Uitwerkingen tentamen Wiskunde B 16 januari 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Uitwerkingen tentamen Wiskunde B 16 januari 2015"

Transcriptie

1 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Uitwerkingen tentamen Wiskunde B 6 januari 5 Vraag a f(x) = (x ) f (x) = (x ) = 6 (x ) Dit geeft f () = 6 = 6. y = ax + b met y =, a = 6 en x = geeft = 6 + b b = + = 5. De vergelijking van de raaklijn in (,) is dus y = 6x + 5. y = geeft 6x + 5 = 6x = 5 x =. Dit geeft OP =. x = geeft y = 5. Dit geeft OQ = 5. De oppervlakte van driehoek OPQ is zodoende OP OQ = 5 = 8 4 Vraag b q Oppervlakte(V q ) = f(x) dx = [ ln(x )] Deze oppervlakte moet gelijk zijn aan, dus volgt: q = ln(q ) = ln(q ) = q = e q = + e Vraag c ln(q ) = ln(q ) Deze raaklijn heeft een formule van de vorm y = ax. Deze lijn gaat door O(,) en door een punt (x, f(x)) op de grafiek van f, dus geldt: a = f(x) x. Omdat dit de raaklijn is in het punt (x, f(x)) geldt ook a = f (x). Samen geeft dit f (x) = f(x) x. Zodoende krijgen we f (x) = f(x) x 6 (x ) = (x ) x 6x = (x ) x = 9 x = 4 Dit geeft a = f ( 4 ) = 6 = 6 ( ) = 6 4 = De vergelijking van de raaklijn is dus y = 8 x. Uitwerkingen Wiskunde B 6 januari 5

2 Vraag a Merk op dat AM = BM. Uit A = B volgt dat ABC een gelijkbenige driehoek is met AC = BC. Hieruit volgt dat driehoeken AMC en BMC congruent zijn (ZZZ), dus geldt ACM = BCM. Omdat M binnen driehoek ABC ligt, volgt hieruit dat CM de bissectrice is van C. Alternatief: De driehoeken AMB, AMC en BMC zijn net als ABC gelijkbenig. Zo zien we:. ACM = CAM. CAM + BAM = CAB = BAC = ABM + CBM omdat ABM = BAM volgt hieruit CAM = CBM. CBM = BCM Samengevat geeft dit: ACM = CAM = CBM = BCM Omdat M binnen driehoek ABC ligt, volgt hieruit dat CM de bissectrice is van C. Vraag b Noem het tweede snijpunt D. D ligt dus zowel op de cirkel met middellijn AB als op de cirkel met middellijn AC. Volgens de stelling van Thales zijn dan zowel ABD als ACD rechthoekige driehoeken. Dit betekent dat BDA = ADC = 9 Hieruit volgt BDC = BDA + ADC = = 8. BDC is dus een gestrekte hoek. Hieruit volgt dat de lijnstukken BD en DC in elkaars verlengde liggen, ofwel dat D op de zijde BC ligt. Uitwerkingen Wiskunde B 6 januari 5

3 Vraag a f (x) = 4 cos(x) cos(x) + 4 sin(x) ( sin(x)) = 8 cos (x) 8 sin (x) f (x) = cos (x) = sin (x) cos(x) = sin(x) cos(x) = sin (x) cos(x) = sin(x) x = 4 π + k π x = 8 π + k π Dit geeft f(x) = 4 + = + = 4, dit zijn de maxima van de grafiek. cos(x) = sin(x) x = 4 π + k π x = 8 π + k π Dit geeft f(x) = 4 + = + =, dit zijn de minima van de grafiek. Alternatief f(x) = sin(x) cos(x) + = sin(4x) + Deze functie heeft een minimum als sin(4x) =. De minimumwaarde is dus + = + =. Vraag b f(x) = sin(x) cos(x) + = sin(4x) + Voor het eerste nulpunt rechts van de y-as geldt: f(x) = sin(4x) + = sin(4x) = Dit geeft 4x = π x = 8 π Te berekenen is zodoende 8 π f(x) dx = sin(4x) + dx = [ cos(4x) + x] Vraag c 8 π 8 π = + 4 π ( + ) = 4 π + f(x) = g(x) 4 sin(x) cos(x) + = 4 sin(x) sin(x) + sin(x) cos(x) = sin(x) sin(x) Hieruit volgt sin(x) = of cos(x) = sin (x). sin(x) = geeft x = + k π x = + k π cos(x) = sin(x) geeft sin(x + π) = sin(x) Hieruit volgt x + π = x + k π of x + π = π x + k π Dit geeft x = π + k π x = π + k π of 5x = π + k π x = π + k π 5 Hier zijn verschillende alternatieve uitwerkingen mogelijk, bijvoorbeeld: cos(x) = sin(x) geeft cos(x) = cos ( π x) Hieruit volgt x = π x + k π of x = ( π x) + k π Dit geeft 5x = π + k π x = π + k π of x = 5 π + k π x = π + k π Oplossingen in het interval [, π]: x = + k π geeft x = ; x = π en x = π. x = π + k π geeft x = π. x = π + k 5 π geeft x = π; x = π en x = 9 π. Merk op dat x = π in alle drie de reeksen staat. Deze oplossing hoeft uiteraard maar één keer genoemd te worden. Uitwerkingen Wiskunde B 6 januari 5

4 Vraag 4a f (x) = e x + x 4x e x = ( 4x ) e x f (x) = 4x = x = 4 x = ± f( ) = e ; f( ) = e ; bereik: [ e, e ] Vraag 4b f a (x) = e ax + x ( ax) e ax = ( ax ) e ax f a (x) = ax = x = x = ± a a De x-coördinaten van de toppen zijn zodoende x = De y-coördinaten van de toppen zijn dan y = f ( a ) = a e a a = a e De toppen liggen dus alle op de lijn y = e x a en x = a en y = f ( ) = a a e a a = a e Vraag 4c f (x) = ( 4x ) e x, dus f (x) = 8x e x + ( 4x ) e x ( 4x) = (6x x) e x f (x) = 6x x = 4x(4x ) = 4x = 4x = x = x = 4 x = x = = x = 4 = 4 Vraag 4d Als < p < f () snijdt de lijn y = px de grafiek van f niet alleen in de oorsprong, maar ook in een punt linksonder en in een punt rechtsboven de oorsprong. f (x) = ( 4x ) e x, dus f () =. Er zijn zodoende drie snijpunten als < p <. Alternatief f (x) = px x e x = px x = e x = p Er zijn drie snijpunten als e x = p twee oplossingen heeft. Hiervoor moet p om te beginnen positief zijn. In dat geval krijgen we x = ln p x = ln p Er moet dus gelden ln p > ln p < < p <. Uitwerkingen Wiskunde B 6 januari 5

5 Vraag 5a f(x) = g(x) 8 x = x x x 5 = D = ( ) 4 ( 5) = x = + x = Vraag 5b h(x) = ln ( 4 ) ln(8 5 x ) ln( x) = ln ( 4 x ) ln (8 5 x ) = ln (4) 5 Dit geeft 8 x x = 4 5 5(8 x ) = 4( x) 4 5x = 4x 5x 4x 8 = D = ( 4) = = 576 D = 4. Oplossingen: x = Vraag 5c = 4 5 x = 4 4 = h (x) = f (x) g (x) = x 8 x x = x 8 x + x h (x) = x = x 8 x 8 x = x( x) 8 x = 6x x x 6x + 8 = (x )(x 4) = x = x = 4 Voor x = 4 zijn zowel f(x) als g(x) niet gedefinieerd, dus daar heeft h geen extreem. Tussen de twee snijpunten van de grafieken van f en g moet h een maximum hebben. Dit kan alleen bij x = zijn, dus heeft h hier een extreme waarde. Vraag 5d b De inhoud van het omwentelingslichaam wordt gegeven door π x dy a a = kleinste y waarde = (op de x-as) b = grootste y waarde = f() = ln (8) y = ln(8 x ) geeft e y = 8 x x = 8 e y Zo zien we: Inhoud = π x dy = π 8 e y dy = π [8y e y ] = π (8 8 ( )) = π (8 7) Uitwerkingen Wiskunde B 6 januari 5

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: juli 00 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Vraag Antwoord Scores. 1 (dus de oppervlakte. van V en de oppervlakte van driehoek OAB zijn gelijk ) 1

Vraag Antwoord Scores. 1 (dus de oppervlakte. van V en de oppervlakte van driehoek OAB zijn gelijk ) 1 Beoordelingsmodel Vraag Antwoord Scores Gelijke oervlakte maximumscore f' ( x) = x x = geeft x = Dit geeft x = ( ) ( ) f = = (dus de coördinaten van T zijn ( ) maximumscore 6 De oervlakte van V is ( )

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2001-I

Eindexamen wiskunde B1-2 vwo 2001-I Eindexamen wiskunde B- vwo 00-I 4 Antwoordmodel Boottocht Het gezochte punt is het snijpunt van en de middelloodlijn van het lijnstuk van het punt P aximumscore 6 = =, met het midden van dus = 90 Het punt

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

12.1 Omtrekshoeken en middelpuntshoeken [1]

12.1 Omtrekshoeken en middelpuntshoeken [1] 12.1 Omtrekshoeken en middelpuntshoeken [1] Stelling van de constante hoek: Voor de punten C en D op dezelfde cirkelboog AB geldt: ACB = ADB. Omgekeerde stelling van de constante hoek: Als punt D aan dezelfde

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2006-I

Eindexamen wiskunde B1-2 vwo 2006-I Eindexamen wiskunde B- vwo 006-I Beoordelingsmodel Sauna 0,9 00 80 e t 00 beschrijven hoe deze vergelijking opgelost kan worden de oplossing t,07 het tijdstip 7:0 uur 0,9t S () t 80 0,9 e S () 9, 06 het

Nadere informatie

Eindexamen vwo wiskunde B 2013-I

Eindexamen vwo wiskunde B 2013-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Correctievoorschrift VWO. Wiskunde B Profi (oude stijl) Voorbereidend Wetenschappelijk Onderwijs. Tijdvak 1

Correctievoorschrift VWO. Wiskunde B Profi (oude stijl) Voorbereidend Wetenschappelijk Onderwijs. Tijdvak 1 Wiskunde B Profi (oude stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 0 ijdvak 0006 CV7 Begin Regels voor de beoordeling Het werk van de kandidaten wordt beoordeeld met inachtneming

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B, (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 0 ijdvak Inzenden scores Uiterlijk op 0 mei de scores van de alfabetisch eerste tien kandidaten per school

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Eindexamen vmbo gl/tl wiskunde I

Eindexamen vmbo gl/tl wiskunde I Beoordelingsmodel Snelwandelen maximumscore 4 50 km is 50 000 meter 3 uur, 35 minuten en 47 seconden is gelijk aan 947 seconden 50 000 = 3,86 (m/s) 947 Het antwoord: 3,9 (m/s) maximumscore maximale snelheid

Nadere informatie

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek . Omtrekshoeken en middelpuntshoeken Opgave : ACB is constant Opgave : a. * b. * c. ACB AMB Opgave 3: a. * b. de drie cirkels gaan door één punt c. de drie lijnstukken gaan door één punt Opgave 4: a. Teken

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

Vraag Antwoord Scores ( ) ( ) Voor de waterhoogte h geldt: ( 2h+ 3h 2h

Vraag Antwoord Scores ( ) ( ) Voor de waterhoogte h geldt: ( 2h+ 3h 2h Eindexamen vwo wiskunde B 0 - II Een regenton maximumscore 5 h V= ( rx ( )) d x 0 00 ( rx ( )) ( 5 5x 5x ) = + Een primitieve van 5+ 5x 5x is 5x+ 7 x 5x Dus = ( 5 + 7 5 ) V h h h 00 V = h+ h h = h+ h h

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 0 tijdvak woensdag 8 mei 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Extra oefeningen: de cirkel

Extra oefeningen: de cirkel Extra oefeningen: de cirkel 1. Gegeven een cirkel met middelpunt M en straal r 5 cm en. De lengte van de raaklijnstukken PA PB uit een punt P aan deze cirkel bedraagt 1 cm. Bereken de afstand PM. () PAM

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

Eindexamen wiskunde B vwo II

Eindexamen wiskunde B vwo II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage. amen VWO 2009 tijdvak dinsdag 2 juni 3.30-6.30 uur wiskunde B,2 Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 9 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor elk vraagnummer

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar 25 JAAR VLAAMSE WISKUNDE OLYMPIADE De slechtst beantwoorde vragen in de eerste ronde per jaar Samenstelling en lay-out: Daniël Tant Luc Gheysens Vlaamse Wiskunde Olympiade v.z.w. VWO 1 1986 Vraag 17 Een

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Tweede ronde De tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

2012 I Onafhankelijk van a

2012 I Onafhankelijk van a 0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as

Nadere informatie

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ² 1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde B, (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Woensdag 3 juni 3.30 6.30 uur 0 04 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit 9 vragen.

Nadere informatie

2010-II bij vraag 1. Vooraf: De stelling van de constante (omtreks)hoek.

2010-II bij vraag 1. Vooraf: De stelling van de constante (omtreks)hoek. 200-II bij vraag Vooraf: De stelling van de constante (omtreks)hoek. Een applet (animatie) hierover is te vinden op bijvoorbeeld: http://home.planet.nl/~hietb062/java3.htm#constantehoek De punten P op

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde Vlaamse Wiskunde lmpiade 2007-2008: tweede ronde 1 Jef mit cola met whisk in de verhouding 1 : In whisk zit 40% alcohol Wat is het alcoholpercentage van de mi? () 1, (B) 20 (C) 25 () 0 (E) 5 2 ver jaar

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5 Hoofdstuk 6: De afgeleide functie 6. Hellinggrafieken Opgave : als je vanuit punt A naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te komen, dus rc 6 b. c. d. x 0 4 helling 6,5 0, 5, 5 0,5 Opgave

Nadere informatie

Correctievoorschrift VWO 2014

Correctievoorschrift VWO 2014 Correctievoorschrift VWO 0 tijdvak wiskunde B Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels Vaksecifieke regels Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12 Katern 3 Meetkunde Inhoudsopgave 1 Hoeken 2 2 Congruentie en gelijkvormigheid 4 3 Driehoeken 8 4 Vierhoeken 12 5 Lijnen in een driehoek 15 Inleiding De vlakke meetkunde is de meetkunde die zich afspeelt

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 2012 tijdvak 2 woensdag 20 juni 1330-1630 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage Dit eamen bestaat uit 16 vragen Voor dit eamen zijn maimaal 79 punten te behalen Voor elk

Nadere informatie

PQS en PRS PS is de bissectrice van ˆP

PQS en PRS PS is de bissectrice van ˆP OEFENINGEN 1 Kleur de figuren die congruent zijn met elkaar in dezelfde kleur. 2 Gegeven: PQS en PRS PS is de bissectrice van ˆP Gevraagd: Zijn de driehoeken congruent? Verklaar. 3 Gegeven: Gevraagd: Is

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Correctievoorschrift VWO 2015

Correctievoorschrift VWO 2015 Correctievoorschrift VWO 05 tijdvak wiskunde B Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

WISKUNDE 3 PERIODEN EUROPEES BACCALAUREAAT 2010. DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : TOEGESTANE HULPMIDDELEN : OPMERKINGEN : Geen

WISKUNDE 3 PERIODEN EUROPEES BACCALAUREAAT 2010. DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : TOEGESTANE HULPMIDDELEN : OPMERKINGEN : Geen EUROPEES BACCALAUREAAT 010 WISKUNDE 3 PERIODEN DATUM : 4 juni 010 DUUR VAN HET EXAMEN : 3 uur (180 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 31 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 31 mei uur wiskunde B,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Dinsdag 3 mei 3.30 6.30 uur 20 05 Voor dit examen zijn maximaal 89 punten te behalen; het examen bestaat uit 20 vragen. Voor elk

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvak wiskunde B Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Kleur de congruente vierhoeken in onderstaand mozaïek in eenzelfde kleur.

Kleur de congruente vierhoeken in onderstaand mozaïek in eenzelfde kleur. VRAAG 1 Kleur de congruente vierhoeken in onderstaand mozaïek in eenzelfde kleur. VRAAG 2 Duid in de onderstaande figuur de overeenkomstige zijden en hoeken van de congruente driehoeken aan met eenzelfde

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 015 tijdvak 1 woensdag 13 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2008-II

Eindexamen wiskunde B1-2 vwo 2008-II Eindeamen wiskunde B- vwo 008-II Beoordelingsmodel Een zwaartepunt maimumscore 6 ( f( )) = ( ) = Een primitieve van is 4 4 ( ( )) d = 4 0 V = 4π= π 4 π Z = = (= 0,75) π 8 Onder een grafiek maimumscore

Nadere informatie

15.1 Oppervlakten en afstanden bij grafieken [1]

15.1 Oppervlakten en afstanden bij grafieken [1] 15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening juli 05 dr. Brenda Castelen Met dank aan: Atheneum van Veurne (http:www.natuurdigitaal.begeneeskundefsicawiskundewiskunde.htm),

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 986 987: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 14 mei uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 14 mei uur Examen HAVO 204 tijdvak woensdag 4 mei.0-6.0 uur wiskunde B (pilot) Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Hoofdstuk 5 : De driehoek

Hoofdstuk 5 : De driehoek Hoofdstuk 5 : De driehoek - 89 1. Congruente figuren Figuren die elkaar volkomen kunnen bedekken noemen we congruente figuren. Congruente figuren hebben dezelfde vorm (~ ) en dezelfde grootte (=). Als

Nadere informatie

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht Hoofdstuk 1 : Hoeken -1 - Complementaire hoeken ( boek pag 7) Twee hoeken zijn complementair als... van hun hoekgrootten... is. Supplementaire hoeken ( boek pag 7) Twee hoeken noemen we supplementair als...

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2005-I

Eindexamen wiskunde B1-2 vwo 2005-I Inademen Bij controlemetingen aan de ademhaling wordt men gevraagd om diep uit te ademen en vervolgens gedurende vijf seconden zo diep mogelijk in te ademen. Tijdens het inademen is de hoeveelheid verse

Nadere informatie

12 Bewijzen in de vlakke meetkunde

12 Bewijzen in de vlakke meetkunde ewijzen in de vlakke meetkunde bladzijde 54 a ' b Gegeven: e gelijkzijdige driehoek met zijn omgeschreven cirkel. unt ligt op de kortste boog en ligt op het verlengde van zo, dat =. riehoek is gelijkzijdig.

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 007 VK : WISKUNE TUM: WOENSG 04 JULI 007 TIJ : 09.45.5 UUR (TOELTING VWO/HVO/NTIN) 09.45.45

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

11.1 De parabool [1]

11.1 De parabool [1] 11.1 De parabool [1] Algemeen: Het punt F heet het brandpunt van de parabool. De lijn l heet de richtlijn van de parabool. De afstand van F tot l heet de parameter van de parabool. Defintie van een parabool:

Nadere informatie

Opmerking In de berekening mogen v = 0 en/of v = 187,5 zonder toelichting zijn weggelaten.

Opmerking In de berekening mogen v = 0 en/of v = 187,5 zonder toelichting zijn weggelaten. HAVO wb 00-I Weerstand De formules voor P rol en P lucht invoeren in de grafische rekenmachine (GR) en bepalen voor welke waarde van v deze gelijk zijn v,7 P lucht > P rol voor v > =,7 (km/uur) (v >,7

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2014 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor

Nadere informatie

Examen HAVO. wiskunde B1,2

Examen HAVO. wiskunde B1,2 wiskunde 1, Examen HVO Hoger lgemeen Voortgezet Onderwijs ijdvak 1 Vrijdag 19 mei 1.0 16.0 uur 0 06 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit vragen. Voor elk vraagnummer

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 99 99 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Hoofdstuk 8 - Periodieke functies

Hoofdstuk 8 - Periodieke functies Havo B deel Uitwerkingen Moderne wiskunde Hoofdstuk 8 - Periodieke functies ladzijde 8 V-a c Na seconden = slagen per minuut ca., millivolt V-a Ja, met periode Nee Mogelijk, met periode = en amplitude

Nadere informatie

2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen:

2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: e 00

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

Inverse functies en limieten

Inverse functies en limieten Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x

Nadere informatie

Eerste en derdegraadsfunctie

Eerste en derdegraadsfunctie Eerste en derdegraadsfunctie Gegeven zijn f (x) = (x 2 1)(x 1½) en g (x) = x + 1½ ; De grafieken van f en g snijden beide de y-as in A(0, 1½) en de x-as in B(1½, 0). De grafiek van g raakt in punt A aan

Nadere informatie

EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010

EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010 EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 010 Datum: 13 januari 010 Aantal opgaven: 6 Beschikbare tijd: 100 minuten De maximale score is 90 punten, vooraf 10 punten: totaal 100 punten. Aantal

Nadere informatie