7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

Maat: px
Weergave met pagina beginnen:

Download "7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden"

Transcriptie

1 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek sinus cosinus 2 tangens

2 7. Eenheidscirkel en radiaal [] De eenheidscirkel heeft een middelpunt O(0,0) en straal ; De draaiingshoek van P is α; Het eerste been van een draaiingshoek is altijd de positieve x-as; Het tweede been van een draaiingshoek gaat door het punt P; Draait P tegen de wijzers van de klok in, dan is α positief; Draait P met de wijzers van de klok mee, dan is α negatief; De draaiingshoek van P kan groter dan 360 zijn. 2

3 7. Eenheidscirkel en radiaal [] sin OQ xp cos xp OP overstaande rechthoekzijde tan aanliggende rechthoekzijde tan overstaande rechthoekzijde schuine zijde PQ yp sin yp OP aanliggende rechthoekzijde cos schuine zijde PQ OQ y x p p Dus P heeft coördinaten P(cos α, sin α) 3

4 7. Eenheidscirkel en radiaal [] hoek sinus ½ ½ 2 ½ 3 cosinus ½ 3 ½ 2 ½ Bereken exact sin20, cos20 en tan20 : sin20 = - sin50 = -sin30 = -½ cos20 = cos50 = - cos30 = -½ 3 sin tan20 cos

5 7. Eenheidscirkel en radiaal [2] Voorbeeld : Gegeven is x P = 0,6 Bereken α in graden en rond af op decimaal. cos(x) = 0,6 oplossen met de GR gaat via cos - (0,6) 53, Let op dat nog een hoek is waarbij geldt dat x P = 0,6. Dit is de hoek , = 306,9 5

6 7. Eenheidscirkel en radiaal [2] Voorbeeld 2: Gegeven is y P = 0,8 Bereken α in graden en rond af op decimaal. sin(x) = 0,8 oplossen met de GR gaat via sin - (0,8) 53, Let op dat nog een hoek is waarbij geldt dat y P = 0,8. Dit is de hoek 80-53, = 27,9 6

7 7. Eenheidscirkel en radiaal [3] In de eenheidscirkel is de booglengte van het groene stuk precies. In dit geval is de middelpuntshoek radiaal. Een hoek van radiaal is de middelpuntshoek in de eenheidscirkel die hoort bij een cirkelboog met lengte. Radiaal is een andere manier om de grootte van de middelpuntshoek weer te geven. De cirkelboog van de volledige cirkel is 2π. Bij deze booglengte hoort een middelpuntshoek van 2π rad. 7

8 7. Eenheidscirkel en radiaal [3] Een volledige cirkel is 360 dus 2π rad = 360 Π rad = 360 /2 = 80 rad = 360 /(2π) = 80 /π = 2π/360 = π/80rad Voorbeeld : 2 2 rad Voorbeeld 2: 80 rad 4,3 4 4 Voorbeeld 3: rad,87rad 80 8

9 7. Eenheidscirkel en radiaal [4] cos( ) = -cos( ) = -cos(30 ) = -½ 3 [cos is x-coördinaat] sin( ) = -sin( ) = -sin(60 )= -½ 3 [sin is y-coördinaat] 9

10 7.2 Goniometrische vergelijkingen [] Voorbeeld : Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0. Dit is in de punten (,0) en (-,0) (,0) heeft draaiingshoek 0 (-,0) heeft draaiingshoek π (,0) heeft draaiingshoek 2π enz. enz. enz. (-,0) heeft draaiingshoek 3π enz. enz. enz. Dus sin(a) = 0 als A = k π (k = geheel getal) 0

11 7.2 Goniometrische vergelijkingen [] Voorbeeld 2: Los de vergelijking sin(a) = op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat. Dit is in het punt (0,) (0,) heeft draaiingshoek ½π (0,) heeft draaiingshoek 2½ π enz. enz. enz. Dus sin(a) = als A = ½π + k 2π

12 7.2 Goniometrische vergelijkingen [] Voorbeeld 3: Los de vergelijking sin(a) = - op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat -. Dit is in het punt (0,-) (0,-) heeft draaiingshoek ½π (0,-) heeft draaiingshoek 3½ π enz. enz. enz. Dus sin(a) = - als A = ½π + k 2π 2

13 7.2 Goniometrische vergelijkingen [] Voorbeeld 4: Los de vergelijking cos(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met x-coördinaat 0. Dit is in de punten (0,) en (0,-) (0,) heeft draaiingshoek ½π (0,-) heeft draaiingshoek ½π (0,) heeft draaiingshoek 2½π enz. enz. enz. (0,-) heeft draaiingshoek 3½π enz. enz. enz. Dus cos(a) = 0 als A = ½π + k π 3

14 7.2 Goniometrische vergelijkingen [] Voorbeeld 5: Los de vergelijking cos(a) = op. We zoeken nu de punten op de eenheidscirkel met x-coördinaat. Dit is in het punt (,0) (,0) heeft draaiingshoek 0 (,0) heeft draaiingshoek 2π enz. enz. enz. Dus cos(a) = als A = k 2π 4

15 7.2 Goniometrische vergelijkingen [] Voorbeeld 6: Los de vergelijking cos(a) = - op. We zoeken nu de punten op de eenheidscirkel met x-coördinaat. Dit is in het punt (,0) (,0) heeft draaiingshoek π (,0) heeft draaiingshoek 3π enz. enz. enz. Dus cos(a) = als A = π + k 2π 5

16 7.2 Goniometrische vergelijkingen [] Voorbeeld 7: Bereken exact cos(3x ½π) = 3x ½ π = k 2π 3x = ½ π + k 2π x k Voorbeeld 8: Bereken exact cos 2 (3x ½π) = cos(3x ½π) = cos(3x ½π) = - 3x ½ π = k 2π 3x ½ π = π + k 2π 3x = ½ π + k 2π 3x = ½ π + k 2π x 2 k x k

17 7.2 Goniometrische vergelijkingen [2] Voorbeeld : 2sin(3 x) 3 sin(3 x) 3 2 3x k 2 of 3x k x k of x k Zorg dat links enkel sinus staat Zoek in eenheidscirkel bij welke draaiingshoek de y-coördinaat ½ 3 is Schrijf de oplossing in de vorm x = De oplossingen op het interval [0, 2π] zijn:,, en , 9, Algemeen geldt: sin(a) = C geeft A = B + k 2π of A = π B + k 2π 7

18 7.2 Goniometrische vergelijkingen [2] Voorbeeld 2: 2cos(2x - ) - 2 Zorg dat links enkel cos staat cos(2x - ) Zoek in eenheidscirkel bij welke 3 5 2x - k 2 of 2x - k 2 draaiingshoek de x-coördinaat -½ 2 is De oplossingen op het interval [0, 2π] zijn: x k 2 of 2x k x k of x k , en , Algemeen geldt: cos(a) = C geeft A = B + k 2π of A = B + k 2π 8

19 7.3 Transformaties en functies[] In het plaatje is de goniometrische functie f(x) = sin(x) getekend Deze functie voegt aan elk getal x de sinus van x radialen toe. De x-as wordt in radialen aangegeven. De periode is 2π. De evenwichtsstand is 0. De maximale afwijking van de evenwichtsstand (amplitude) is De nulpunten zijn, -2π, -π, 0, π, 2π 9

20 7.3 Transformaties en functies[2] De zwarte grafiek is f(x) = sin(x) De rode grafiek is g(x) = sin(x) + 3 De zwarte grafiek wordt 3 omhoog geschoven. 20

21 7.3 Transformaties en functies[2] De zwarte grafiek is f(x) = sin(x) De rode grafiek is g(x) = sin(x+) De zwarte grafiek wordt naar links geschoven. 2

22 7.3 Transformaties en functies[2] De zwarte grafiek is f(x) = sin(x) De rode grafiek is g(x) = 3sin(x) De zwarte grafiek wordt ten opzichte van de x-as met 3 vermenigvuldigd. 22

23 7.3 Transformaties en functies[2] De zwarte grafiek is f(x) = sin(x) De rode grafiek is g(x) = sin(3x) De zwarte grafiek wordt ten opzichte van de y-as met 3 vermenigvuldigd. 23

24 7.3 Transformaties en functies[2] De zwarte grafiek is f(x) = sin(x) De rode grafiek is g(x) = 3sin(x) De groene grafiek is h(x) = 2 + 3sin(x) Eerst een vermenigvuldiging met de x-as t.o.v. 3 en dan een translatie van (0,2). 24

25 7.3 Transformaties en functies[2] De zwarte grafiek is f(x) = sin(x) De rode grafiek is g(x) = 2 +sin(x) De groene grafiek is h(x) = 3(2 + sin(x)) = 6 + 3sin(x) Eerst een translatie van (0,2) en dan een vermenigvuldiging met de x-as t.o.v. 3. [Volgorde is van belang!!!] 25

26 7.3 Transformaties en functies[3] P heeft coördinaten P(cos α, sin α) Uit het plaatje volgt: sin(α + ½π) = y R = x p = cos α Uit het plaatje volgt: cos(α+ ½π) = x R = -y p = - sin α R heeft de coördinaten R(cos α, -sin α) Hieruit volgen dus de volgende twee goniometrische formules: sin(α + ½π) = cos α cos(α + ½π) = - sin α 26

27 7.3 Transformaties en functies[3] De volgende goniometrische functies worden vanaf nu bekend verondersteld: sin(-a) = - sin(a) cos(-a) = cos(a) -sin(a) = sin(a + π) -cos(a) = cos(a + π) sin(a) = cos(a ½π) cos(a) = sin(a + ½π) tan(a) = sin(a)/cos(a) EN sin 2 (A) + cos 2 (A) = Let op: Al deze goniometrische functies zijn te herleiden met behulp van de eenheidscirkel. 27

28 7.4 Grafieken van goniometrische functies[] Teken de grafiek van f ( x) sin(2 x ) Stap : Schrijf de formule in de vorm y = a + b sin(c(x-d)) f ( x) sin(2 x ) sin(2( x )) Stap 2: Schrijf de vier kenmerken van de formule op: a = evenwichtsstand [= -] b = amplitude [= ½ ] periode = 2π/c [= 2π/2 = π] d = x-coördinaat beginpunt [= ] 3 Let op: b > 0 dus de grafiek gaat stijgend door het beginpunt; Bij b < 0 gaat de grafiek dalend door het beginpunt; De y-coördinaat van het beginpunt is de evenwichtsstand [-]. 28

29 7.4 Grafieken van goniometrische functies[] Teken de grafiek van f ( x) sin(2 x ) Stap 3: Stippel in een assenstelsel de lijn van de evenwichtsstand en de lijnen waarop de toppen liggen. 29

30 7.4 Grafieken van goniometrische functies[] Teken de grafiek van f ( x) sin(2 x ) Stap 4: Teken het beginpunt en het punt dat één periode verder ligt. Het beginpunt is (, -) 3 Het punt één periode verder is ( + π, -) = (, -)

31 7.4 Grafieken van goniometrische functies[] Teken de grafiek van f ( x) sin(2 x ) Stap 5: Bij een sinusfunctie is er een maximum na ¼ periode, na ½ periode gaat De functie weer door de evenwichtsstand en na ¾ periode is er een minimum. Maximum = ( +, - + ½ ) = ( 7, ½) 3 4 Evenwichtsperiode = ( 2 + ½π, -) = ( 5 3, -) 6 Minimum = ( + ¾π, - ½) = (, -2½) 3 2 3

32 7.4 Grafieken van goniometrische functies[] Teken de grafiek van f ( x) sin(2 x ) Stap 6: Teken de grafiek door de getekende punten. 32

33 7.4 Grafieken van goniometrische functies[2] Stel de formule op van de hier getekende sinusoïde in de vorm y = a + b sin(c(x - d)) a = evenwichtsstand = (min + max)/2 = ( )/2 = 00 b = amplitude = max evenw. stand = = c = 2π/periode = 6 d = x-coördinaat beginpunt = 2 6 y = a + b sin(c(x - d)) = sin( (x )) 33

34 7.4 Grafieken van goniometrische functies[2] Stel de formule op van de hier getekende sinusoïde in de vorm y = a + b cos(c(x - d)) 2 6 a = 00, b = 200 en c = d = Een hoogste punt is (2½, 300), dus d = 2½ y = a + b cos(c(x - d)) = cos( 2 6 (x 2 ½)) 34

35 7.4 Grafieken van goniometrische functies[3] Rechts is de functie f(x) = tan(x) getekend. In de eenheidscirkel geldt: y tan x p p Bij de draaiingshoek α = ½π geldt: tan kn Bij de draaiingshoek α = ½π geldt: tan 2 kn.. 0 Bij α = ½π en α = ½π zijn er verticale asymptoten. Het punt (0, 0) is het beginpunt van de grafiek. 35

36 hoek 7.4 Grafieken van goniometrische functies[3] sinus ½ ½ 2 ½ 3 cosinus ½ 3 ½ 2 ½ tangens Andere exacte waarden kunnen berekend worden met behulp van de eenheidscirkel en de exacte waarden van de sinus en de cosinus. Er geldt: tan(a) = tan(b) geeft A = B + k π 36

37 7.4 Grafieken van goniometrische functies[3] Voorbeeld : tan(2 x ) x k 4 3 2x k x k Voorbeeld 2: tan(3 x) tan( x ) 3x x k 2x x 4 4 k k

38 7.4 Grafieken van goniometrische functies[3] Voorbeeld : tan(2 x ) x k 4 3 2x k x k Voorbeeld 2: tan(3 x) tan( x ) 3x x k 2x x 4 4 k k

39 7.5 Goniometrische functies differentiëren [] Voor het differentiëren van sinus- en cosinusfuncties gelden de volgende regels: f(x) = sin(x) => f (x) = cos(x) g(x) = cos(x) => g (x) = -sin(x) Voorbeeld : Bereken de afgeleide van de functie f(x) = tan(x) f ( x) tan( x) sin( x) cos( x ) f'( x) cos( x) [sin( x)]' sin( x) [cos( x)]' cos 2( x) 2 2 cos 2( x) 2 2 cos 2( x) cos 2( x) cos 2( x) cos( x) cos( x) sin( x) sin( x) cos ( x) sin ( x) cos ( x) sin ( x) tan 2( x) Gebruik de quotiëntregel 39

40 7.5 Goniometrische functies differentiëren [] Voorbeeld 2: Bereken de afgeleide van de functie g(x) = x sin(x) g( x) x sin( x) g'( x) [ x]' sin( x) x[sin( x)]' sin( x) xcos( x) sin( x) x cos( x) Gebruik de productregel Voorbeeld 3: Bereken de afgeleide van de functie h(x) = tan 2 (x) h( x) tan 2( x) u2met u tan( x) 2 ]' [tan( x)]' h'( x) [ u 2 u( tan 2( x)) 2tan( x)( tan 2( x)) 2tan( x) 2tan 3( x) Gebruik de kettingregel 40

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie.

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. 14.0 Voorkennis De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. Evenwichtsstand = (min + max)/2 = (-100 + 300)/2 = 100 Amplitude = max evenw.

Nadere informatie

12.0 Voorkennis. Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0.

12.0 Voorkennis. Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0. 12.0 Voorkennis Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0. Dit is in de punten (1,0) en (-1,0) (1,0) heeft draaiingshoek 0 (-1,0) heeft

Nadere informatie

Paragraaf 7.1 : Eenheidscirkel en radiaal

Paragraaf 7.1 : Eenheidscirkel en radiaal Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)

Nadere informatie

Samenvatting wiskunde B

Samenvatting wiskunde B Samenvatting wiskunde B Dit is een samenvatting van het tweede deel van Getal en Ruimte VWO wiskunde B. In deze samenvatting worden hoofdstuk 5, 6 en 7 behandeld. Ik hoop dat deze samenvatting je zal helpen!

Nadere informatie

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =

Nadere informatie

= cos245 en y P = sin245.

= cos245 en y P = sin245. G&R havo B deel C. von Schwartzenberg / a b overstaande rechthoekszijde PQ PQ sinα = (in figuur 8.) sin = = PQ = sin 0, 9. schuine zijde OP aanliggende rechthoekszijde OQ OQ cosα = (in figuur 8.) cos =

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Hoofdstuk 8 Goniometrie. 8.1 De eenheidscirkel. Opgave 1: PQ 1 OQ 1. Opgave 2: Opgave 3: GETAL EN RUIMTE HAVO WB D2 H8 1-1 - AUGUSTINIANUM (LW)

Hoofdstuk 8 Goniometrie. 8.1 De eenheidscirkel. Opgave 1: PQ 1 OQ 1. Opgave 2: Opgave 3: GETAL EN RUIMTE HAVO WB D2 H8 1-1 - AUGUSTINIANUM (LW) Hoofdstuk 8 Goniometrie 8. De eenheidscirkel Opgave : PQ a. sin 6 PQ sin 6 0,9 OQ cos6 OQ cos 6 0, b. P0,;0,9) Opgave : a. POQ 80 6 PQ 0,9 OQ 0, P0,;0,9) b. cos 0, sin 0,9 x P cos 0, y P sin 0,9 c. POQ

Nadere informatie

Paragraaf 8.1 : Eenheidscirkel

Paragraaf 8.1 : Eenheidscirkel Hoofdstuk 8 Goniometrische functies (H4 Wis B) Pagina 1 van 10 Paragraaf 8.1 : Eenheidscirkel Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat

Nadere informatie

0. voorkennis. Periodieke verbanden. Bijzonder rechthoekige driehoeken en goniometrische verhoudingen

0. voorkennis. Periodieke verbanden. Bijzonder rechthoekige driehoeken en goniometrische verhoudingen 0. voorkennis Periodieke verbanden Bijzonder rechthoekige driehoeken en goniometrische verhoudingen Er zijn twee verschillende tekendriehoeken: de 45-45 -90 driehoek en de 30-0 -90 -driehoek. Kenmerken

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 8. M. van der Pijl. Transfer Database

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 8. M. van der Pijl. Transfer Database Noorderpoortcollege School voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 Periode 8 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet

Nadere informatie

Lessen wiskunde uitgewerkt.

Lessen wiskunde uitgewerkt. Lessen Wiskunde uitgewerkt Lessen in fase 1. De Oriëntatie. Les 1. De eenheidscirkel. In deze les gaan we kijken hoe we de sinus en de cosinus van een hoek kunnen uitrekenen door gebruik te maken van de

Nadere informatie

Goniometrische functies

Goniometrische functies Goniometrische functies gonè (Grieks) = hoek metron (Grieks) = maat Goniometrie, afkomstig van de Griekse woorden voor hoek en maat, betekent letterlijk hoekmeetkunde. Daarmee wordt aangegeven dat het

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie

Nadere informatie

exponentiële standaardfunctie

exponentiële standaardfunctie 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

Uitwerkingen goniometrische functies Hst. 11 deel B3

Uitwerkingen goniometrische functies Hst. 11 deel B3 Uitwerkingen goniometrische functies Hst. deel B. f() = sin(-) = -sin() g() = cos(-) = cos () h() = sin( + ) = cos() j() = cos( + ) = -sin() k() = sin ( + ) = -sin () l() = cos ( + ) = -cos (). Zie ook

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden 10.0 Voorkennis 5 1 6 6 cos( ) = -cos( ) = -½ 3 [cos is x-coördinaat] 5 1 3 3 sin( ) = -sin( ) = -½ 3 [sin is y-coördinaat] 1 Voorbeeld 1: Getekend is de lijn k: y = ½x 1. De richtingshoek α van de lijn

Nadere informatie

stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden).

stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden). Samenvatting door Sterre 1437 woorden 5 mei 2018 7.8 3 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Vocabulair Algebraïsch stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen

Nadere informatie

6. Goniometrische functies.

6. Goniometrische functies. Uitwerkingen R-vragen hodstuk 6 6. Goniometrische functies. R1 Wat heeft een cirkelomwenteling te maken met een sinus cosinus? ls een punt met constante snelheid een cirkelbeweging uitvoert en je zet hoogte

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 Periodieke functies 2 1.1 Op verkenning 2 1.2 Periodieke functie 2 1.3 Periode-interval, evenwichtslijn en amplitude 4 1.4 De perioderechthoek 4 1.5 Oefeningen

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

15.1 Oppervlakten en afstanden bij grafieken [1]

15.1 Oppervlakten en afstanden bij grafieken [1] 15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte

Nadere informatie

Eindexamen wiskunde B pilot havo 2011 - I

Eindexamen wiskunde B pilot havo 2011 - I Eindexamen wiskunde B pilot havo 0 - I Beoordelingsmodel Overlevingstijd maximumscore 3 Voor T 0 geldt: Voor T 0 geldt: R 7, ( ) 77 0,0780,0030 R 7, ( ) 70 0,0780,0030 Dus de overlevingstijd is 70 keer

Nadere informatie

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i 16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =

Nadere informatie

15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x))

15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x)) 5.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( x) a f '( x) 0 n f ( x) ax f '( x) nax n f ( x) c g( x) f '( x) c g'( x) f ( x) g( x) h( x) f '( x) g'( x) h'( x) p( x) f ( x) g( x) p'( x)

Nadere informatie

Wiskunde D voor HAVO. Periodieke functies Gert Treurniet

Wiskunde D voor HAVO. Periodieke functies Gert Treurniet Wiskunde D voor HAVO Periodieke functies Gert Treurniet . Inleiding Een toon is een trilling. De trilling van lucht brengt ons trommelvlies in beweging. De beweging van ons trommelvlies nemen we waar als

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus Exacte waaren ij sinus en cosinus In enkele gevallen kun je vergelijkingen met sinus en cosinus exact oplossen. Welke gevallen zijn at? Hieroven zie je grafieken van f(x) = sin x en g(x) = cos x. a Hoe

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Examen havo wiskunde B 2016-I (oefenexamen)

Examen havo wiskunde B 2016-I (oefenexamen) Examen havo wiskunde B 06-I (oefenexamen) De rechte van Euler Gegeven is cirkel c met middelpunt (, ) p Stel een vergelijking op van c. De punten B(, 0) en ( 4, 0) M die door het punt A( 0, 4) C liggen

Nadere informatie

Hoofdstuk 4 - Periodieke functies

Hoofdstuk 4 - Periodieke functies Hoofdstuk - Periodieke functies ladzijde 98 V-a Na seconden. Het hart klopt c, millivolt = slagen per minuut. V-a Ja, met periode ; nee; misschien met periode. Evenwichtsstand y = ; -; y =. Amplitude is

Nadere informatie

Paragraaf 14.0 : Eenheidscirkel

Paragraaf 14.0 : Eenheidscirkel Hoofdstuk 14 Allerlei formules (V6 Wis A) Pagina 1 van 12 Paragraaf 14.0 : Eenheidscirkel De eenheidscirkel met graden Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 78 punten te behalen. Voor elk

Nadere informatie

Trillingen en geluid wiskundig

Trillingen en geluid wiskundig Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek

Nadere informatie

Delta Nova. Delta Nova Analyse deel 1 3 lesuren. Delta Nova bestaat voor de eerste en tweede graad uit:

Delta Nova. Delta Nova Analyse deel 1 3 lesuren. Delta Nova bestaat voor de eerste en tweede graad uit: Delta Nova bestaat voor de eerste en tweede graad uit: Delta Nova Eerste graad Delta Nova a leerboek en werkboek Delta Nova b leerboek en werkboek Delta Nova a leerboek en werkboek Delta Nova b leerboek

Nadere informatie

Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B

Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B Inleiding Voor het oplossen van goniometrische vergelijkingen heb je een aantal dingen nodig:. Kennis over

Nadere informatie

havo 5 wiskunde B deel 2 Hoofdstuk 11 (voorlopig) de Wageningse Methode

havo 5 wiskunde B deel 2 Hoofdstuk 11 (voorlopig) de Wageningse Methode havo 5 wiskunde B deel 2 Hoofdstuk 11 (voorlopig) de Wageningse Methode Copyright 2018 Stichting de Wageningse Methode Auteurs Leon van den Broek, Ton Geurtz, Maris van Haandel, Dolf van den Hombergh,

Nadere informatie

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt

Nadere informatie

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies Basisvormen (algeraische denkeenheden) van algeraische epressies/functies,,,..,,, g g, log( ), sin(), cos() polynoomfuncties gerokenfuncties, vermenigvuldigingsfunctie Soort functies Standaardvormen met

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

7.1 Ongelijkheden [1]

7.1 Ongelijkheden [1] 7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij

Nadere informatie

OEFENPROEFWERK VWO B DEEL 3

OEFENPROEFWERK VWO B DEEL 3 Formules OEFENROEFWERK VWO B DEEL HOOFDSTUK GONIOMETRISCHE FORMULES cos( t u) cos( t)cos( u) sin( t)sin( u) sin( A) sin( A)cos( A) sin( t u) sin( t)cos( u) cos( t)sin( u) cos( t u) cos( t)cos( u) sin(

Nadere informatie

Uitwerking Opdrachten 2e week. Periode Goniometrie, klas 11.

Uitwerking Opdrachten 2e week. Periode Goniometrie, klas 11. Uitwerking Opdrachten e week. Periode Goniometrie, klas. Opdr. Vindt de juiste functies In de figuur hieronder staan drie functies afgebeeld. Onderzoek welk functievoorschriften hierbij horen. f(x) G(x)

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 1 Voorwoord Satellieten zijn er in vele soorten en maten. Zo heb je bijvoorbeeld

Nadere informatie

1.1 Differentiëren, geknipt voor jou

1.1 Differentiëren, geknipt voor jou 1.1 Differentiëren, geknipt voor jou Je hebt leren omgaan met hellings of, wat hetzelfde is: s. We frissen de begrippen en rekenmethoden die hierbij horen nu wat op. Stel dat je met een (gewone) schaar

Nadere informatie

Goniometrische functies - afstandsleren 48

Goniometrische functies - afstandsleren 48 Goniometrische functies - afstandsleren 48 9 GONIOMETRISCHE FUNCTIES De goniometrische functies leer je kennen via de tool exe-leren en applets die je vindt in de cursus op Blackboard. De applets zijn

Nadere informatie

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a Samenvatting wiskunde h4 hoofdstuk 3 en 6, h5 hoofdstuk 4 en 6 Hoofdstuk 3 Voorkennis Bij het rekenen met machten gelden de volgende rekenregels: - Bij een vermenigvuldiging van twee machten met hetzelfde

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Goniometrie, vlakke meetkunde en rekenen met vectoren in de fysica (versie 0 juli 008) Rekenen met vectoren is een basisvaardigheid voor vakken natuurkunde.

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Oefenexamen 2 H1 t/m H13.2 uitwerkingen. A. Smit BSc

Oefenexamen 2 H1 t/m H13.2 uitwerkingen. A. Smit BSc Oefenexamen H t/m H3. uitwerkingen A. Smit BSc Een bewegend vierkant (naar methode Getal en Ruimte) De baan van een punt P wordt gegeven door de volgende bewegingsvergelijkingen: ቐ x P t = sin t y P t

Nadere informatie

ICT - Cycloïden en andere bewegingen

ICT - Cycloïden en andere bewegingen ICT - Ccloïden en andere bewegingen bladzijde 80 a ( 0, ) b Als de middelpuntshoek radiaal is, is de bijbehorende booglengte: omtrek π π = meter. er seconde wordt er over radiaal gedraaid en wordt er dus

Nadere informatie

Continue wiskunde Voorkennis

Continue wiskunde Voorkennis T.08.1.3.1 Continue wiskunde Voorkennis Voorlopige versie september 2006 2006 Open Universiteit Nederland OUN Continue wiskunde Inhoud Voorkennis continue wiskunde Introductie Leerkern 1 Getallenverzamelingen

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0.

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0. Gegeven is de functie.0 Voorkennis Deze functie bestaat niet bij een van. Invullen van = geeft een deling door 0. De functie g() = heeft als domein R en is een ononderbroken kromme. Deze functie is continu

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Eindexamen wiskunde B havo II

Eindexamen wiskunde B havo II Eindexamen wiskunde B havo 009 - II Beoordelingsmodel Kaas maximumscore De oppervlakte van de rechthoek is 0 0 = 00 (cm ) De oppervlakte van de twee halve cirkels is samen π 5 ( 79)(cm ) De oppervlakte

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 8 Voorkennis: Sinusfuncties ladzijde 9 V- Uit 8 radialen volgt 8 radialen Je krijgt dan de volgende tael: V-a V-a 8 graden 6 9 8 radialen O 6 6 7 8 9 Aflezen:,,,, c Aflezen:, d Aflezen:, e Aflezen: O Aflezen:,,,

Nadere informatie

1 Overzicht voorkennis algebraïsch rekenen

1 Overzicht voorkennis algebraïsch rekenen 1 Overzicht voorkennis algebraïsch rekenen 1 Merkwaardige producten, ontbinden in factoren 1.1 Merkwaardige producten ( ) ( ) a+ b = a + ab+ b a b = a ab+ b ( ) ( ) a+ b = a + ab+ ab + b a b = a ab+ ab

Nadere informatie

Goniometrie. Dr. Caroline Danneels Dr. Paul Hellings

Goniometrie. Dr. Caroline Danneels Dr. Paul Hellings Goniometrie Dr. Caroline Danneels Dr. Paul Hellings 1 Hoeken 1.1 De goniometrische cirkel De goniometrische cirkel wordt steeds gedefinieerd in een orthonormaal assenkruis. Het is een cirkel met het middelpunt

Nadere informatie

Inleiding goniometrie

Inleiding goniometrie Inleiding goniometrie We bekijken de volgende twee hellingen: 1 2 Duidelijk is dat de tweede helling steiler is dan de eerste helling. Ook zien we dat hellingshoek 2 groter is dan hellingshoek 1. Er bestaat

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 007 VK : WISKUNE TUM: WOENSG 04 JULI 007 TIJ : 09.45.5 UUR (TOELTING VWO/HVO/NTIN) 09.45.45

Nadere informatie

tan c b + a c c b HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN

tan c b + a c c b HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN ) Gegeven: een rechthoekige driehoek ABC. Schrijf de volgende goniometrische getallen in functie van de lengten van de zijden van

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 donderdag 24 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 1 donderdag 24 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 202 tijdvak donderdag 24 mei 3.30-6.30 uur wiskunde B (pilot) Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 82 punten te behalen. Voor

Nadere informatie

6. Functies. 6.1. Definities en gebruik van functies/variabelen

6. Functies. 6.1. Definities en gebruik van functies/variabelen Computeralgebra met Maxima 6. Functies 6.1. Definities en gebruik van functies/variabelen Een van de belangrijkste gereedschappen in een CAS betreft het gebruik van functies (definitie, berekening en grafiek).

Nadere informatie

Wiskunde D voor HAVO. Periodieke functies. Samengesteld door Gert Treurniet. Versie 2

Wiskunde D voor HAVO. Periodieke functies. Samengesteld door Gert Treurniet. Versie 2 Wiskunde D voor HAVO Periodieke functies Samengesteld door Gert Treurniet Versie . Inleiding Een toon is een trilling. De trilling van lucht brengt ons trommelvlies in beweging. De beweging van ons trommelvlies

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband tussen

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

Functies. Verdieping. 6N-3p gghm

Functies. Verdieping. 6N-3p gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Hoofdstuk 8 - Periodieke functies

Hoofdstuk 8 - Periodieke functies Havo B deel Uitwerkingen Moderne wiskunde Hoofdstuk 8 - Periodieke functies ladzijde 8 V-a c Na seconden = slagen per minuut ca., millivolt V-a Ja, met periode Nee Mogelijk, met periode = en amplitude

Nadere informatie

van sinus en cosinus André Heck Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam a.j.p.heck@uva.nl

van sinus en cosinus André Heck Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam a.j.p.heck@uva.nl Een GeoGebraondersteunde benadering van sinus en cosinus André Heck Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam a.j.p.heck@uva.nl Het probleem: De sinusgrafiek 2 De sinusgrafiek

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/7 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Algebra en meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 25 april 2018 1 Presentatie en opgeloste oefeningen zijn digitaal beschikbaar

Nadere informatie

Paragraaf 12.1 : Gonio vergelijkingen en herleidingen

Paragraaf 12.1 : Gonio vergelijkingen en herleidingen Hoofdstuk 12 Goniometrische Formules (V5 Wis B Pagina 1 van 8 Paragraaf 12.1 : Gonio vergelijkingen en herleidingen Les 1 Gonio vergelijkingen oplossen met herleidregels Definitie Er zijn een aantal omschrijfregels

Nadere informatie

Eerste deel van de cursus Algebra

Eerste deel van de cursus Algebra Eerste deel van de cursus Algebra Procentrekenen Toename met p%: groeifactor = 1 + p% Afname met p% : groeifactor = 1 p% Toename in procenten = Afname in procenten = toename beginwaarde afname beginwaarde

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

In een zware tornado worden maximale windsnelheden van ongeveer 280 km/u bereikt.

In een zware tornado worden maximale windsnelheden van ongeveer 280 km/u bereikt. Tornadoschalen In tornado s kunnen hoge windsnelheden bereikt worden. De zwaarte of heftigheid van een tornado wordt intensiteit genoemd. Er zijn verschillende schalen om de intensiteit van een tornado

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen.

13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen. 13.0 Voorkennis Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen. Op het interval [-2; -0,94) is de grafiek dalend; Bij x =

Nadere informatie

Dictaat Rekenvaardigheden. Loek van Reij

Dictaat Rekenvaardigheden. Loek van Reij Dictaat Rekenvaardigheden Loek van Reij 0 maart 006 i ii Voorwoord In het middelbaar onderwijs hebben zich de laatste jaren grote veranderingen voltrokken: de tweede fase met de daaraan verbonden profielkeuze

Nadere informatie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 2 Regels voor differentiëren

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 2 Regels voor differentiëren De Wageningse Methode &6 WO wiskunde B Uitgebreide antwoorden Hoofdstuk egels voor differentiëren Paragraaf Opnieuw sinus en inus a. -, 0, ; -, ; -, ; -, b. (,sin) (-0, ; 0,9), met de G Op dezelfde hoogte:,

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20

11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20 .0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:

Nadere informatie

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld.

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Wiskunde juli 2009 Laatste aanpassing: 29 juli 2009. Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Vraag 1 Wat is de top van deze parabool 2 2. Vraag

Nadere informatie