt zeker c 0 mod m (want ggd(0, m) = m voor alle gehele m), dus deze vergelijking kan door c gedeeld worden. 2

3 Rekent men modulo m, dan zijn er m verschillende soorten getallen, al naar gelang ze verschillende resten geven bij deling door m. De verzameling van alle gehele getallen die éénzelfde rest geven heet een restklasse modulo m. Er zijn dus precies m verschillende restklassen modulo m. De restklasse die een getal a bevat, noteert men als a. Deze notatie is natuurlijk niet eenduidig bepaald, want als a b mod m, stellen a en b dezelfde restklasse modulo m voor en omgekeerd. Zo is bijvoorbeeld 8 gelijk aan 13 modulo 7. De keuze van precies één getal uit elk van de m restklassen modulo m geeft wat men noemt een volledig stel resten modulo m. 0, 1, 2, 3, 4 is bijvoorbeeld een volledig stel resten modulo 5, maar 11, 5, 9, 18, 3 ook. Opgave 2.2 Ga na of de volgende congruenties juist zijn: mod 11, mod 13, mod 8, mod 4. Opgave 2.3 Bewijs dat n 2 0 mod 4 of n 2 1 mod 4 voor alle gehele n. Opgave 2.4 Welke resten kan n 3 geven bij deling door 9 als n geheel is? Opgave 2.5 Bepaal de rest bij deling van 2 35 door 63, door 80 en 2 35 door 127. Opgave 2.6 Bepaal het kleinste getal n N zo, dat 2 46 n mod 47. Opgave 2.7 S(n) is de som van de cijfers van n in het tientallig stelsel. Bewijs dat S(n) n mod 9 en S(n) n mod 3. Opgave 2.8 Voor welke natuurlijke n geldt n = 144 S(n)? Opgave 2.9 Bewijs het volgende criterium voor deelbaarheid door 11: stel n = a 1 a 2 a k waarin a 1,..., a k de cijfers van n in het tientallig stelsel zijn. n is een elfvoud dan en slechts dan als de alternerende som a 1 a 2 + a 3 a 4 + ± a k een elfvoud is. Opgave 2.10 Bewijs: als ggd(m, n) = 1, a b mod m en a b mod n dan a b mod mn. (Omgekeerd geldt natuurlijk dat als a b mod mn dan a b mod m en a b mod n, ook als ggd(m, n) 1.) Opgave 2.11 Laat zien dat 0, 3 0, 3 1, 3 2,..., 3 15 een volledig stel resten modulo 17 vormen. Geldt dit ook voor 0, 2 0, 2 1, 2 2,..., 2 15? Opgave 2.12 Bewijs: als ggd(a, m) = 1 en a b mod m dan geldt ook ggd(b, m) = 1. Opgave 2.13 Op welke cijfers eindigen de getallen 6 811, en 3 999? Opgave 2.14 Bepaal de resten bij deling van door 3, 5, 11 en 13. Opgave 2.15 Bewijs dat voor alle oneven natuurlijke getallen m en k de som 1 k + 2 k + + (m 1) k deelbaar is door m. 3

4 3 De kleine stelling van Fermat De volgende stelling kan het rekenen modulo een priemgetal sterk vereenvoudigen. Stelling 3.1 (P. de Fermat, ) Als p een priemgetal is, en a is een geheel getal zo, dat ggd(a, p) = 1, dan geldt a p 1 1 mod p. Voorbeelden: mod 11, mod 37. Bewijs. Beschouw a, 2a,..., (p 1)a. Geen tweetal van deze getallen zit in dezelfde restklasse modulo p. Stel namelijk ia ja mod p met 1 j < i p 1, dan volgt op grond van stelling (2.5) dat i j mod p, een tegenspraak. Geen van de getallen a, 2a,..., (p 1)a zit in de restklasse 0, want geen van die getallen is een p-voud. Deze restklassen zijn dus precies de restklassen 1, 2,..., (p 1), eventueel in een andere volgorde. Uit het gevolg van stelling (2.4) volgt nu a 2a (p 1)a 1 2 (p 1) mod p. Omdat p een priemgetal is, mag op grond van stelling (2.5) deze congruentie worden gedeeld door 1 2 (p 1). Er staat dan a p 1 1 mod p. Opgave 3.1 p is een priemgetal. Bewijs dat n p n mod p voor alle gehele n. Opgave 3.2 Geldt mod 341? Opgave 3.3 Bepaal de kleinste n N zo, dat n mod 37, n 7 74 mod 37, n 7 12 mod Opgave 3.4 Bewijs dat 2730 een deler is van n 13 n voor alle gehele n. Opgave 3.5 Bewijs dat deelbaar is door 7. 4 De stelling van Euler Het bovenstaande bewijs van de kleine stelling van Fermat berust op twee feiten: 1. de restklassen van a, 2a,..., (p 1)a zijn allemaal verschillend (en dus de restklassen van 1, 2,..., (p 1) in zekere volgorde). 2. uit de congruentie a 2a (p 1)a 1 2 (p 1) mod p mogen we de factoren 1, 2,..., (p 1) wegdelen. Kan men dezelfde methode gebruiken bij het rekenen modulo m als m geen priemgetal is? Stel a is een natuurlijk getal met ggd(a, m) = 1. Beschouw a, 2a,..., (m 1)a. In verband met (2) en ook wegens stelling (2.5) schrappen we uit deze rij de veelvouden ka van a met ggd(k, m) 1. Er blijft een deelrij r 1 a, r 2 a,..., r k a = (m 1)a over. Als r i a en r j a (i j) in dezelfde restklasse zitten, dan geldt r i a r j a mod m en omdat ggd(a, m) = 1 impliceert dit r i r j mod m. 0 < r i en r j < m maken deze laatste congruentie echter onmogelijk. Alle r i a zitten dus in verschillende restklassen. Hetzelfde geldt natuurlijk ook voor de getallen r i zelf. Deze getallen zijn 4

5 de natuurlijke getallen kleiner dan m die met m onderling ondeelbaar zijn (d.w.z. ggd(r i, m) = 1). Er geldt echter ook voor alle i dat ggd(r i a, m) = 1. Stel immers r i a = qm + t met 0 t < m. Dan is ggd(m, t) = 1, want elke gemeenschappelijke priemfactor van m en t is ook een factor van r i a, dus van r i of van a. Maar ggd(r i, m) = 1 en ggd(a, m) = 1. Tegenspraak. De conclusie is dat de restklassen r 1, r 2,..., r k dezelfde zijn als r 1 a, r 2 a,..., r k a, eventueel in een andere volgorde. Gevolg: r 1 a r 2 a r k a r 1 r 2 r k mod m en omdat ggd(r i, m) = 1 voor alle i volgt hieruit a k 1 mod m. Het getal k, het aantal natuurlijke getallen kleiner dan m dat met m onderling ondeelbaar is, noteert men als ϕ(m). De functie ϕ heet de ϕ-functie van Euler, naar Leonhard Euler( ). We hebben nu bewezen: Stelling 4.1 Als ggd(a, m) = 1, dan geldt a ϕ(m) 1 mod m. Voor de ϕ-functie kunnen we een expliciete uitdrukking afleiden. Dit doen we met twee hulpstellingen. Stelling 4.2 Als p een priemgetal is, dan geldt voor ieder natuurlijk getal n dat ϕ(p n ) = p n 1 (p 1). Bewijs. Alleen de veelvouden van p zijn niet onderling ondeelbaar met p n. Daarvan zijn er p n 1 kleiner dan of gelijk aan p n, dus volgt ϕ(p n ) = p n p n 1. Stelling 4.3 Als ggd(m, n) = 1 dan geldt ϕ(mn) = ϕ(m)ϕ(n). Bewijs. Beschouw de mn getallen van de vorm xm + yn (0 x < n, 0 y < m). Deze zitten allemaal in verschillende restklassen modulo mn. Stel namelijk dat x 1 m + y 1 n x 2 m + y 2 n mod mn, dan geldt voor zekere gehele k dat (x 1 x 2 )m + (y 1 y 2 )n = kmn. Omdat ggd(m, n) = 1 is x 1 x 2 dan een veelvoud van n en y 1 y 2 een veelvoud van m, tegenspraak. Omdat ggd(m, n) = 1 geldt ggd(xm + yn, mn) = 1 dan en slechts dan als ggd(xm + yn, m) = 1 en ggd(xm + yn, n) = 1. Maar ggd(xm + yn, m) = ggd(yn, m) = ggd(y, m) omdat ggd(m, n) = 1 en evenzo ggd(xm + yn, n) = ggd(x, n). Het is duidelijk dat ggd(a, mn) = ggd(a + kmn, mn) voor alle gehele k. In plaats van het aantal getallen kleiner dan mn te tellen die met mn onderling ondeelbaar zijn, kan men dus net zo goed het aantal van deze getallen tellen in een willekeurig volledig stel resten modulo mn. Het stelsel {xm + yn} als boven is precies zo n volledig stel resten, en bewezen is dat ggd(xm + yn, mn) = 1 dan en slechts dan als ggd(x, n) = 1 en ggd(y, m) = 1. Hieruit volgt dat ϕ(mn) = ϕ(m)ϕ(n). Combinatie van de vorige twee stellingen levert waarin p 1, p 2,..., p r verschillende priemgetal- Stelling 4.4 Als m = p k1 1 pk2 2 pkr r len zijn, dan geldt ϕ(m) = m (p 1 1)(p 2 1) (p r 1) p 1 p 2 p r 5

6 Voorbeeld: m = 300 = , dus ϕ(300) = = 80. Bijgevolg is het voor iedere gehele a met ggd(a, 300) = 1 waar dat a 80 1 mod 300. Opgave 4.1 Bepaal ϕ(360). Opgave 4.2 Voor welke natuurlijke n geldt ϕ(n) = 2 7 n? Opgave 4.3 Bepaal de laatste twee cijfers van het getal Opgave 4.4 Bewijs dat er in de rij (2 k 3) k N oneindig veel getallen voorkomen die allemaal onderling ondeelbaar zijn. (IWO 1971) Opgave 4.5 m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen. Bepaal de minimale waarde van m + n. (IWO 1978) 5 Gemengde opgaven Opgave 5.1 n is een geheel getal groter dan 1. Bewijs dat n geen priemgetal is. Opgave 5.2 p n is het n-de priemgetal als we de priemgetallen van klein naar groot rangschikken. Bewijs dat p n < 2 2n. Opgave 5.3 Bewijs dat het getal 2 2n + 1 voor elke gehele n > 1 eindigt op een 7. Opgave 5.4 Bepaal a en b zo, dat a + b = 5432 en (a, b) = Opgave 5.5 Bepaal de laatste twee cijfers van Opgave 5.6 Bewijs dat voor elke natuurlijke n geldt dat 3 6n 2 6n mod 35. Opgave 5.7 Bepaal alle natuurlijke getallen die gelijk zijn aan het kwadraat van de som van hun cijfers. Opgave 5.8 Bewijs dat 2 4n voor geen enkel positief geheel getal n een priemgetal is. Opgave 5.9 Bewijs dat de som van de cijfers van elk veelvoud van 99 minstens 18 is. Opgave 5.10 Bewijs dat er geen derdemacht van de vorm 2 n + 1 bestaat. Opgave 5.11 Stel p is een priemgetal dat bij deling door 30 rest r geeft. Bewijs dat r dan een priemgetal is of gelijk is aan 1. Geldt hetzelfde bij deling door 60? Opgave 5.12 p is een priemgetal. Bewijs dat er bij elk natuurlijk getal a kleiner dan p precies één natuurlijk getal b kleiner dan p bestaat zo, dat ab 1 mod p. Opgave 5.13 p is een priemgetal. Bewijs de stelling van Wilson: (p 1)! 1 mod p. Bewijs ook het omgekeerde: als voor een natuurlijk getal m geldt dat 6

7 (m 1)! 1 mod m, dan is m een priemgetal. Opgave 5.14 Voor welke natuurlijke getallen n geldt 5 n 4 n mod 61? 7

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

7.1 Het aantal inverteerbare restklassen

7.1 Het aantal inverteerbare restklassen Hoofdstuk 7 Congruenties in actie 7.1 Het aantal inverteerbare restklassen We pakken hier de vraag op waarmee we in het vorige hoofdstuk geëindigd zijn, namelijk hoeveel inverteerbare restklassen modulo

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties Hoofdstuk 6 Congruentierekening 6.1 Congruenties We hebben waarschijnlijk allemaal wel eens opgemerkt dat bij vermenigvuldigen van twee getallen de laatste cijfers als het ware meevermenigvuldigen. Stel

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Dossier 3 PRIEMGETALLEN

Dossier 3 PRIEMGETALLEN Dossier 3 PRIEMGETALLEN atomen van de getallenleer Dr. Luc Gheysens Een priemgetal is een natuurlijk getal met twee verschillende delers, nl. 1 en het getal zelf. De priemgetallen zijn dus 2, 3, 5, 7,

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element.

Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element. Hoofdstuk 5 Cyclische groepen 5.1 Definitie Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element. Als G wordt voortgebracht door a en a n = e, dan noteren we de groep als C n = a.

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

Oplossing van opgave 6 en van de kerstbonusopgave.

Oplossing van opgave 6 en van de kerstbonusopgave. Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.

Nadere informatie

7 Deelbaarheid. 7.1 Deelbaarheid WIS7 1

7 Deelbaarheid. 7.1 Deelbaarheid WIS7 1 WIS7 1 7 Deelbaarheid 7.1 Deelbaarheid Deelbaarheid Voor geheeltallige d en n met d > 0 zeggen we dat d een deler is van n, en ook dat n deelbaar is door d, als n d een geheel getal is. Notatie: d\n k

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn :

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn : HOOFDSTUK. VERZAMELINGEN, RELATIES EN FUNCTIES Opgaven verzamelingen, relaties en functies. Toon aan : a) (A B) C = A (B C) b) A (B C) = (A B) (A C) c) (A B) c = A c B c d) A B B c A c. Ga voor volgende

Nadere informatie

Priemontbinding en ggd s

Priemontbinding en ggd s Hoofdstuk 3 Priemontbinding en ggd s 3.1 Priemgetallen Een getal > 1 dat alleen 1 en zichzelf als positieve deler heeft noemen we een priemgetal. De rij priemgetallen begint als volgt, 2, 3, 5, 7, 11,

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten Hoofdstuk 12 Sommen van kwadraten 12.1 Sommen van twee kwadraten In Hoofdstuk 11 hebben we gezien dat als p een oneven priemdeler van a 2 + b 2 is, en p deelt niet zowel a als b, dan is p gelijk aan 1

Nadere informatie

De Chinese reststelling

De Chinese reststelling De Chinese reststelling 1 Inleiding 1. De Chinese reststelling is een stelling binnen de getaltheorie. De stelling werd voor het eerst beschreven in de vierde eeuw na Chr. door de Chinese wiskundige Sunzi

Nadere informatie

Hoofdstuk 18. Het abc-vermoeden Introductie

Hoofdstuk 18. Het abc-vermoeden Introductie Hoofdstuk 18 Het abc-vermoeden 18.1 Introductie In de gehele getallen zijn optelling en vermenigvuldiging de belangrijkste bewerkingen. Als we echter uitsluitend naar de optelstructuur van de gehele getallen

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

IMO-selectietoets III zaterdag 3 juni 2017

IMO-selectietoets III zaterdag 3 juni 2017 IMO-selectietoets III zaterdag 3 juni 017 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Gegeven is cirkel ω met middellijn AK. Punt M ligt binnen de cirkel, niet op lijn AK. De lijn AM snijdt

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

De kleine stelling van Fermat

De kleine stelling van Fermat De kleine stelling van Fermat Moderne getaltheorie: deelbaarheidscriteria, rekenen met resten, stellingen van Fermat, Euler en Gauss Overzicht collegestof & encyclopedische toevoegingen mc.vanhoorn@wxs.nl

Nadere informatie

Uitwerkingen toets 9 juni 2012

Uitwerkingen toets 9 juni 2012 Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen Worteltrekken modulo een priemgetal: van klok tot cutting edge Roland van der Veen Modulorekenen Twee getallen a en b zijn gelijk modulo p als ze een veelvoud van p verschillen. Notatie: a = b mod p Bijvoorbeeld:

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

Enkele valkuilen om te vermijden

Enkele valkuilen om te vermijden Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 19.a) Laat zien dat 5 een voortbrenger is van F 37. b) In het sleuteldistributiesysteem van Diffie en Hellman (met G = F 37, α =

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

6 Ringen, lichamen, velden

6 Ringen, lichamen, velden 6 Ringen, lichamen, velden 6.1 Polynomen over F p : irreducibiliteit en factorisatie Oefening 6.1. Bewijs dat x 2 + 2x + 2 irreducibel is in Z 3 [x]. Oplossing 6.1 Aangezien de veelterm van graad 3 is,

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato Algebra voor Informaticastudenten Getallen Jean Delville: de school van Plato Ernic Kamerich januari 2007 Inhoud 1 De gehele getallen..........................................................................

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

Uitwerking Puzzel 93-1, Doelloos

Uitwerking Puzzel 93-1, Doelloos Uitwerking Puzzel 93-1, Doelloos Wobien Doyer Lieke de Rooij Volgens de titel is deze puzzel zonder doel, dus zonder bekende toepassing. Het doel is echter nul en dat is zeker in de wiskunde niet niks.

Nadere informatie

Uitwerkingen toets 18 maart 2011

Uitwerkingen toets 18 maart 2011 Uitwerkingen toets 8 maart 20 Opgave. Alle positieve gehele getallen worden rood of groen gekleurd, zodat aan de volgende voorwaarden wordt voldaan: Er zijn zowel rode als groene getallen. De som van drie

Nadere informatie

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Geef een goede onderbouwing van je antwoorden. Succes! 1. (a) (10 pt) Ontbindt het polynoom X 3 3X+3 in irreducibele factoren in Q[X] en in

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

GETALTHEORIE 1. de Leuke En Uitdagende Wiskunde 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65,

GETALTHEORIE 1. de Leuke En Uitdagende Wiskunde 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65, GETALTHEORIE 1 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65, SAMENSTELLING: H. de Leuw - 1 - 1. NATUURLIJKE GETALLEN. Als kind hebben we allemaal leren tellen: 1,

Nadere informatie

Estafette. 36 < b < 121. Omdat b een kwadraat is, is b een van de getallen 49, 64, 81 en 100. Aangezien a ook een kwadraat is, en

Estafette. 36 < b < 121. Omdat b een kwadraat is, is b een van de getallen 49, 64, 81 en 100. Aangezien a ook een kwadraat is, en 26 e Wiskundetoernooi Estafette 2017 Uitwerking opgave 1 Noem het getal dat gevormd wordt door de laatste twee cijfers van het geboortejaar van rnoud a en de leeftijd van rnoud b. Dan is a + b = 2017 1900

Nadere informatie

handleiding ontbinden

handleiding ontbinden handleiding ontbinden inhoudsopgave inhoudsopgave de grote lijn 3 Bespreking per paragraaf 4 Applets 4 1 met gegeven product 4 ontbinden van getallen 4 3 vergelijkingen 5 4 onderzoek 6 tijdpad 9 materialen

Nadere informatie

Bewijs door inductie

Bewijs door inductie Bewijs door inductie 1 Bewijs door inductie Vaak bestaat een probleem erin aan te tonen dat een bepaalde eigenschap geldt voor elk natuurlijk getal. Als je wilt weten of iets waar is voor alle natuurlijke

Nadere informatie

Hoofdstuk 4. Delers. 4.1 Delers (op)tellen

Hoofdstuk 4. Delers. 4.1 Delers (op)tellen Hoofdstuk 4 Delers 4. Delers (op)tellen Ieder getal heeft zijn delers. Van oudsher heeft het onvoorspelbare gedrag van delers van getallen een aantrekkingskracht uitgeoefend op mensen. Zozeer zelfs dat

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie

inhoudsopgave januari 2005 handleiding algebra 2

inhoudsopgave januari 2005 handleiding algebra 2 handleiding algebra inhoudsopgave Inhoudsopgave 2 De grote lijn 3 Bespreking per paragraaf 1 Routes in een rooster 4 2 Oppervlakte in een rooster 4 3 Producten 4 4 Onderzoek 5 Tijdpad 9 Materialen voor

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Factorisatie van gehele getallen. Raymond Papenburg ( )

Factorisatie van gehele getallen. Raymond Papenburg ( ) Factorisatie van gehele getallen Raymond Papenburg (0469998) 2014 Inhoudsopgave 1 Inleiding 2 2 Geschiedenis 3 3 Complexiteit 4 3.1 Bitoperaties....................................... 4 3.2 Grote-O-notatie.....................................

Nadere informatie

PRIJEN en PRIPRIJEN Werkblad Rationale rechthoekige driehoeken

PRIJEN en PRIPRIJEN Werkblad Rationale rechthoekige driehoeken PRIJEN en PRIPRIJEN Werkblad Rationale rechthoekige driehoeken Vooraf De vragen en opdrachten in dit werkblad die vooraf gegaan worden door, moeten schriftelijk worden beantwoord. Daarbij moet altijd duidelijk

Nadere informatie

Definitie 4.1. Als H en K normaaldelers zijn van een groep G en H K = {e} en HK = G dan noemt men G het direct product van

Definitie 4.1. Als H en K normaaldelers zijn van een groep G en H K = {e} en HK = G dan noemt men G het direct product van Hoofdstuk 4 Groepsconstructies 4.1 Direct product We gaan nu bestuderen hoe we van 2 groepen een nieuwe groep kunnen maken of hoe we een groep kunnen schrijven als een product van 2 groepen met kleinere

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras

Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras Bart Zevenhek 0 februari 008 Samenvatting In deze vier artikelen wordt ingegaan op enkele getaltheoretische eigenschappen

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Gehelen van Gauss. Hector Mommaerts

Gehelen van Gauss. Hector Mommaerts Gehelen van Gauss Hector Mommaerts 2 Hoofdstuk 1 Definities Gehelen van Gauss zijn complexe getallen van de vorm a + bi waarbij a, b Z. De verzameling van alle gehelen van Gauss noteren we met Z(i). Dus

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Oefening: Markeer de getallen die een priemgetal zijn.

Oefening: Markeer de getallen die een priemgetal zijn. Getallenkennis : Priemgetallen. Wat is een priemgetal? Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. (m.a.w. een priemgetal is een natuurlijk getal

Nadere informatie

Syllabus Algebra I. Prof. Dr. H.W. Lenstra, Jr. Prof. Dr. F. Oort

Syllabus Algebra I. Prof. Dr. H.W. Lenstra, Jr. Prof. Dr. F. Oort Syllabus Algebra I Prof. Dr. H.W. Lenstra, Jr. Prof. Dr. F. Oort Bewerkt en aangevuld door Prof. Dr. B.J.J. Moonen Met een appendix door Raf Bocklandt Studiejaar en semester: jaar 1, semester 2 Docent:

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

Perfecte getallen en Leinster groepen

Perfecte getallen en Leinster groepen Faculteit Wetenschappen Departement Wiskunde Perfecte getallen en Leinster groepen Bachelorproef 1 Lukas Boelens Promotor: Dr. Andreas Bächle 29 januari 2015 Inhoudsopgave 1 Inleiding 2 2 Perfecte getallen

Nadere informatie

Finaletraining Nederlandse Wiskunde Olympiade

Finaletraining Nederlandse Wiskunde Olympiade NEDERLANDSE W I S K U N D E OLYMPIADE Finaletraining Nederlandse Wiskunde Olympiade Met uitwerkingen Birgit van Dalen, Julian Lyczak, Quintijn Puite Dit trainingsmateriaal is deels gebaseerd op materiaal

Nadere informatie

De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen

De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen Een praktische opdracht voor leerlingen van 5 VWO met wiskunde B DE TELDUIVEL Inleiding Wiskunde? Hou op zeg!

Nadere informatie

cyclotomische polynomen

cyclotomische polynomen Coëfficiënten van cyclotomische polynomen Joris Luijsterburg Studentnummer: 0314137 Maart 2009 Bachelorscriptie Onder begeleiding van Dr. W. Bosma Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en

Nadere informatie

Het doel van dit Hoofdstuk is een inleiding te geven in de theorie van kettingbreuken,

Het doel van dit Hoofdstuk is een inleiding te geven in de theorie van kettingbreuken, Kettingbreuken Het doel van dit Hoofdstuk is een inleiding te geven in de theorie van kettingbreuken en enkele toepassingen daarvan te geven.. Eindige kettingbreuken Een aardige manier om kettingbreuken

Nadere informatie

Het probleem van Hilbert

Het probleem van Hilbert René Pannekoek Imperial College (Londen) 31 januari 2014 Motto Leopold Kronecker (1823-1891) Motto Leopold Kronecker (1823-1891): Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.

Nadere informatie

VERZAMELINGEN EN AFBEELDINGEN

VERZAMELINGEN EN AFBEELDINGEN I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen

Nadere informatie

Congruente getallen. Frans Oort. Kaleidoscoop voordracht Utrecht, 10 februari 2009

Congruente getallen. Frans Oort. Kaleidoscoop voordracht Utrecht, 10 februari 2009 Congruente getallen Frans Oort Kaleidoscoop voordracht Utrecht, 10 februari 2009 Inleiding In deze voordracht bestuderen we het probleem van de Congruente Getallen, dat in een 10-de eeuws Arabisch manuscript

Nadere informatie

Dossier 1 SYMBOLENTAAL

Dossier 1 SYMBOLENTAAL Dossier 1 SYMBOLENTAAL basis voor wiskundige communicatie Dr. Luc Gheysens Wiskundigen hebben een eigen symbolentaal waarmee ze onderling communiceren, redeneringen en bewijzen neerschrijven, mathematische

Nadere informatie

De wiskunde van geheimschriften. R. Cramer, B. de Smit, P. Stevenhagen, A. Stolk, M. Streng, L. Taelman

De wiskunde van geheimschriften. R. Cramer, B. de Smit, P. Stevenhagen, A. Stolk, M. Streng, L. Taelman De wiskunde van geheimschriften R. Cramer, B. de Smit, P. Stevenhagen, A. Stolk, M. Streng, L. Taelman Februari Maart 2008 update 2014 Inhoudsopgave 1 Geheime communicatie 5 Wat is cryptografie?.......................

Nadere informatie

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA?

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA? Algoritmes en Priemgetallen Hoe maak je een sleutelpaar voor RSA? Het recept van RSA Kies p q priemgetallen en bepaal N = pq Kies e Z N (publieke sleutel) Bepaal d e 1 mod φ N (privésleutel) x ed x kφ

Nadere informatie

Algebra en Getaltheorie@Work: van cryptosysteem tot digitale handtekening

Algebra en Getaltheorie@Work: van cryptosysteem tot digitale handtekening Algebra en Getaltheorie@Work: van cryptosysteem tot digitale handtekening Dr. Fabien Decruyenaere, St. Amandscollege, 8500 Kortrijk fabien.decruyenaere@skynet.be Prof. Dr. Paul Igodt, K.U.Leuven Campus

Nadere informatie

Spookgetallen. Jan van de Craats en Janina Müttel

Spookgetallen. Jan van de Craats en Janina Müttel Spookgetallen Jan van de Craats en Janina Müttel leadtekst In de serie Open Problemen deze keer drie beroemde onopgeloste raadsels. Je kunt er geen miljoen dollar mee winnen, maar wel onsterfelijke roem.

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Priemgetallen en priemidealen in kwadratische lichamen

Priemgetallen en priemidealen in kwadratische lichamen Dirk Dekker Van Uytrechtlaan 25 1901 JK Castricum T.J.Dekker@uva.nl. 1. Inleiding Priemgetallen en priemidealen in kwadratische lichamen Het ontbinden van getallen in factoren en de daaruit te verkrijgen

Nadere informatie

Extra oefeningen hoofdstuk 4: Deelbaarheid

Extra oefeningen hoofdstuk 4: Deelbaarheid Extra oefeningen hoofdstuk 4: Deelbaarheid 4.1 Delers en veelvouden 1 Bepaal door opsomming. a) del 84 =... b) del 13 =... c) del 44 =... d) del 89 =... e) del 1 =... f) del 360 =... 2 Bepaal de eerste

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Mersenne- en Fermatgetallen

Mersenne- en Fermatgetallen Hoofdstuk 5 Mersenne- en Fermatgetallen 5.1 Mersennegetallen Uit Hoofdstuk 4 is naar voren gekomen dat getallen van de vorm 2 n 1 met n 2 en hun al of niet priem zijn van belang is voor de constructie

Nadere informatie

Differentiequotiënten en Getallenrijen

Differentiequotiënten en Getallenrijen Lesbrief 4 Binomiaalcoëfficiënten, Differentiequotiënten en Getallenrijen Binomiaalcoëfficiënten Het is beend dat (a + b 2 = a 2 + 2ab + b 2 en dat (a + b 3 = a 3 + 3a 2 b + 3ab 2 + b 3. In het algemeen

Nadere informatie

Hoofdstuk 16. De vergelijking van Pell De oplossing. Stel dat N N geen kwadraat is. Beschouw de vergelijking. x 2 Ny 2 = 1

Hoofdstuk 16. De vergelijking van Pell De oplossing. Stel dat N N geen kwadraat is. Beschouw de vergelijking. x 2 Ny 2 = 1 Hoofdstuk 16 De vergelijking van Pell 16.1 De oplossing Stel dat N N geen kwadraat is. Beschouw de vergelijking x Ny = 1 in de onbekenden x, y Z 0. We noemen dit soort vergelijking de vergelijking van

Nadere informatie

Syllabus Algebra I. Prof. Dr G. van der Geer

Syllabus Algebra I. Prof. Dr G. van der Geer Algebra I -1 1 Syllabus Algebra I voorlopige versie Prof. Dr G. van der Geer Faculteit Wiskunde en Informatica Universiteit van Amsterdam Science Park 94248 1090 GE Amsterdam Versie: 2013 Algebra I -2

Nadere informatie

Priemtesten en priemontbinding

Priemtesten en priemontbinding Hoofdstuk 8 Priemtesten en priemontbinding 8.1 Complexiteit We hebben het al in eerdere hoofdstukken gezegd, ontbinding van grote getallen in priemfactoren is moeilijk. Ontbinding van willekeurige getallen

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

BEWIJZEN EN REDENEREN

BEWIJZEN EN REDENEREN BEWIJZEN EN REDENEREN voor Bachelor of Science in Fysica en Wiskunde Academiejaar 2012/2013 Arno KUIJLAARS Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Heverlee Inhoudsopgave

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen Een praktische opdracht voor leerlingen van 5VWO met wiskunde B DE TELDUIVEL Inleiding Wiskunde? Hou op zeg! Voor

Nadere informatie

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade Katernen voor de regionale training ten behoeve van de tweede ronde van de Nederlandse Wiskunde Olympiade NEDERLANDSE WISKUNDE OLYMPIADE Birgit van Dalen Julian Lyczak Quintijn Puite Inhoudsopgave Katern

Nadere informatie