Voorkennis. Hoekmeting

Maat: px
Weergave met pagina beginnen:

Download "Voorkennis. Hoekmeting"

Transcriptie

1 Hoekmeting Hoeken meten we in graen of in raialen. Hiernaast zie je e eenheiscirkel in het vlak (e cirkel met straal en e oorsprong als mielpunt) waarop e beie verelingen zijn aangegeven. Een volleige rongang telt 6 graen, oftewel raialen. ok raaiingshoeken kunnen we in graen of in raialen meten. De raaiingsrichting is an wel van belang: volgens afspraak geven we raaiingen in het vlak tegen e klok in met een plusteken aan, en raaiingen met e klok mee met een minteken. 5 o 8 o o 9 o 6 o o o 6 o Bij raaiingen kan e raaiingshoek natuurlijk ook groter an 6 zijn. Voor het resultaat maakt het niets uit of je er gehele veelvouen van 6 (of raialen) bij optelt of van aftrekt. o 4 o 7 o o o De term raiaal komt van raius, hetgeen straal betekent. Wanneer je op een cirkel met straal r een boog tekent ie vanuit het mielpunt oner een hoek van α raialen wort gezien, is e lengte van ie boog α r. De hoekmaat in raialen geeft us e verhouing tussen e booglengte en e straal, vanaar e naam raiaal. Een hoek van raiaal is iets kleiner an 6 graen, namelijk, in acht ecimalen nauwkeurig, graen. De eacte waare is 6/(). r α raialen r α r Bij een cirkel met straal r = is e booglengte precies gelijk aan e mielpuntshoek α in raialen. Bij een volleige rongang langs een cirkel hoort een raaiingshoek van raialen. De omtrek van e eenheiscirkel is us ook gelijk aan. De omtrek van een cirkel met een straal r is r. 65 bron:

2 De sinus, e cosinus en e tangens Bij elke raaiingshoek α hoort een raaiing in het vlak om e oorsprong over ie hoek. Een positieve raaiingshoek corresponeert met een raaiing tegen e klok in, een negatieve hoek hoort bij een raaiing met e klok mee. We kunnen zo n raaiing aangeven via een boog van e eenheiscirkel ie in (, ) begint en mielpuntshoek α heeft. De coörinaten (, ) van het einpunt zijn an respectievelijk e cosinus en e sinus van α, us = cos α en = sin α. sin α α (cos α, sin α) cos α (,) mat (, ) op e eenheiscirkel ligt, gelt + =, us cos α + sin α = Let hierbij op e notatie: cos α betekent (cos α) en sin α betekent (sin α). Deze notatievormen zijn algemeen gebruikelijk. De tangens van α is het quotiënt van e sinus en e cosinus, in formule: tan α = sin α cos α Er zijn enige hoeken α met bijzonere waaren voor e sinus, e cosinus en e tangens. Voor α (in raialen) geven we ze in e vorm van een tabel. Uit e beie tekeningen kun je ie waaren afleien. Beenk aarbij at e linkerriehoek e vorm heeft van een georiehoek met een schuine zije van lengte en rechthoekszijen van lengte (stelling van Pthagoras). De rechterriehoek is gelijkzijig met zijen van lengte. De verticale lijn vanuit e top eelt e basis mienoor, en volgens Pthagoras is e lengte ervan us gelijk aan ( ) = 4 =. α 6 4 sin α 4 cos α tan α 66 Jan van e Craats: Complee getallen voor wiskune D

3 Grafieken van goniometrische functies - sin tan cos Hierboven zijn e grafieken geteken van e functies sin, cos en tan, met in raialen. Die functies zijn perioiek: e sinus en e cosinus met perioe, e tangens met perioe. De tangens heeft verticale asmptoten voor = + k met k geheel, want voor ie waaren van is e cosinus nul, en an is tan = (sin )/(cos ) us niet geefinieer. Uit e efinitie van e sinus, e cosinus en e tangens met behulp van e eenheiscirkel (zie blazije 66) volgen irect e volgene eigenschappen, ie je ook in e grafieken terugziet: sin() = sin, cos() = cos, tan() = tan ptelformules en ubbele-hoekformules Naast e basisformule sin α + cos α = en e smmetrieformules van hierboven zijn er nog twee belangrijke gonioformules: cos(α + β) = cos α cos β sin α sin β sin(α + β) = sin α cos β + cos α sin β Als je in eze optelformules β vervangt oor β krijg je cos(α β) = cos α cos β + sin α sin β sin(α β) = sin α cos β cos α sin β Als je in e optelformules α = β neemt, krijg je e ubbele-hoekformules: cos α = cos α sin α sin α = sin α cos α Met behulp van cos α + sin α = kun je e formule voor cos α uitbreien tot cos α = cos α sin α = cos α = sin α 67 bron:

4 Eponentiële functies en e e-macht Functies van e vorm f() = a voor a > heten eponentiële functies. Hieroner is voor enige waaren van a e grafiek van a geteken. Al ie grafieken gaan oor het punt (, ) want voor elke a gelt a =. Zo n grafiek is stijgen als a >, en alen als < a <. Voor a = is e grafiek e horizontale lijn = want = voor elke waare van. De grafieken van a en (/a) zijn elkaars spiegelbeel in e -as. Er gelt namelijk ( (/a) = a ) = a = (/) = (5/6) = (/) - - = (/4) 4 - = 4 = = (/) = (6/5) = De belangrijkste eigenschappen van eponentiële functies zijn a a = a + a : a = a (a ) = a (a b) = a b (a : b) = a : b De grafieken van e eponentiële functies van e vorm f() = a met a > snijen e -as allemaal in het punt (, ). Alle grafieken hebben in at punt een raaklijn. Al ie raaklijnen zijn verschillen, en allemaal hebben ze een vergelijking van e vorm = + m voor een zekere m. Er is precies één waare van a waarvoor gelt m =, at wil zeggen = e at e lijn = + e raaklijn is aan e grafiek van f() = a 4 in (, ). Dat getal wort e genoem, en e bijbehorene functie f() = = + e speelt een belangrijke rol in e ifferentiaal- en integraalrekening. 45 o = Hiernaast is e grafiek ervan geteken. Men kan bewijzen at het getal e, net als het getal of het getal - - -, een irrationaal getal is. Er gelt e = Voor kleine waaren van vallen e grafiek van f() = e en e raaklijn = + vrijwel samen, us voor kleine gelt e +. Zelfs gelt at e voor, of, nog preciezer uitgerukt met behulp van een limiet e lim = 68 Jan van e Craats: Complee getallen voor wiskune D

5 Raaklijn en afgeleie (De voorkennis in eze paragraaf wort alleen in hoofstuk 5 gebruikt.) De grafieken van veel functies hebben in alle of bijna alle punten een gla verloop: als je stees sterker op zo n punt inzoomt, gaat e grafiek stees meer op een rechte lijn lijken. Die lijn is e raaklijn aan e grafiek in at punt. Hiernaast is e grafiek van zo n functie f() geteken, met aarbij ook e raaklijn in het punt (a, f(a)). Vlak in e buurt van at punt zijn grafiek en raaklijn ineraa nauwelijks van elkaar te onerscheien. Als e raaklijn niet verticaal is, kan e vergelijking ervan geschreven woren als = f(a) + m( a) voor een zekere m, e richtingscoëfficiënt van e raaklijn. f(a) = f(a) + m( - a) a = f() Die richtingscoëfficiënt m kan an oor miel van een limiet in termen van e functie f() en het punt a woren uitgerukt: m = lim a f() f(a) a Men noemt m e afgeleie van f() in a, en gebruikt aarvoor e notatie f (a). Als eze limiet bestaat (als einig getal), heet e functie f() ifferentieerbaar in a. Wanneer een functie f() ifferentieerbaar is in alle punten van een interval, is e afgeleie us in elk punt van at interval geefinieer, en aarmee is e afgeleie op at interval zelf een functie geworen, e afgeleie functie. Veel gebruikte notaties voor e afgeleie functie van f() zijn f () en f(). De afgeleie functies van enige veel gebruikte functies zijn: (p ) = p p voor elke p (e ) = e (cos ) = sin (sin ) = cos De e-machtfunctie is us gelijk aan zijn eigen afgeleie! Let ook op e tekens bij e afgeleien van e sinus en e cosinus. Wanneer een functie f() ifferentieerbaar is in alle punten van een interval, kan e afgeleie functie ook weer een ifferentieerbare functie zijn. De afgeleie van e afgeleie heet an e tweee afgeleie. Notatie: f () of f(). Zo kun je oorgaan en e n-e afgeleie efiniëren voor elke n >. Gebruikelijke notaties zijn in at geval f (n) () (let op n e haakjes om e n) of n f(). 69 bron:

6 Gonio gemakkelijk gemaakt Eulers gemakkelijk te onthouen formule e i ϕ = cos ϕ + i sin ϕ maakt het makkelijk alle gonioformules te onthouen, of snel af te leien als je ze vergeten bent. Bijvoorbeel e somformules van blazije 67: Beenk hiervoor at e i (α+β) = e i α e i β us cos(α + β) = cos α cos β sin α sin β sin(α + β) = sin α cos β + cos α sin β cos(α + β) + i sin(α + β) = e i (α+β) = e i α e i β = (cos α + i sin α)(cos β + i sin β) = (cos α cos β sin α sin β) + i (sin α cos β + cos α sin β) Gelijkstellen van e reële elen levert e somformule voor e cosinus, en gelijkstellen van e imaginaire elen e somformule voor e sinus. Deze formules gelen overigens niet alleen maar voor e reële cosinus- en sinusfuncties, maar net zo goe voor e op blazije geefinieere complee uitbreiingen van eze functies: cos(z + z ) = cos z cos z sin z sin z sin(z + z ) = sin z cos z + cos z sin z Probeer zelf maar eens een bewijs te geven! ok e formules voor e afgeleien van e sinus- en cosinusfuncties zijn gemakkelijk snel af te leien via e complee e-machtfunctie, ie, net als e reële e-machtfunctie, gelijk is aan zijn eigen afgeleie. Beenk aarvoor at op gron van e kettingregel gelt at e i = i e i, en us is (cos + i sin ) = e i = i e i = i (cos + i sin ) = sin + i cos Gelijkstellen van reële elen geeft elen geeft sin = cos. cos = sin en gelijkstellen van e imaginaire 7 Jan van e Craats: Complee getallen voor wiskune D

differentiaalvergelijkingen

differentiaalvergelijkingen 5 Lineaire ifferentiaalvergelijkingen 00 50 00 50 0 5 0 5 0 5 30 t Een voorbeel van een continu eponentieel groeimoel, gegeven oor e ifferentiaalvergelijking y (t) = ay(t). Hier is y(0) = 0 en a = 0.075.

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Zomercursus Wiskune Katholieke Universiteit Leuven September 2008 Rekenregels voor het berekenen van afgeleien (versie 27 juni 2008) Inleiing De afgeleie van een functie f in een punt R is e helling (richtingscoëfficiënt)

Nadere informatie

Calculus I, 20/10/2014

Calculus I, 20/10/2014 Calculus I, 20/0/20. Gegeven e kromme yx waarvoor arctan y x = 2 lnx2 + y 2 a Bereken e afgeleie y voor een punt x,y at voloet aan het functievoorschrift. b Gebruik e gevonen uitrukking voor e afgeleie

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus Exacte waaren ij sinus en cosinus In enkele gevallen kun je vergelijkingen met sinus en cosinus exact oplossen. Welke gevallen zijn at? Hieroven zie je grafieken van f(x) = sin x en g(x) = cos x. a Hoe

Nadere informatie

1.4 Differentiëren van machtsfuncties

1.4 Differentiëren van machtsfuncties . Differentiëren van machtsfuncties De inmiels bekene regel voor het ifferentiëren van machtsfuncties luit: n n [ ] n (n,,, ) Deze regel kun je vrij gemakkelijk herontekken met behulp van e (uitgebreie)

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2005-II

Eindexamen wiskunde B1-2 vwo 2005-II Reistij figuur 1 rivier Een boot vaart op een rivier van naar en terug. De afstan tussen en is 10 km. De boot vaart altij met een snelhei van 20 km/u ten opzichte van het water. De rivier stroomt in e

Nadere informatie

Hoofdstuk 1: Inleiding

Hoofdstuk 1: Inleiding Hoofstuk 1: Inleiing 1.1. Richtingsvelen. Zie Stewart, 9.2. 1.2. Oplossingen van enkele ifferentiaalvergelijkingen. Zelf oorlezen. 1.3. Classificatie van ifferentiaalvergelijkingen. Differentiaalvergelijkingen

Nadere informatie

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0.

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0. Gegeven is de functie.0 Voorkennis Deze functie bestaat niet bij een van. Invullen van = geeft een deling door 0. De functie g() = heeft als domein R en is een ononderbroken kromme. Deze functie is continu

Nadere informatie

1.3 De produktregel. Laat zien dat bijvoorbeeld [ x x. ] niet gelijk is aan 2x

1.3 De produktregel. Laat zien dat bijvoorbeeld [ x x. ] niet gelijk is aan 2x .3 De prouktregel Eerer heb je geleer at je e som van twee (of meer) functies kunt ifferentiëren, oor termsgewijs te ifferentiëren. Bijvoorbeel: 3 [ x + x ] = x + 3 x.7 Een ergelijke mooie regel gelt niet

Nadere informatie

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden 10.0 Voorkennis 5 1 6 6 cos( ) = -cos( ) = -½ 3 [cos is x-coördinaat] 5 1 3 3 sin( ) = -sin( ) = -½ 3 [sin is y-coördinaat] 1 Voorbeeld 1: Getekend is de lijn k: y = ½x 1. De richtingshoek α van de lijn

Nadere informatie

WISKUNDE- HWTK PROEFTOETS- AT3 - OPGAVEN en UITWERKINGEN - EX 03 1.doc 1/11

WISKUNDE- HWTK PROEFTOETS- AT3 - OPGAVEN en UITWERKINGEN - EX 03 1.doc 1/11 VAK: WISKUNDE - HWTK Set Proeftoets AT WISKUNDE- HWTK PROEFTOETS- AT - OPGAVEN en UITWERKINGEN - EX 0.oc / DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tij: 00 minuten Uw naam:...

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 4 les 1

Wiskunde D Online uitwerking 4 VWO blok 4 les 1 Wiskune D Online uitwerking 4 VWO blok 4 les aragraaf. Opgave a et e stelling van thagoras volgt at (, ) ( ) + ( ) ( 3 ) + ( ) + 3 3 b De roosterpunten met afstan 3 tot liggen op e cirkel met als mielpunt

Nadere informatie

Notatieafspraken bovenbouw, wiskunde B

Notatieafspraken bovenbouw, wiskunde B Notatieafspraken bovenbouw, wiskune B Bewaar it ocument zorgvulig Het wort slechts éénmaal verstrekt Dit ocument bevat afspraken voor e correcte notatie volgens e gehele sectie wiskune van het Steelijk

Nadere informatie

Meetkunde 2 - Omtrek 2 - Cirkels. Versie 2a - donderdag 29 maart 2007

Meetkunde 2 - Omtrek 2 - Cirkels. Versie 2a - donderdag 29 maart 2007 eetkune 2 - Omtrek 2 - Cirkels Versie 2a - onerag 29 maart 2007 De cirkel is een verzameling punten op een vaste afstan van één punt (het mielpunt ). Je kunt een cirkel tekenen met een passer. De afstan

Nadere informatie

Voorkennis + lijst met standaardintegralen

Voorkennis + lijst met standaardintegralen Scheien van variabelen een oplosmethoe voor eerste ore-ifferentiaalvergelijkingen WISNET-HBO NHL upate mei 2009 Inleiing Het met pen en papier berekenen van e analytische oplossing van een eerste ore ifferentiaalverglijking

Nadere informatie

Hoofdstuk 6 - Differentiëren

Hoofdstuk 6 - Differentiëren Havo D eel Uitwerkingen Moerne wiskune Hoofstuk - Differentiëren Blazije a Het water steeg het harst op e tijstippen waarij e grafiek het steilst loopt. Dat is om ongeveer 7 uur s ohtens en om 7 uur s

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie

Nadere informatie

Hoofdstuk 5 - Verbanden herkennen

Hoofdstuk 5 - Verbanden herkennen V-a V-a Hoofstuk - Veranen herkennen Hoofstuk - Veranen herkennen Voorkennis O A B De grafiek ij tael A is een rehte lijn, want telkens als in e tael met toeneemt neemt met toe. Het startgetal is en het

Nadere informatie

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =

Nadere informatie

Uitwerkingen goniometrische functies Hst. 11 deel B3

Uitwerkingen goniometrische functies Hst. 11 deel B3 Uitwerkingen goniometrische functies Hst. deel B. f() = sin(-) = -sin() g() = cos(-) = cos () h() = sin( + ) = cos() j() = cos( + ) = -sin() k() = sin ( + ) = -sin () l() = cos ( + ) = -cos (). Zie ook

Nadere informatie

wiskunde B pilot vwo 2017-II

wiskunde B pilot vwo 2017-II Twee machten van maimumscore 5 f' ( ) = ln() + ln() Uit f' ( ) = volgt dat = Dus + = ( = ) Hieruit volgt = a+ a, met a =, moet minimaal zijn De vergelijking a = moet worden opgelost Dit geeft Hieruit volgt

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/7 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Algebra en meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 25 april 2018 1 Presentatie en opgeloste oefeningen zijn digitaal beschikbaar

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i 16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =

Nadere informatie

Hoofdstuk 12B - Breuken en functies

Hoofdstuk 12B - Breuken en functies Hoofstuk B - Breuken en funties Voorkennis V-a g V-a h 0 0 i 9 j 0 0 0 9 0 9 e k 0 f l 9 9 Elk stukje wort : 0 0, meter. a 0 0 0 00 L 0, 0, 0,0 0,0 0,0 De lengte van elk stukje wort an twee keer zo klein.

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

Examen VWO. Wiskunde B Profi

Examen VWO. Wiskunde B Profi Wiskunde B Profi Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Donderdag 25 mei 3.30 6.30 uur 20 00 Dit eamen bestaat uit 7 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

Oefeningenexamen Projectieve Meetkunde: oplossingen

Oefeningenexamen Projectieve Meetkunde: oplossingen Oefeningenexamen Projectieve Meetkune: oplossingen 2e bachelor Wiskune acaemiejaar 2011-2012 1 Eerste zittij Oefening 1.1. Een {, m}-boog in PG(2, q) is een verzameling van m 1 punten zoat ieere rechte

Nadere informatie

Standaardfuncties. x c

Standaardfuncties. x c Standaards Constante Parameter We geven in dit document een overzicht van een aantal veelvoorkomende s. We geven steeds het voorschrift en de grafiek. (Ter herinnering: het domein vermelden we niet, het

Nadere informatie

Samenvatting wiskunde B

Samenvatting wiskunde B Samenvatting wiskunde B Dit is een samenvatting van het tweede deel van Getal en Ruimte VWO wiskunde B. In deze samenvatting worden hoofdstuk 5, 6 en 7 behandeld. Ik hoop dat deze samenvatting je zal helpen!

Nadere informatie

Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek

Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Dit document bevat niet alleen voorkennis in de zin dat moet u al gehad hebben en kennen, maar ook in de

Nadere informatie

Blok 3 - Vaardigheden

Blok 3 - Vaardigheden Blok - Vaarigheen lazije 6 a Je moet e vergelijking ( )( ) oplossen. Je ziet nu meteen wat e oplossingen zijn. ( )( ) of of Je moet nu e vergelijking ( )( ) oplossen. e De methoe van onereel gelt alleen

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a / V-2a e Voorkennis Zie e figuur hieroner. Zie e figuur hieroner. De lijn n en het punt P kunnen ook aan e anere kant van lijn l liggen. Zie e figuur hieroner. P Zie e figuur hieroven. In vierhoek

Nadere informatie

1E HUISWERKOPDRACHT CONTINUE WISKUNDE

1E HUISWERKOPDRACHT CONTINUE WISKUNDE E HUISWERKOPDRACHT CONTINUE WISKUNDE Uiterste inleverdatum dinsdag oktober, voor het begin van het college N.B. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je moet het huiswerk

Nadere informatie

Goniometrische functies

Goniometrische functies Goniometrische functies gonè (Grieks) = hoek metron (Grieks) = maat Goniometrie, afkomstig van de Griekse woorden voor hoek en maat, betekent letterlijk hoekmeetkunde. Daarmee wordt aangegeven dat het

Nadere informatie

Copyright 2017 Gertjan Laan Versie 3.1. uitgeverij czarina

Copyright 2017 Gertjan Laan Versie 3.1. uitgeverij czarina G E R T J A N L A A N A N A LY S E B O E K U I T G E V E R I J C Z A R I N A Copright 07 Gertjan Laan Versie. uitgeverij czarina www.uitgeverijczarina.nl www.gertjanlaan.nl tufte-late.github.io/tufte-late

Nadere informatie

Afgeleiden berekenen met DERIVE

Afgeleiden berekenen met DERIVE /09/007 Afgeleien met DERIVE.fw 18:48:0 Afgeleien berekenen met DERIVE In DERIVE zijn alle regels ingebouw waarmee je ook op papier afgeleien berekent: lineariteit, prouct- en quotiëntregel, kettingregel.

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 8 Voorkennis: Sinusfuncties ladzijde 9 V- Uit 8 radialen volgt 8 radialen Je krijgt dan de volgende tael: V-a V-a 8 graden 6 9 8 radialen O 6 6 7 8 9 Aflezen:,,,, c Aflezen:, d Aflezen:, e Aflezen: O Aflezen:,,,

Nadere informatie

Goniometrische functies

Goniometrische functies Goniometrische functies ) Hoeken - Grondbegrippen a) Definitie van een hoek Een hoek is een georiënteerd paar halfrechten die starten in hetzelfde punt (hoekpunt). Hierbij maken we de afspraak dat positieve

Nadere informatie

) translatie over naar rechts

) translatie over naar rechts Hoofdstuk opmerkingen/adviezen Leer deze grafieken precies! Zorg dat je de volgende formules ziet in de grafieken: Periode sinus, cosinus en tangens: resp,, sin( ) sin( ) cos( ) cos( ) cos( ) c a k a k

Nadere informatie

Basiswiskunde Een Samenvatting

Basiswiskunde Een Samenvatting Bsiswiskune Een Smenvtting Verzmelingen N: ntuurlijke getllen, nl.,, 3,... Z: gehele getllen, nl....,,, 0,,,... Q: rtionle getllen,.w.z. breuken vn gehele getllen R: reële getllen, us lle getllen op e

Nadere informatie

8 a. x K (in euro s) x K (in euro s)

8 a. x K (in euro s) x K (in euro s) Hoofstuk 6 RECHTE LIJNEN 6.0 INTRO b, =, km c k = l a km kost,0: =,0 b rankje kost : =,0, us e entree is,0,0 = 0,-. Nee, als je bij e onerste lijn 8 naar rechts gaat ga je omhoog, us als je naar rechts

Nadere informatie

wiskunde B pilot vwo 2017-II

wiskunde B pilot vwo 2017-II wiskunde B pilot vwo 017-II Formules Goniometrie sin( tu) sin( t)cos( u) cos( t)sin( u) sin( tu) sin( t)cos( u) cos( t)sin( u) cos( tu) cos( t)cos( u) sin( t)sin( u) cos( tu) cos( t)cos( u) sin( t)sin(

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

Vraag Antwoord Scores. Het verschil is (0,0017 uur, dat is) 6 seconden (of nauwkeuriger) 1

Vraag Antwoord Scores. Het verschil is (0,0017 uur, dat is) 6 seconden (of nauwkeuriger) 1 Gevaar op zee maximumscore Na, 7, (,7 ) uur komt de UK bij punt S Na,8 6,5 (,697 ) uur komt de Kaliakra bij punt S Het verschil is (,7 uur, dat is) 6 seconden ( nauwkeuriger) Opmerking Als minder nauwkeurige

Nadere informatie

Hoofdstuk 1 Grafieken en vergelijkingen

Hoofdstuk 1 Grafieken en vergelijkingen Opstap Veranen O- Grafiek A hoort ij kaars. Grafiek B hoort ij kaars. Grafiek C hoort ij kaars. O-a O-a u in uren Bij u, is l 7 want, 7. Zie opraht O-. Na vier uur ranen zijn e kaarsen even lang. Bij eie

Nadere informatie

Paragraaf 7.1 : Eenheidscirkel en radiaal

Paragraaf 7.1 : Eenheidscirkel en radiaal Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a a 8 8. Ageleiden bladzijde 5 Uit de ormule voor de omtrek van een cirkel (omtrek r ) volgt dat een volledige cirkel (60 ) overeenkomt met radialen. Een halve cirkel (80 ) komt dus overeen met radialen.

Nadere informatie

UITWERKINGEN VOOR HET VWO

UITWERKINGEN VOOR HET VWO UITWERKINGEN VOOR ET VWO AB DEEL oofstuk 5 GONIOMETRISCE FUNCTIES KERN PERIODIEKE VERSCIJNSELEN a) seconen van seconen een kwart van o is 9 o b) riekwart c) 5 van o is 5 a) o o o van o is 7 o o f 9 o o

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.1, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 21 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 32 Outline 1 K. P. Hart TW2040: Complexe Functietheorie

Nadere informatie

wiskunde B vwo 2016-I

wiskunde B vwo 2016-I wiskunde vwo 06-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 21 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 21 juni uur Eamen VW 017 tijdvak woensdag 1 juni 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 74 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

wiskunde A vwo 2017-I

wiskunde A vwo 2017-I Zonnepanelen maximumscore 3 Na t jaar is e prijs met een factor, 05 t vermenigvulig De vergelijking, 05 = moet woren opgelost 5 (jaar) ( 4 (jaar)) ( nauwkeuriger) maximumscore 4 De opbrengst per jaar is

Nadere informatie

de Wageningse Methode Antwoorden H26 RECHTE LIJNEN HAVO 1

de Wageningse Methode Antwoorden H26 RECHTE LIJNEN HAVO 1 H6 RECHTE LIJNEN HAVO 6.0 INTRO a km kost,0: =,0 b rankje kost : =,0, us e entree is,0,0 = 0,-. Nee, als je bij e onerste lijn naar rechts gaat ga je omhoog, us als je naar rechts zou gaan, zou je omhoog

Nadere informatie

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14 INHOUD 1 De cirkel 9 1.1 Definities en benamingen 9 Oefeningen 11 1.2 Cirkel door drie punten 13 Oefeningen 14 1.3 Onderlinge ligging van een rechte en een cirkel 20 1.3.1 Aantal snijpunten van een rechte

Nadere informatie

12.0 Voorkennis. Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0.

12.0 Voorkennis. Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0. 12.0 Voorkennis Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0. Dit is in de punten (1,0) en (-1,0) (1,0) heeft draaiingshoek 0 (-1,0) heeft

Nadere informatie

wiskunde B havo 2017-II

wiskunde B havo 2017-II wiskunde B havo 07-II Afstand tussen twee raaklijnen maximumscore Uit x x= 0 volgt ( x = 0 ) x = 0 Hieruit volgt x = 8 dus (de x-coördinaten van M en N zijn) x = 8 ( = ) en x = 8 ( = ) De afstand tussen

Nadere informatie

Antwoorden Eindtoets 8NC00 12 april 2017

Antwoorden Eindtoets 8NC00 12 april 2017 Antwooren Eintoets 8NC 12 april 217 1.1. Onwaar, een fase-contrast microscoop brengt e verschillen in brekingsinex in beel. Er wort geen gepolariseer licht gebruikt us het is niet mogelijk ubbelbrekene

Nadere informatie

Vraag Antwoord Scores ( ) ( ) + 1. (of r ) (of een gelijkwaardige uitdrukking) 1. x y 1 + = 1. b) 1. y = x + ) 1

Vraag Antwoord Scores ( ) ( ) + 1. (of r ) (of een gelijkwaardige uitdrukking) 1. x y 1 + = 1. b) 1. y = x + ) 1 De rechte van Euler maimumscore De straal r van c is ( 0 ) ( ) + 5 = + = 5 Hieruit volgt r = 5 ( r ) ( een gelijkwaardige uitdrukking) Een vergelijking van c is ( ) ( ) Een vergelijking van c is ( ) (

Nadere informatie

0. voorkennis. Periodieke verbanden. Bijzonder rechthoekige driehoeken en goniometrische verhoudingen

0. voorkennis. Periodieke verbanden. Bijzonder rechthoekige driehoeken en goniometrische verhoudingen 0. voorkennis Periodieke verbanden Bijzonder rechthoekige driehoeken en goniometrische verhoudingen Er zijn twee verschillende tekendriehoeken: de 45-45 -90 driehoek en de 30-0 -90 -driehoek. Kenmerken

Nadere informatie

Hoofdstuk 4 - Integreren

Hoofdstuk 4 - Integreren Hoofstuk - Integreren Moerne wiskune 9e eitie vwo B eel Voorkennis: Oppervlakten lazije 98 V-a BC Oppervlakte ABC Driehoek ABC is gelijkvormig met riehoek ADB us AC AB waaruit volgt at BC BD us BD BD c

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Blok 4 - Keuzemenu. Verdieping - Driehoeksmetingen. 1092,33 3, meter = 4,118 km De afstand is ongeveer 4,1 km.

Blok 4 - Keuzemenu. Verdieping - Driehoeksmetingen. 1092,33 3, meter = 4,118 km De afstand is ongeveer 4,1 km. 1a a 3a Verieping - Driehoeksmetingen 109,33 3,77 4118 meter = 4,118 km De afstan is ongeveer 4,1 km. 45 L 4,1 km Z Zoetermeer Voorshoten is 68 mm Leien Voorshoten is 94 mm In e tekening is 1 km geteken

Nadere informatie

stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden).

stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden). Samenvatting door Sterre 1437 woorden 5 mei 2018 7.8 3 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Vocabulair Algebraïsch stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen

Nadere informatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk

Nadere informatie

Hoofdstuk 4 De afgeleide

Hoofdstuk 4 De afgeleide Havo B eel Uitwerkingen Moerne wiskune Hoofstuk De afgeleie lazije 9 V-a 8 8 8 kg Lengte in m Gewiht in kg 8 7 8 9 8 gewiht 8 8 lengte m weegt 8 kg us m weegt 8 : 8 kg. e 8 m 8 8 is het startgetal en 8

Nadere informatie

Hoofdstuk 4 De afgeleide

Hoofdstuk 4 De afgeleide Hoofstuk De afgeleie lazije 9 V-a 8 8 8 kg lengte in m gewiht in kg 8 7 8 9 8 gewiht 8 8 lengte m weegt 8 kg us m weegt 8 : 8 kg. e 8 m 8 8 is het startgetal en 8 is het hellingsgetal. V-a ();(); ();(

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofstuk De afgeleie lazije 9 V-a, 8, 8 8 kg lengte in m gewiht in kg,8,, 7, 8 9,,8 gewiht 8 8 lengte m weegt 8 kg us m weegt 8 : 8, kg. e, 8,, m 8,,8 is het startgetal en,8 is het hellingsgetal. V-a (,);(,);

Nadere informatie

Hoofdstuk 10 Meetkundige berekeningen

Hoofdstuk 10 Meetkundige berekeningen Hoofdstuk 10 Meetkundige berekeningen Les 0 (Extra) Aant. Voorkennis: Hoeken en afstanden Theorie A: Sinus, Cosinus en tangens O RHZ tan A = A RHZ O RHZ sin A = SZ A RHZ cos A = SZ Afspraak: Graden afronden

Nadere informatie

Over de functies arcsin, arccos en arctan

Over de functies arcsin, arccos en arctan Over de functies arcsin, arccos en arctan Booglengte figuur figuur De grafiek van een functie f tussen twee punten P (met a) en Q (met b) kan worden opgedeeld in stukjes die kunnen worden opgevat als lijnstukken,

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Paragraaf 8.1 : Eenheidscirkel

Paragraaf 8.1 : Eenheidscirkel Hoofdstuk 8 Goniometrische functies (H4 Wis B) Pagina 1 van 10 Paragraaf 8.1 : Eenheidscirkel Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 12 Extra oefening - Basis B-1a Vul k = 65 in, at geeft e vergelijking 25u + 15 = 65. 25u = 50 us u = 2. Er is 2 uur gewerkt ij mevrouw Groen. c 25u + 15 = 58,75 25u =,75 u =,75 : 25 us u = 1,75. B-2a De

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

Paragraaf 7.1 : Lijnen en Hoeken

Paragraaf 7.1 : Lijnen en Hoeken Hoofdstuk 7 Lijnen en cirkels (V5 Wis B) Pagina 1 van 11 Paragraaf 7.1 : Lijnen en Hoeken Les 1 Lijnen Definities Je kunt een lijn op verschillende manieren bepalen / opschrijven : (1) RC - manier y =

Nadere informatie

Tentamen Natuurkunde I 09.00 uur - 12.00 uur woensdag 7 januari 2009 docent drs.j.b. Vrijdaghs

Tentamen Natuurkunde I 09.00 uur - 12.00 uur woensdag 7 januari 2009 docent drs.j.b. Vrijdaghs Tentamen Natuurkune 9. uur -. uur woensag 7 januari 9 ocent rs.j.. Vrijaghs Aanwijzingen: Dit tentamen omvat 5 opgaven met totaal 5 eelvragen Maak elke opgave op een apart vel voorzien van naam, nummer

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2009 - I

Eindexamen wiskunde B1-2 vwo 2009 - I en benadering van een nulpunt Voor elke positieve startwaarde 0 is een rij 0,, 2, gegeven door de volgende recursievergelijking: n+ = 2 n +. n Deze recursievergelijking kunnen we ook schrijven als n+ =

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Wiskunde AEO V. Afdeling Kwantitatieve Economie. Uitwerking tentamen 6 januari 2010

Wiskunde AEO V. Afdeling Kwantitatieve Economie. Uitwerking tentamen 6 januari 2010 Afeling Kwantitatieve Economie Wiskune AEO V Uitwerking tentamen 6 januari 00 Een stelling ( punten) Laat c een ifferentieerbare kromme zijn, ie op een niveauverzameling van een ifferentieerbare functie

Nadere informatie

wiskunde B pilot havo 2016-I

wiskunde B pilot havo 2016-I De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2 C liggen op c. Punt Q is het midden van

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie

Pag. 18: Conform NEN-EN 1990 worden damwandconstructies ingedeeld in de volgende 3 veiligheidsklassen beschouwd:

Pag. 18: Conform NEN-EN 1990 worden damwandconstructies ingedeeld in de volgende 3 veiligheidsklassen beschouwd: Errata CUR 166 Damwanconstructies, 6 e ruk:01 Deel 1: Pag. 18: Conform NEN-EN 1990 woren amwanconstructies ingeeel in e volgene 3 veiligheisklassen beschouw: CC1/RC1: geringe gevolgen

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Bij e roe pijl hoort e aftrekking,,.,,,, V-a,, 7,,, 7, e,,,,7,, f,,, V-a Bij e roe pijlen hoort e erekening,,,,.,,,,,,,,,,, 7,,,,, V-a In eze erekening moet je eerst met, vermenigvuligen

Nadere informatie

wiskunde B havo 2018-II

wiskunde B havo 2018-II Piano In figuur 1 zijn de witte en zwarte toetsen van een gewone piano getekend. In totaal heeft deze piano 88 toetsen. figuur 1 De toetsen worden genummerd van links naar rechts. Zie figuur, waarin de

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

Blok 2 - Vaardigheden

Blok 2 - Vaardigheden Blok - Vaarigheen lazije a Het startgetal is en het hellingsgetal is De formule ie ij e lijn ast is y x De lijn k heeft het zelfe hellingsgetal als e lijn l, us De formule is y x+ 7 e Het hellingsgetal

Nadere informatie

Mirakel van Morley. Vergeten Stelling uit de Vlakke Meetkunde. Ideale oefening als afsluiting van de Goniometrie in 6 VWO. Bruikbaar als P.O.

Mirakel van Morley. Vergeten Stelling uit de Vlakke Meetkunde. Ideale oefening als afsluiting van de Goniometrie in 6 VWO. Bruikbaar als P.O. Mirakel van Morley Jacques Jansen Ideale oefening als afsluiting van de Goniometrie in 6 VWO. Bruikbaar als P.O. Vergeten Stelling uit de Vlakke Meetkunde 1 Instructies van docent Tijdens hun presentatie:

Nadere informatie

4.2.6 I. Betreft opgave 4.2.2: a. B f = {a, b } d. B f = {a, b, c } = C f II. Betreft opgave 4.2.4: e. B f e = IR + 0 = IR. f. B f f. g.

4.2.6 I. Betreft opgave 4.2.2: a. B f = {a, b } d. B f = {a, b, c } = C f II. Betreft opgave 4.2.4: e. B f e = IR + 0 = IR. f. B f f. g. g. x=2y+1 2y = x - 1 y = 1 2 x- 1 2 Duielijk zal zijn at bij elke x-waare precies één y-waare hoort, ofwel: bij elk origineel hoort precies één beel. Het is us een functie. (N.B.: als het coomein geen

Nadere informatie

Hoofdstuk 7 Exponentiële formules

Hoofdstuk 7 Exponentiële formules Opstap Mahten en proenten O-1a 7 4 2401 ( 12) 5 248 832 8 4 4096 10 6 1 000 000 e 1 9 1 f 11 3 1331 g 3 5 243 h ( 3) 5 243 O-2a 620 000 6,2 10 5 43 000 000 4,3 10 7 0,000 12 1,2 10 4 8 000 000 000 8 10

Nadere informatie