Basisvormen (algebraische denkeenheden) van algebraische expressies/functies

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Basisvormen (algebraische denkeenheden) van algebraische expressies/functies"

Transcriptie

1 Basisvormen (algeraische denkeenheden) van algeraische epressies/functies,,,..,,, g g, log( ), sin(), cos() polynoomfuncties gerokenfuncties, vermenigvuldigingsfunctie Soort functies Standaardvormen met kenmerken Grafiek Let op kenmerken en oneindig gedrag Lineaire functies In tael: ij gelijke stappen horen gelijke y stappen Grafiek is rechte lijn Formule is a. + Formule van lijn door punt (p,) met helling a is: a.( p) + Eponentiele functies In tael: ij gelijke stappen horen relatief gelijke y stappen (zelfde vermenigvuldiging) Formule is. g (ook e ) Afgeleide is y ' =. g.ln( g) Logaritmische functies In tael: ij relatief gelijke stappen (zelfde vermenigvuldiging) horen gelijke y stappen g Formule is log( ) (ook ln( ) ) g log( ) en g zijn elkaars inversen (oplossen van vergelijkingen) Domein! en verticale asymptoot. Afgeleide is y ' =.ln( g) Speciale rekenregels: log( a) + log( ) = log( a. ) n n.log( a) = log( a ) g log( a) = p p log( a) log( g)

2 Machtsfuncties In tael: ij relatief gelijke stappen (zelfde vermenigvuldiging) horen relatief gelijke y stappen (zelfde vermenigvuldiging) Formule is a. n n even Afgeleide is y ' = n. n In contet: y is evenredig met n Vaak gekeken naar gehele even/oneven machten i.v.m. vergelijkingen als n oneven = 5 = 5 = 5 = 5 Vergelijkingen als = 5 omzetten naar = 5 n en n zijn elkaars inversen Speciale rekenregels: p q p+ q a. a = a ( a ) = a p q p+ q Wortelfuncties Formule a. Afgeleide is y ' =. Grafiek en zijn elkaars inversen Domein van elang is ook een machtsfunctie (= ) (ook zo met = ) Goniometrische Later apart functies Polynoomfuncties e graads Grafiek erg/dal paraool a c Of in de vorm: a.( p) + q (top (p,q)) a.( r)( s) (nulpunten r en s)

3 ( top) e graads a c. + d Of in de vorm: a.( r).( s).( t) (nulpunten r,s,t) (ma. toppen) e graads 5 e graads a c. + d. + e Of in de vorm: a.( r).( s).( t).( u) (nulpunten r,s,t,u) (ma. toppen) 5 a. +.. (ma. toppen) Geroken functies (quotientfuncties) a. + c. + d Zoek evt. verticale en horizontale asymptoten. Afgeleide met quotientregel n. t ' t. n' y ' = n

4 Vermenigvuldigings functies (productregels) ( a. + ).( c. + d) ().() Zoek nulpunten. Afgeleide met productregel y ' = f. g ' + g. f ' Kettingfuncties Zoals e, ( ) Pijlenketting Afgeleide met kettingregel f ( g( )) dan y ' = f '( g( )). g '( ) Acties met deze asisvormen: ) transformaties: kijk naar relatie formule - grafiek Verschuiving horizontaal met p: f ( p) Verschuiving verticaal met p: f ( ) + p Verticale vermenigvuldiging met p: p. f ( ) Horizontale vermenigvuldiging met p: f ( p ) Vooreeld: a) e herkennen als grafiek e die naar rechts verschoven is. ) ( ) herkennen als grafiek van die horizontaal vermenigvuldigd t.o.v. y-as is met Ook schetsen van grafieken van f en f als de grafiek van f gegeven is. ) redeneren a.d.h.v. formule: a) als groter wordt dan y. ) als ᆴ ᆬ dan y (oneindig gedrag van een functie) c) symmetrie in -as of y-as ) inverteren van functies (inverse erekenen)

5 ) reduceren Vooreelden: a) ( ) ( ) 0 herkennen als verschoven grafiek van y = 0 p p ) e herkennen als e p met p = (schets e p en geruik symmetrie in y-as) Opdrachten ) Schrijf in de vorm: a. a) (. ). ) 6.. c) 5 6. d).. 0 e). ) Schrijf in de vorm: a.... a) ) 5 ( ) c). ) Schrijf in de vorm: a) ( ).( + ) ) ( ) + 9 c) ( ) d) ( ) + 9 ) Schrijf in de vorm: + 6 a) ) 8 + c) + 8 d) a c a.( p) + q 5) Schrijf in de vorm:. (als een reuk).

6 a) + ) + c). d). 5 e) 5.. f) 5. + g) 5. h) i) 5. j) 6) Schrijf in de vorm: a.(.).(.) (of a.(.).(.).(.) ) a) 8 + ) c) d) e) f) g) h) i) ) Schrijf in de vorm: a) 0.0,8 ).,5 c) d) e), 0.,5 0 + e. e. e a. e + g 8) Schrijf in de vorm: log(...) a) y = log( ) + log( + )

7 ) log( ) log( 6) c) d) log( ) + log( ) e). log( ) f).ln( ) 9) Schrijf in de vorm: a) ).( + ) +.( ) c) ( ) ( ) d) ( )( )( 5) e)..( ) ( 5) a n n ) Schets de (gloale) grafiek van (let op domein, asymptoten en oneindig gedrag) a) 0,. + 5 ) c).( )( 5)( 6) d).( + ) + 0 e) + log( ) f).( 5).( 9) g).( 5) h) i) ( ) + j) k) e e e m) + n). e ) Gegeven is de grafiek van de functie F

8 Schets de grafiek van F( ) + ; F() + ; ) Bereken een formule voor de inverse van a). e ) + ln( ) c) d) + e) + f) + g) h) i) e e + + y = + F( ) en ( F( )) Oefeningen ) Schrijf naar een van de asisvormen: a) + naar + 6 ).. naar a. c) naar a. d) en z = y naar z = a c e) ( ) naar a c. + d f) ( ) + 6( )( + ) naar...(...)(...) ( )( + ) ( + 6)( ) g) naar ( ) h) log( ) + naar log(...) i) 00.0,9. naar e j) naar (.)(.) k) ln( y) = naar. 0,5 l) ( + ) + + naar m) + 6 naar...(...) n) log( y) = 0,.log( ) + naar a. 6 o) 8 naar (.)(.)

9 p) naar q) naar a. r).( ) naar. s) (. ).(8. ) naar e t) ( ) + naar.( ) u) naar a. 6 v) naar (.)(.) w) naar...(.)(.) ) 8 naar...(.)(.) y) naar z). naar ) Schets de gloale grafiek van: 6 a) 6 ) ( ) + c) ln( ) + d) e e) ( )( ) f) g) ( log( ) )( e ) h) ( )( )( 5) i) ( ) ( + 5) j) ( ) e h) e i) a) Welke formules kunnen ij onderstaande grafiek horen? a. e. ( ) c. d. +

10 ) Welke formules kunnen ij onderstaande grafiek horen? a. log( + ). c. log( ) d. log( ) c) Welke formules kunnen ij onderstaande grafiek horen? a.. + c. + d. e + e d) Welke formules kunnen ij onderstaande grafiek horen? a. ( )( 6). ( )( ) c. ( + )( + ) d. ( + )( + 6)

11 e) Welke formules kunnen ij onderstaande grafiek horen? a. ( )( 6). ( )( ) c d. ( + )( + 6) f) Welke grafiek hoort ij + a c d g) Welke grafiek hoort ij.( )( ) a c d

denkeenheden letters vormen woorden woorden vormen zinnen zinnen vormen verhalen stenen vormen muren muren vormen huizen huizen vormen steden

denkeenheden letters vormen woorden woorden vormen zinnen zinnen vormen verhalen stenen vormen muren muren vormen huizen huizen vormen steden letters vormen woorden woorden vormen zinnen zinnen vormen verhalen stenen vormen muren muren vormen huizen huizen vormen steden denkeenheden hoe zit dat bij algebraische epressies?,,,.. maken,5,5 maken

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

exponentiële standaardfunctie

exponentiële standaardfunctie 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is

Nadere informatie

Algemene informatie. Inhoudelijke informatie

Algemene informatie. Inhoudelijke informatie Informatie over Colloquium doctum Wiskunde niveau 2 voor Bedrijfskunde, Economie, Fiscale Economie en Mr.-Drs. Programma Economie en Recht ERASMUS UNIVERSITEIT ROTTERDAM Algemene informatie Tijdsduur:

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1.

Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1. Hoofdstuk 9: Allerlei functies 9. Machtsfuncties en wortelfuncties Opgave : a. 0,0, c. y en y d. y en y Opgave : a. de grafiek van y ontstaat uit die van y door T 0, T 0,6 y y 6 Opgave : a. T 6,0 T,0 c.

Nadere informatie

Paragraaf 9.1 : Logaritmen

Paragraaf 9.1 : Logaritmen Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Paragraaf 9. : Logaritmen Les Logaritmen Definitie Logaritmen Hoofdregel : g t = b t = g log b met domein b>0 Om logaritmen uit

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie

Nadere informatie

Paragraaf 5.1 : Wortelvormen en Breuken

Paragraaf 5.1 : Wortelvormen en Breuken Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 1 van 11 Paragraaf 5.1 : Wortelvormen en Breuken Les 1 : Wortelformules, Domein en Bereik Definities Domein = { alle -en die je mag invullen in de formule

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

Paragraaf 5.1 : Machten en wortels

Paragraaf 5.1 : Machten en wortels Hoofdstuk 5 Machten, exponenten en logaritmen (H Wis B) Pagina 1 van 1 Paragraaf 5.1 : Machten en wortels Machtsregels SPECIAAL GEVAL MACHTREGEL 1 : MACHTREGEL 2 : MACHTREGEL : a p a q = a p+q a p aq =

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel

Nadere informatie

Functies en symmetrie

Functies en symmetrie lesbrief Functies en symmetrie (even en oneven functies) 7N5p 013 gghm Symmetrie Bij grafieken van functies hebben we te maken met twee soorten symmetrie: lijnsymmetrie en puntsymmetrie. In deze lesbrief

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus Exacte waaren ij sinus en cosinus In enkele gevallen kun je vergelijkingen met sinus en cosinus exact oplossen. Welke gevallen zijn at? Hieroven zie je grafieken van f(x) = sin x en g(x) = cos x. a Hoe

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Differentiaalrekening. Elementaire techniek van het differentieren.

Differentiaalrekening. Elementaire techniek van het differentieren. Differentiaalrekening Elementaire techniek van het differentieren. Saxion Hogescholen Oktober 2008 Differentiaalrekening Een van de belangrijkste technieken in de wiskunde is differentiaalrekening. Deze

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

1 Lineaire functies. 2 Kwadratische functies. 3 Gebroken functies. Info Wiskunde HBO

1 Lineaire functies. 2 Kwadratische functies. 3 Gebroken functies. Info Wiskunde HBO Info Wiskunde HBO Lineaire functies. Onderwerpen opgave. Formule, tabel en grafiek... Betekenis snijpunt lineaire grafieken.. t/m.. Functievoorschrift en constantes bij lineair verband.. t/m.6. Gelijkheden

Nadere informatie

Didactische wenken bij het onderdeel analyse

Didactische wenken bij het onderdeel analyse Didactische wenken bij het onderdeel analyse Didactische wenken bij het onderdeel analyse 1/21 1. Eindtermen analyse Eindtermen ASO tweede graad ET 22 3 (4) aspecten van een functie ET 23 Standaardfuncties

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Standaardfuncties. x c

Standaardfuncties. x c Standaards Constante Parameter We geven in dit document een overzicht van een aantal veelvoorkomende s. We geven steeds het voorschrift en de grafiek. (Ter herinnering: het domein vermelden we niet, het

Nadere informatie

Paragraaf 7.1 : Eenheidscirkel en radiaal

Paragraaf 7.1 : Eenheidscirkel en radiaal Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)

Nadere informatie

Standaardafgeleiden. Wisnet-HBO. update maart 2011

Standaardafgeleiden. Wisnet-HBO. update maart 2011 Standaardafgeleiden Wisnet-HBO update maart 2011 1 Inleiding Als je nog niets over differentiëren weet, kun je beter eerst naar de les Wat is Differentiëren gaan in Wisnet Verder zijn er Maplets om de

Nadere informatie

Functies. Verdieping. 6N-3p 2010-2011 gghm

Functies. Verdieping. 6N-3p 2010-2011 gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de ijehorende grafiek. Je mag de GRM hierij geruiken. Y f ( x) x X

Nadere informatie

7.1 De afgeleide van gebroken functies [1]

7.1 De afgeleide van gebroken functies [1] 7.1 De afgeleide van gebroken functies [1] Regels voor het differentiëren: f() = a geeft f () = a f() = a geeft f () = a f() = a geeft f () = 0 Algemeen geldt: f() = a n geeft f () = na n-1 Voorbeeld 1:

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

HOOFDSTUK 3 : LOGARITMISCHE FUNCTIES

HOOFDSTUK 3 : LOGARITMISCHE FUNCTIES HOOFDSTUK : LOGARITMISCHE FUNCTIES Kern : Logaritmen a) D t 5 t (D in grammen ; t in dagen) D 5 9 gram b) 5 t t 6 t log 6 log 6 log a) log9 9 b) 5 log5 5 5 5 c) log 5 5 d) 5 e loge 7 e e 7 7 e) log 5 5

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 8 Voorkennis: Sinusfuncties ladzijde 9 V- Uit 8 radialen volgt 8 radialen Je krijgt dan de volgende tael: V-a V-a 8 graden 6 9 8 radialen O 6 6 7 8 9 Aflezen:,,,, c Aflezen:, d Aflezen:, e Aflezen: O Aflezen:,,,

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Periodieke functies Voorkennis: Sinusfuncties ladzijde V-a De omtrek van de eenheidscirkel is π = π. Hierij hoort een hoek van zowel π radialen als 0. Dus 80 komt overeen met π radialen. V-a

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

10e editie Inhoudsopgave leerjaar 6

10e editie Inhoudsopgave leerjaar 6 10e editie Inhoudsopgave leerjaar 6 Inhoudsopgave Deel 6 vwo A Hoofdstuk 1: Samengestelde functies Voorkennis: Differentiëren 1-1 Machtsfuncties 1-2 Machtsfuncties differentiëren 1-3 Wortelfuncties en

Nadere informatie

11 e editie. Inhoudsopgaven VWO 5

11 e editie. Inhoudsopgaven VWO 5 11 e editie Inhoudsopgaven VWO 5 Inhoudsopgave 5 vwo A 1 Formules herleiden 1-1 Lineaire formules 1-2 Gebroken formules 1-3 Wortelformules 1-4 Machtsformules 1-5 Gemengde opdrachten 2 Statistiek (op computer)

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. 7 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: functie invoerwaarde

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE Vaardigheden 1: Informatievaardigheden X X : Onderzoeksvaardigheden

Nadere informatie

9.1 Logaritmische en exponentiële vergelijkingen [1]

9.1 Logaritmische en exponentiële vergelijkingen [1] 9.1 Logaritmische en eonentiële vergelijkingen [1] Voor logaritmen gelden de volgende rekenregels: (1) log( ab) log( a) log( b) g g g () g g g (4) (3) g n g (5) g log() = y volgt = g y Voorbeeld: a log

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties Hoofdstuk - Machtsfuncties Voorkennis: Functies en symmetrie ladzijde 9 V-a Kies als vensterinstelling voor je GR ijvooreeld X en Y en voer in Y = X X + Je krijgt: + = 0, dan D = ( ) = en = = = + = of

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

extra oefeningen HOOFDSTUK 4 VMBO 4

extra oefeningen HOOFDSTUK 4 VMBO 4 extra oefeningen HOOFDSTUK 4 VMBO 4 1. a. Teken in één assenstelsel de grafieken bij de formules y = 4x - 3 en y = 7 - x b. Bereken de coördinaten van het snijpunt c. Teken in hetzelfde assenstelsel de

Nadere informatie

Reëelwaardige functies van één of meer reële veranderlijken

Reëelwaardige functies van één of meer reële veranderlijken Reëelwaardige functies van één of meer reële veranderlijken Functie en scalaire functie Relatie van A naar B A B = {(, ) A & B} Een relatie van A naar B is functie als verschillende beelden zelfde origineel

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

EERSTE AFGELEIDE TWEEDE AFGELEIDE

EERSTE AFGELEIDE TWEEDE AFGELEIDE Lesrief EERSTE AFGELEIDE etreme waarden raaklijn normaal TWEEDE AFGELEIDE uigpunten 6/7Np GGHM03 Inleiding Met ehulp van de grafische rekenmachine kun je snel zien of de grafiek daalt of stijgt. Het horizontaal

Nadere informatie

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 Periodieke functies 2 1.1 Op verkenning 2 1.2 Periodieke functie 2 1.3 Periode-interval, evenwichtslijn en amplitude 4 1.4 De perioderechthoek 4 1.5 Oefeningen

Nadere informatie

10e editie Inhoudsopgave leerjaar 5

10e editie Inhoudsopgave leerjaar 5 10e editie Inhoudsopgave leerjaar 5 2 Inhoud 5 havo A Blok 1 Analyse Hoofdstuk 1 Allerlei formules 10 Voorkennis 12 1-1 Recht evenredig en omgekeerd evenredig 14 1-2 Formules met breuken 16 1-3 Formules

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie domein subdomein in CE moet in SE mag in SE A Vaardigheden A1: Informatievaardigheden A2:

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds 4. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

Dictaat Rekenvaardigheden. Faculteit Wiskunde en Informatica

Dictaat Rekenvaardigheden. Faculteit Wiskunde en Informatica Dictaat Rekenvaardigheden Faculteit Wiskunde en Informatica 7 mei 007 Voorwoord Voorwoord In het middelbaar onderwijs hebben zich de laatste jaren grote veranderingen voltrokken: de tweede fase met de

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

10 log sin 20. Naam:

10 log sin 20. Naam: 10 log 10 80 24sin 20 Naam: 1 Inhoud Voorbereiding op het examen 3 Onderwerpen in grote lijnen 4-9 LOC-methode 9 Tips voor het examen 10 Vergelijkingen van parabolen 11 Planning opgaven examenbundel 12-15

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Functies. Verdieping. 6N-3p gghm

Functies. Verdieping. 6N-3p gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

VIDEO 4 4. MODULUSVERGELIJKINGEN

VIDEO 4 4. MODULUSVERGELIJKINGEN VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook

Nadere informatie

Vergelijkingen van cirkels en lijnen

Vergelijkingen van cirkels en lijnen Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen

Nadere informatie

Extra oefeningen goniometrische functies. Juist of fout? Leg uit. Indien fout, volstaat het een tegenvoorbeeld te geven. ...

Extra oefeningen goniometrische functies. Juist of fout? Leg uit. Indien fout, volstaat het een tegenvoorbeeld te geven. ... Extra oefeningen goniometrische functies Oefening 1: Juist of fout? Leg uit. Indien fout, volstaat het een tegenvoorbeeld te geven. a. Elke periodieke functie heeft een (kleinste) periode. b. Er bestaat

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

WISKUNDE B HAVO NIEUW EXAMENPROGRAMMA VAKINFORMATIE STAATSEXAMEN 2017 V15.12.0

WISKUNDE B HAVO NIEUW EXAMENPROGRAMMA VAKINFORMATIE STAATSEXAMEN 2017 V15.12.0 WISKUNDE B HAVO NIEUW EXAMENPROGRAMMA VAKINFORMATIE STAATSEXAMEN 2017 V15.12.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk

Nadere informatie

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B Leerstof voortentamen wiskunde B In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde B op havo niveau te beginnen met het voortentamen van juli 2016. Deze specificatie

Nadere informatie

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f() = Differentiequotiënt van f() op [0, 3] = y f (3) f (0) 6 0 30 30 y 1 16.1

Nadere informatie

buigpunt (0,0) randpunt (0,0) domein [0, > asymptoot y=0 snijpunt y-as (0,1) bereik <0, >

buigpunt (0,0) randpunt (0,0) domein [0, > asymptoot y=0 snijpunt y-as (0,1) bereik <0, > De standaardfuncties: = = = Parabool top (0,0) buigpunt (0,0) randpunt (0,0) domein [0, > = f ( ) = = log( ) hyperbool vert. asymptoot =0 hor. asymptoot y=0 asymptoot y=0 snijpunt y-as (0,) bereik

Nadere informatie

Hoofdstuk 3 - Differentiëren

Hoofdstuk 3 - Differentiëren Hoofdstuk - Differentiëren Moderne wiskunde 9e editie vwo B deel Voorkennis: Mahten en differentiëren ladzijde 7 6 V-a ( ) ( ) 8 f d e ( ) g 5 ( ) 6 6 ( 9 ) 9 ( ) ( ) 6 6 5 5 6 5 6 6 5 5 9 h ( ) 8 ( )

Nadere informatie

Wiskunde in de profielen

Wiskunde in de profielen Wiskunde in de profielen Wiskunde in de profielen Wiskunde staat los van de rekentoets Alle leerlingen doen de rekentoets deze telt voor VWO mee in zak-slaag-regeling C&M Wiskunde C (of A) E&M Wiskunde

Nadere informatie

Dictaat Rekenvaardigheden. Loek van Reij

Dictaat Rekenvaardigheden. Loek van Reij Dictaat Rekenvaardigheden Loek van Reij 0 maart 006 i ii Voorwoord In het middelbaar onderwijs hebben zich de laatste jaren grote veranderingen voltrokken: de tweede fase met de daaraan verbonden profielkeuze

Nadere informatie

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw

Nadere informatie

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie.

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. 14.0 Voorkennis De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. Evenwichtsstand = (min + max)/2 = (-100 + 300)/2 = 100 Amplitude = max evenw.

Nadere informatie

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B Leerstof voortentamen wiskunde B In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde B op havo niveau te beginnen met het voortentamen van december 2017. Deze specificatie

Nadere informatie

Hoofdstuk 4 - Periodieke functies

Hoofdstuk 4 - Periodieke functies Hoofdstuk - Periodieke functies ladzijde 98 V-a Na seconden. Het hart klopt c, millivolt = slagen per minuut. V-a Ja, met periode ; nee; misschien met periode. Evenwichtsstand y = ; -; y =. Amplitude is

Nadere informatie

V6 Programma tijdens de laatste weken

V6 Programma tijdens de laatste weken V6 Programma tijdens de laatste weken Datum ma. 18-4-11 di. 19-4-11 ma. 5-4-11 di. 6-4-11 ma. -5-11 di. 3-5-11 ma. 9-5-11 di. 10-5-11 Activiteit 1. Differentiëren. Vergelijkingen oplossen e Paasdag 3.

Nadere informatie

WISKUNDE B VWO. Syllabus bij het conceptexamenprogramma Werkversie 2

WISKUNDE B VWO. Syllabus bij het conceptexamenprogramma Werkversie 2 WISKUNDE B VWO Syllabus bij het concepteamenprogramma Werkversie September 01 Colofonpagina: Alle rechten voorbehouden. Alles uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

2012 I Onafhankelijk van a

2012 I Onafhankelijk van a 0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as

Nadere informatie

exponentiële verbanden

exponentiële verbanden exponentiële verbanden . voorkennis Procenten en vermenigvuldigingsfactoren Procentuele toename met p%: g = + p 00 p = ( g ) 00 Procentuele afname met p%: g = p 00 p = ( g) 00 De constante factor In 859

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Toegepaste Wiskunde deel 1

Toegepaste Wiskunde deel 1 Toegepaste Wiskunde deel Uitwerkingen etra opgaven hoofdstuk Functies. y f ( ) 4 ( )( ) is minimaal -4 voor 0 y g f ( ) ( ) 4 ( )( ) bestaat wanneer D en B 4, ( )( ) 0, voor het domein en het bereik geldt

Nadere informatie

Eindexamen wiskunde B pilot havo I

Eindexamen wiskunde B pilot havo I Overlevingstijd Als iemand in koud water terecht komt, daalt zijn lichaamstemperatuur. Als de lichaamstemperatuur is gedaald tot 30 ºC ontstaat een levensbedreigende situatie. De tijd die verstrijkt tussen

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename Algebra Anders Parabolen uitwerkingen 1 Versie DD 014 1 Parabolen herkennen opdracht 1. x - -1 0 1 3 y 4 1 0 1 4 9-3 -1 + 1 + 3 +5 toename tt + + + + a) + b) De toename is steeds een nieuwe rand. De randen

Nadere informatie

Hoofdstuk 2 - De kettingregel

Hoofdstuk 2 - De kettingregel Hoofdstuk - De kettingregel ladzijde V-a P ( ) 0 ( 0+ ) 0 0 + 0 0 + 0 60 W + + + a + t voor a 0 a a T u ( r ) r r 8 d R log + V-a u t wordt t en s t u t wordt t en s t 7 V-a A: t ( ) A: t ( ) ( ) 8 8 V-a

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS deel 1 LOTHAR PAPULA 2e druk > ACADEMIC SERVICE inhoud 1 Algemene grondbegrippen 1 1.1 Enkele basisbegrippen in de verzamelingenleer 1 1.1.1 Definitieenbeschrijvingvaneenverzameling

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

WISKUNDE B VWO CONCEPTSYLLABUS CENTRAAL EXAMEN 2018 (BIJ HET NIEUWE EXAMENPROGRAMMA)

WISKUNDE B VWO CONCEPTSYLLABUS CENTRAAL EXAMEN 2018 (BIJ HET NIEUWE EXAMENPROGRAMMA) WISKUNDE B VWO CONCEPTSYLLABUS CENTRAAL EAMEN 018 (BIJ HET NIEUWE EAMENPROGRAMMA) Versie concept t.b.v. veldraadpleging, februari 013 WISKUNDE B VWO Conceptsyllabus centraal eamen 018 Versie concept t.b.v.

Nadere informatie

Hoofdstuk 2 Functies en de GRM. Kern 1 Functies met de GRM. Netwerk Havo B uitwerkingen Hoofdstuk 2, Functies en de GRM 1. 1 a. b Na ongeveer 6 dagen.

Hoofdstuk 2 Functies en de GRM. Kern 1 Functies met de GRM. Netwerk Havo B uitwerkingen Hoofdstuk 2, Functies en de GRM 1. 1 a. b Na ongeveer 6 dagen. Netwerk Havo B uitwerkingen Hoofdstuk, Functies en de GRM Hoofdstuk Functies en de GRM Kern Functies met de GRM a H (dm) 5 Na ongeveer 6 dagen. 6 8 0 t a De functie heeft geen functiewaarde voor X < 0.

Nadere informatie

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00 TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een

Nadere informatie

HAVO wiskunde B checklist 5 HAVO wiskunde B

HAVO wiskunde B checklist 5 HAVO wiskunde B Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO wiskunde B checklist 5 HAVO wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan.

Nadere informatie