Eerste deel van de cursus Algebra

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Eerste deel van de cursus Algebra"

Transcriptie

1 Eerste deel van de cursus Algebra Procentrekenen Toename met p%: groeifactor = 1 + p% Afname met p% : groeifactor = 1 p% Toename in procenten = Afname in procenten = toename beginwaarde afname beginwaarde TLP 1 In november is de prijs van een product X. In december wordt een korting toegekend van p% maar in januari geldt een prijs van X verhoogd met p%. Met hoeveel procent is de prijs van het product gestegen in vergelijking met de prijs van december. A B C p 100 p 100 p 100p 100 p 00p D 100 p Antwoord: D - Prijs in december = X(1 p%) - Prijs in januari = X (1 + P %) Procentuele stijging t.o.v. december = toename waarde in dec = p X(1 p%) X(1 p%) 100 p 00p % X(1 P%) p p 100 p 100 Evenredigheden Twee grootheden waarbij de verhouding van overeenkomstige maatgetallen gelijk is, noemen we recht evenredige grootheden. Rottiers William Pagina 1

2 Twee grootheden waarbij de verhouding van elke twee maatgetallen van de ene grootheid gelijk is aan de omgekeerde verhouding van de overeenkomstige maatgetallen van de andere grootheid, noemen we omgekeerd evenredige grootheden. Als dus een grootheid vermenigvuldigd wordt met r dan wordt de omgekeerd evenredige grootheid vermenigvuldigt met 1 r. TLP 1 Bij een gegeven productie van CO in het menselijk lichaam is de arteriële partieeldruk van CO (pco ) omgekeerd evenredig met de alveolaire ventilatie. Als de alveolaire ventilatie van 5 tot 6,5 liter/minuut toeneemt, dan A zal de arteriële partieeldruk van pco afnemen met 0%; B zal de arteriële partieeldruk van pco afnemen met,5%; C zal de arteriële partieeldruk van pco afnemen met 5%; D kan de wijziging in de arteriële partieeldruk van pco hier niet uit afgeleid worden. De alveolaire ventilatie wordt vermenigvuldigd met 6,5 1,5. Omdat de alveolaire 5 ventilatie omgekeerd evenredig is met de arteriële partieeldruk is de vermenigvuldigheidsfactor bij pco gelijk aan 1 0,8 1,5. Dit is een afname van 0 %. Antwoord: A TLP De concentratie van stof A neemt af met 0%. Dit betekent dat de concentratie vermenigvuldigd wordt met 0,80 ( nl. 1 0%). De concentratie van stof B wordt dan, wegens de omgekeerd evenredigheid, 1 vermenigvuldigd met 0,80 1,5. Dit is een toename van 5 %. Antwoord: B. TLP 3 De concentraties van stof A en stof B zijn omgekeerd evenredig. Als de concentratie van stof A afneemt met 50 %, wat gebeurt er dan met stof B? A De concentratie van stof B neemt toe met 50% B De concentratie van stof B neemt toe met 100% Rottiers William Pagina

3 C De concentratie van stof B neemt toe met 5% D De concentratie van stof B neemt toe met 6,5% De concentratie van stof A neemt af met 50%. Dit betekent dat de concentratie vermenigvuldigd wordt met 0,50 ( nl. 1 50%). De concentratie van stof B wordt dan, wegens de omgekeerd evenredigheid, 1 vermenigvuldigd met 0,50. Dit is een toename van 100 %. Antwoord: B De cirkel Middelpuntsvergelijking De cirkel C(M,R) met M(x 1,y 1 ) heeft als vergelijking (x x)²(y 1 y)² 1R² Algemene vergelijking Als a² b² c > 0, dan is x² y² ax by c 0 de vergelijking van een cirkel C (M,R) met M( 4 4 a b, ) en R = a² b² 4c. 4 TLP 1 Wat is de straal van de cirkel met vergelijking x² 6x + y² 4y = 36? A 6 B 7 C 9 D 36 Breng eerst het rechterlid op nul: x² 6x + y² 4y 36 = 0 Co(M) = (3,) en R = 3² ² 36 7 Antwoord: B TLP Eerste bewering: De vergelijking y² - 6y + 1 = 4x stelt een parabool voor met top (-,3). Tweede bewering: De vergelijking y² + x² 6y 4x + 4 = 0 stelt een cirkel voor met straal. A B C Beide beweringen zijn juist. Alleen de eerste bewering is juist. Alleen de tweede bewering is juist. Rottiers William Pagina 3

4 D Beide beweringen zijn onjuist. - y² - 6y + 1 = 4x x y² y D = D b De coördinaat van de top = (, ) = (-, 3) 4a a De eerste bewering is juist. - y² + x² 6y 4x + 4 = 0 is de vergelijking van een cirkel met middelpunt (,3) en straal ² 3² De tweede bewering klopt niet. Antwoord: B TLP 3 Gegeven: de cirkel met vergelijking ax² + ay² + bx + cy = 6 gaat door de punten A(0,3), B(-1,0) en C(3,-3). A a = -1 B b = -5 C c = 1 D c = 5 We drukken uit dat de coördinaten van de punten A, B en C voldoen aan de vergelijking van de cirkel. 9a 3c 6 a b 6 9a 9a 3b 3c 6 3a c a b 6 6a b c c 3a b a 6 6a a 6 3a c 1 b 5 a 1 Antwoord: B Rottiers William Pagina 4

5 De parabool De parabool met vergelijking y = ax²+bx+c - Vorm parabool a > 0: dalparabool of holle zijde naar boven a < 0: bergparabool of holle zijde naar beneden. - Vergelijking symmetrieas: x = b a b D - Coördinaat van de top T = (, ) met D = b² 4ac. a 4a - De nulwaarden zijn de oplossingen van de vkv ax² + bx + c = 0 De parabool met vergelijking x = ay²+by+c De vergelijking van de parabool x = ay² + by + c ontstaat uit de parabool y = ax² + bx + c door x en y te verwisselen. Grafisch komt dit neer op een spiegeling om de eerste deellijn (bissectrice) bij een orthonormaal assenstelsel. Bijgevolg geldt: - De parabool stelt geen functie voor. - Vorm a > 0 : holle zijde naar rechts; a < 0: holle zijde naar links. - Vergelijking symmetrieas: y = b a D b - Co (T) = (, ) 4a a - Snijpunten met de y-as: y-waarden zijn de oplossingen van ay² + by + c= 0. Voorbeeld Bespreek de parabool met vergelijking x = y² 3y - Vorm: holle zijde naar rechts - Vergelijking symmetrieas: y = Co(T) = (, 3 4 ) - Snijpunten met de y-as: (0, 3 17 ) en (0, 3 17 ). Rottiers William Pagina 5

6 TLP 1 We beschouwen de parabool met vergelijking x = y² 3y. Welke uitspraak klopt? A De parabool raakt de y-as. B Deze parabool snijdt de y-as niet. C Deze parabool snijdt de y-as eens boven en eens onder de x-as. D Deze parabool snijdt de y-as in twee punten die allebei boven de x-as liggen. Snijpunt(en) met de y-as: stel x = 0 y² 3y 0(D 17) y of y Bijgevolg snijdt de parabool de y-as eens boven en eens onder de x-as. Antwoord: C TLP In welk kwadrant ligt de top van de vergelijking 3x = 5y² + 6y + 7? A B C D I II III IV De vergelijking van de parabool herleid tot de standaardvorm: Rottiers William Pagina 6

7 Logaritmen Definitie Voor 5 7 x y² y D = D xt 4a b 6 3 yt a De top ligt bijgevolg in het vierde kwadrant. Antwoord: D TLP 3 We beschouwen de twee parabolen met vergelijkingen y = -3x² + x + 5 en y = x² -3x +. Hoeveel punten hebben deze twee gemeenschappelijk? A 0 B 1 C D 4 De gemeenschappelijke punten worden bepaald door het stelsel S: y 3x² x 5 y 3x² x 5 y x² 3x 3x² x 5 x² 3x y 3x² x 5 5x² 4x 3 0 De discriminant van de tweede vergelijking is (-3) = 76 >0. Bijgevolg heeft de vkv twee verschillende oplossingen x 1 en x. Hiermee corresponderen twee y-waarden. Antwoord: C a \ 1 en x geldt: 0 0 De exponent waartoe men a moet verheffen om x te bekomen, noemt men de logaritme van x met grondtal a. De logaritme van x met grondtal a noemen we kortweg de a - logaritme van x en we a noteren log x. In symbolen Rottiers William Pagina 7

8 a 0 x 0 \ 1, : a log x y x a a y Gevolg: log a y Voorbeelden log 7 log3 3 y 3 log log log log log log log 5 log Rekenregels van bewerkingen Voor a \ 1 en x, y geldt: log x y log x log y a a a x log log x log y y a a a a r a log x r log x met r 3 TLP Gegeven log = 0, 301 en log 3 = 0,477 Gevraagd: bepaal log( ) A 1,395 B 1,147 C 1,051 D 0,934 : C 1 45 log(11) log() log log 4 log(9 5) log ² log9 log5 log 10 log3² log() log log3 log10 log log log 3 3log 1 0, , ,051 Deling van veeltermen Algemeen Bij de deling van een veelterm A(x) door een veelterm B(x) geldt steeds: A(x) = B(x).Q(x) + R(x) met gr R(x) < gr B(x) of R(x) = 0. Rottiers William Pagina 8

9 Euclidische deling van veeltermen Voorbeeld 1 4 Als 8x 10x³ 7px² 5qx 9r deelbaar is door 4x³ 7x² 1x 18, bepaal dan p + q + r. (TLP arts - aug 00) smethode : Euclidische deling 4 8x 10 x³ 7 px² 5qx 9r 4 x³ 7 x² 1x x 14 x³ 4 x² 36x x 1 4 x³(4 7) ²(36 p x 5) 9 q x r 4 x³ 7 x² 1x 18 (49 7) p ²(15 x 5) q9 x 18 r Deze deling is opgaand 49 7p 0 p q 0 q 3 9r 18 0 r Bijgevolg is p + q + r =1 Voorbeeld Bepaal de veelterm A(x) van de tweede graad die deelbaar is door x 3, die bij deling door x rest 1 heeft en die bij deling door x + 1 en x 1 dezelfde rest heeft. Stel A(x) = ax² + bx + c. We drukken de voorwaarden uit met behulp van de reststelling. A(3) 0 A() 1 A( 1) A(1) 9a 3b c 0 4a b c 1 a b c a b c Rottiers William Pagina 9

10 9a c 0 4a c 1 b 0 5a 1 c 1 4a b 0 1 a 5 b 0 9 c 5 TLP Antwoord: A(x) = 1 x² Euclidische deling 4 x x px qx r x x x 4 ³ 6 ² 4 ³ 3 ² x x x x x 3 ³ 9 ² 3 1 x³(6 p9) ²(4 x 3) q xr x³ 3 x² 9x 3 (6p 1) x²(4 q1) xr3 Deze deling is opgaand 6p 1 0 p 4q 1 0 q 3 r 3 0 r 3 Bijgevolg: p.(q + r) =.6 = 1 Antwoord: A Rottiers William Pagina 10

11 Goniometrie Driehoeksmeting Goniometrische formules in een driehoek Rechthoekige driehoek Definities In een rechthoekige driehoek ABC geldt: Sinus van een scherpe hoek = lengte van de overstaande rhsz lengte van de schuine zijde Cosinus van een scherpe hoek = lengte van de aanliggende rhsz lengte van de schuine zijde Tangens van een scherpe hoek = lengte van de overstaande rhsz lengte van de aanliggende rhsz In formulevorm: sin = b a sin = c a cos = c a cos = b a tan = b c tan = c b Stelling van Pythagoras a² = b² + c² Willekeurige driehoek In een willekeurige driehoek onderscheiden we de siunus en de cosinusregel. 180 Sinusregel sin sin sin a b c Cosinusregel a² b² c² b.c.cos b² a² c² a.c.cos c² a² b² a.b cos TLP 009 Rottiers William Pagina 11

12 Gegeven: een driehoek met een hoek van 30, een aanliggende zijden met een lengte van cm en van Wat is de lengte van de andere zijde? 30 b c 3 3 cm. Gevraagd: a Cosinusregel: a² = cos 30 = = 7 4 TLP Juli 010 a 7 De afmetingen van een rechthoek zijn 1 en. Bereken de afstand van een hoekpunt tot de diagonaal waartoe het hoekpunt niet behoort. Stelling van Pyth.: D( ) 1 9 D 3 Oppervlakte gearceerde driehoek is enerzijds = D x Anderzijds: 1 Rottiers William Pagina 1

13 Bijgevolg geldt: D x = x 3 Tweede methode Stel de hoek tussen de diagonaal en een zijde (zie tekening). Dan geldt : sin D 3 x Anderzijds: sin x 1 Uit beide resultaten volgt: x = 3 Goniometrische vergelijkingen van de vorm n n p.sin(ax b) q en p.cos(ax b) q met n 1of n 1 p.sin(ax + b) = q of p.cos(ax + b) = q p.sin(ax + b) = q q sin(ax b) p Voor p 1 1 geldt: q 1 p 1 p ax + b = sin k.360 of ax b 180 sin k.360 q q Los de beide vergelijkingen verder op naar x. Omdat het rekentoestel niet toegelaten is zal één hoek een merkwaardige of bijzondere hoek zijn. Analoog voor de p.cos(ax + b) = q Hierbij is het dus nodig volgende tabel van buiten te kennen: Hoek Sin Cos Ook kennis van de sinus- en cosinusformules van verwante hoeken is nodig: Rottiers William Pagina 13

14 sin(180 - x) = sin x sin( x ) = sin x sin( x) = - sin x sin(90 x) = cos x cos (180 x) = cos x cos ( x ) = cos x cos (180 + x ) = cos x cos( 90 x) = sin x Voorbeeld 1 sin(x + 40 ) = 3 sin(x + 40 ) = 3 sin(x 40) sin 60 x k.360 of x k.360 x 0 k.360 of x 80 k.360 x 10 k.180 of x 40 k.180 De vergelijking heeft dus 4 verschillende oplossingen in het interval [0,360 ]: 10, 190, 40, 0. Voorbeeld cos(x 30) 1 1 cos(x 30)( cos 60) x k.360 x 30 k.360 of x 90 k.360 x 15 k.180 of x 45 k.180 Verschillende oplossingen in [0,360 ] zijn: 15,195,135, 315. Antwoord: B Alternatief Rottiers William Pagina 14

15 Zijn de antwoordmogelijkheden hoeken dan kan je soms vlugger het antwoord bepalen door de hoeken te vervangen. x = 10 :.cos(70 ) = 0 x =135 :.cos (300 ) =.cos(-60 ) =.cos 60 = 1 Dus B = oplossing. p.sin (ax + b) = q of p.cos (ax + b) = q Voorbeeld 1 (TLP 010) Vermits de antwoordalternatieven hoeken zijn kan je beter de mogelijkheden nagaan. x = 140 : cos² 450 = cos² 90 = 0 x = 145 : cos² 465 = cos² is geen geen merkwaardige. Hoek 1 1 x = 150 : cos² 480 = cos² 10 = (-cos 60 )² =. 4 x = 155 : cos² 495 = cos² 135 = (- cos 45 ) 1 =. 1 D is de oplossing. Voorbeeld (TLP juli 00) Welke van de volgende waarden voldoet aan de vergelijking: 4sin ²(x 40) 3 A -50 B -0 C 0 Rottiers William Pagina 15

16 D 50 Voorbeeld 3 (TLP 009) Hoeveel oplossingen tussen 0 en 360 heeft de vergelijking sin² x = 1 A 1 B C 4 D 8 1 sin ²x sin x of sin x sin x sin 45 of sin x sin( 45) x 45 k.360 of x 135 k.360 of x 45 k.360 of x 5 k.360 x 30' k.180 of x 6730' k.180 of x 30' k.180 of x 1130' k.180 Verschillende oplossingen : 30 ; 0 30 ; ; ; ; , ; 9 30 Antwoord: D Verdubbelingsformules sin x = sinx.cos x cos x = cos²x sin²x = 1 - sin² x = cos² x 1 Afgeleide formules sin 4x = sinx.cos x cos 4x = 1 sin² x = cos² x 1 1 cos 4x = sin² x 1 + cos 4x = cos² x sin 6x = sin 3x. cos 3x cos 6x = 1 sin² 3x = cos² 3x 1 1 cos 6x = sin² 3x 1 + cos 6x = cos² 3x Rottiers William Pagina 16

17 1 cos x sin ²x 1 cos x cos ²x 1 cos 4x sin ²x 1 cos 4x cos ²x. Formules van Simpson De formules van Simpson vormen een som of product van sinus of cosinus om in een product. p q p q sin p + sin q = sin.cos p q p q sin p sin q cos.sin p q p q cos p cos q cos.cos p q p q cos p cos q sin.sin Goniometrische functies Algemeen In de vorm f(x) = a.sin[b(x-c)] + d bepalen de coëfficiënten a, b, c en d de kenmerken van de grafiek. - De amplitude is a. - Het bereik van f is [- a +d, a + d ]. - De periode is b. - Het fasepunt van de grafiek van f is (c,d). - De evenwichtslijn van de grafiek van f is de rechte y = d. - Als a negatief is, is de grafiek gespiegeld om de evenwichtslijn. Rottiers William Pagina 17

18 TLP geneeskunde 1997 Een volwassene ademt gemiddeld 1 keer per minuut. De luchtstroomsnelheid (in liter/seconde) wordt bij het inademen positief en bij het uitademen negatief gerekend. De luchtstroomsnelheid kan benaderd worden met de volgende sinusoïde. Bij hardlopen wordt de periode van de ademhalingscyclus gedeeld door 3 en de luchtstroomsnelheid wordt vier keer zo groot. Gevraagd: a. Bepaal het functievoorschrift van de getekende sinusoïde. b Bepaal het functievoorschrift van de sinusoïde bij hardlopen. a De functie is van de vorm f(x) = a.sin(bx + c) + d Het fasepunt is de oorsprong. Bijgevolg is c = d = 0. a = 0,5 (amplitude) Periode = 5 = b. b 5 Dus f(x) = 0,5.sin( 5.x) b amplitude = 4 x 0,5 = periode = 5 6 s b 3 5 Bij hardlopen: f(x) =.sin( 6 5.x) Rottiers William Pagina 18

19 De functie is van de vorm f(x) = a.sin(bx + c) + d Het fasepunt is de oorsprong. Bijgevolg is c = d = 0. a = 50 (amplitude) Periode = 1 = b. b Na inspanning: amplitude = 4 x 50 = 1000 De periode is omgekeerd evenredig met de frequentie. Als de frequentie verdubbelt, dan wordt de periode gehalveerd. Periode = 1 b 4 Dus f(x) = 1000.sin 4t Antwoord: B Rottiers William Pagina 19

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

1 Overzicht voorkennis algebraïsch rekenen

1 Overzicht voorkennis algebraïsch rekenen 1 Overzicht voorkennis algebraïsch rekenen 1 Merkwaardige producten, ontbinden in factoren 1.1 Merkwaardige producten ( ) ( ) a+ b = a + ab+ b a b = a ab+ b ( ) ( ) a+ b = a + ab+ ab + b a b = a ab+ ab

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008 Wiskunde 007- //008 Vraag Veronderstel dat de concentraties in het bloed van stof A en van stof B omgekeerd evenredig zijn en positief. Als de concentratie van stof A met p % toeneemt, dan zal de concentratie

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2009

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2009 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 009 VK : WISKUNE TUM : VRIJG 0 JULI 009 TIJ : 09.45.45 UUR ------------------------------------------------------------------------------------------------------------------------

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Leerlijnen REKENEN WISKUNDE (BB)

Leerlijnen REKENEN WISKUNDE (BB) Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 15 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld.

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Wiskunde juli 2009 Laatste aanpassing: 29 juli 2009. Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Vraag 1 Wat is de top van deze parabool 2 2. Vraag

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 007 VK : WISKUNE TUM: WOENSG 04 JULI 007 TIJ : 09.45.5 UUR (TOELTING VWO/HVO/NTIN) 09.45.45

Nadere informatie

1 Vlaamse Wiskunde Olympiade: tweede ronde

1 Vlaamse Wiskunde Olympiade: tweede ronde Vlaamse Wiskunde Olympiade: tweede ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde Analytische Meetkunde Lieve Houwaer, Unit informatie, team wiskunde . VECTOREN EN RECHTEN.. Vectoren... Het vectorbegrip De verzameling punten van het vlak noteren we door π. Kies in het vlak π een vast

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 Periodieke functies 2 1.1 Op verkenning 2 1.2 Periodieke functie 2 1.3 Periode-interval, evenwichtslijn en amplitude 4 1.4 De perioderechthoek 4 1.5 Oefeningen

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

Wiskunde. Als de veelterm P (x) = x 2 + ax + a deelbaar is door x + b, met a en b reele getallen, dan geldt. <A> b 6= 1 en a = b2 b 1

Wiskunde. Als de veelterm P (x) = x 2 + ax + a deelbaar is door x + b, met a en b reele getallen, dan geldt. <A> b 6= 1 en a = b2 b 1 Vraag 1 Als de veelterm P (x) = x 2 + ax + a deelbaar is door x + b, met a en b reele getallen, dan geldt b 6= 1 en a = b2 b 1 b 6= 1 en a = b b 1 b 6= 1 en a = b 6= 1 en a = b b 1 b 2

Nadere informatie

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14 INHOUD 1 De cirkel 9 1.1 Definities en benamingen 9 Oefeningen 11 1.2 Cirkel door drie punten 13 Oefeningen 14 1.3 Onderlinge ligging van een rechte en een cirkel 20 1.3.1 Aantal snijpunten van een rechte

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde. Vlaamse Wiskunde Olympiade 995-996 : Tweede Ronde De tweede ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

1. Invoering van de goniometrische cirkel

1. Invoering van de goniometrische cirkel . Invoering van de goniometrische cirkel We beschouwen de eenheidscirkel. Beschouwen we eveneens twee loodrechte assen door O. We duiden (E o, E δ ) aan : een orthonormale basis van het vlak. We kunnen

Nadere informatie

2012 I Onafhankelijk van a

2012 I Onafhankelijk van a 0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

Goniometrische functies

Goniometrische functies Goniometrische functies gonè (Grieks) = hoek metron (Grieks) = maat Goniometrie, afkomstig van de Griekse woorden voor hoek en maat, betekent letterlijk hoekmeetkunde. Daarmee wordt aangegeven dat het

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 13 september 2017 dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 13 september 2017 dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 13 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde Vlaamse Wiskunde lmpiade 2007-2008: tweede ronde 1 Jef mit cola met whisk in de verhouding 1 : In whisk zit 40% alcohol Wat is het alcoholpercentage van de mi? () 1, (B) 20 (C) 25 () 0 (E) 5 2 ver jaar

Nadere informatie

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1 Herhalingsoefeningen Tweedegraadsfuncties Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1

Nadere informatie

klas 3 vwo Checklist VWO klas 3.pdf

klas 3 vwo Checklist VWO klas 3.pdf Checklist 3 VWO wiskunde klas 3 vwo Checklist VWO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de grafiek

Nadere informatie

Hoofdstuk 10 Meetkundige berekeningen

Hoofdstuk 10 Meetkundige berekeningen Hoofdstuk 10 Meetkundige berekeningen Les 0 (Extra) Aant. Voorkennis: Hoeken en afstanden Theorie A: Sinus, Cosinus en tangens O RHZ tan A = A RHZ O RHZ sin A = SZ A RHZ cos A = SZ Afspraak: Graden afronden

Nadere informatie

Goniometrie. Dr. Caroline Danneels Dr. Paul Hellings

Goniometrie. Dr. Caroline Danneels Dr. Paul Hellings Goniometrie Dr. Caroline Danneels Dr. Paul Hellings 1 Hoeken 1.1 De goniometrische cirkel De goniometrische cirkel wordt steeds gedefinieerd in een orthonormaal assenkruis. Het is een cirkel met het middelpunt

Nadere informatie

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B Leerstof voortentamen wiskunde B In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde B op havo niveau te beginnen met het voortentamen van december 2017. Deze specificatie

Nadere informatie

Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5

Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 16 januari 2015 Tijd: 13.30 16.30 uur Aantal opgaven: 5 Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2013

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2013 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 2013 VK : WISKUNE TUM : WOENSG 03 JULI 2013 TIJ : 09.45 11.25 UUR (MULO III kandidaten) 09.45

Nadere informatie

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht Hoofdstuk 1 : Hoeken -1 - Complementaire hoeken ( boek pag 7) Twee hoeken zijn complementair als... van hun hoekgrootten... is. Supplementaire hoeken ( boek pag 7) Twee hoeken noemen we supplementair als...

Nadere informatie

Uitwerkingen goniometrische functies Hst. 11 deel B3

Uitwerkingen goniometrische functies Hst. 11 deel B3 Uitwerkingen goniometrische functies Hst. deel B. f() = sin(-) = -sin() g() = cos(-) = cos () h() = sin( + ) = cos() j() = cos( + ) = -sin() k() = sin ( + ) = -sin () l() = cos ( + ) = -cos (). Zie ook

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters, stelsels 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

Inleiding goniometrie

Inleiding goniometrie Inleiding goniometrie We bekijken de volgende twee hellingen: 1 2 Duidelijk is dat de tweede helling steiler is dan de eerste helling. Ook zien we dat hellingshoek 2 groter is dan hellingshoek 1. Er bestaat

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Wiskunde D voor HAVO. Periodieke functies Gert Treurniet

Wiskunde D voor HAVO. Periodieke functies Gert Treurniet Wiskunde D voor HAVO Periodieke functies Gert Treurniet . Inleiding Een toon is een trilling. De trilling van lucht brengt ons trommelvlies in beweging. De beweging van ons trommelvlies nemen we waar als

Nadere informatie

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel.

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Raaklijnen Verkennen Raaklijnen Inleiding Verkennen Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Uitleg Raaklijnen Uitleg Opgave 1 Bekijk de Uitleg. a) Wat is de vergelijking

Nadere informatie

Blok 5 - Vaardigheden

Blok 5 - Vaardigheden Extra oefening - Basis B-a De richtingscoëfficiënt is 7 = 8 =. 7 x = en y = 7 invullen in y = x + b geeft 7 = + b 7 = + b dus b =. Een vergelijking is y = x. b De richtingscoëfficiënt is =. 8 5 x = 8 en

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie

Nadere informatie

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat.

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat. Het gevolgde leerplan is D/2002/0279/047. In de onderstaande tabel vind je een overzicht van de doelstellingen en waar ze in Delta Nova 4a en 4b (leerweg 5) terug te vinden zijn. B = basisdoelstelling

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 8. M. van der Pijl. Transfer Database

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 8. M. van der Pijl. Transfer Database Noorderpoortcollege School voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 Periode 8 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Rekenen met procenten en evenredigheden Oefening Een patiënt had vorig jaar een cholesterol van 60 mg/dl. Een jaar later is zijn cholesterol met 5% toegenomen. Wat is zijn cholesterol

Nadere informatie

Paragraaf 12.1 : Gonio vergelijkingen en herleidingen

Paragraaf 12.1 : Gonio vergelijkingen en herleidingen Hoofdstuk 12 Goniometrische Formules (V5 Wis B Pagina 1 van 8 Paragraaf 12.1 : Gonio vergelijkingen en herleidingen Les 1 Gonio vergelijkingen oplossen met herleidregels Definitie Er zijn een aantal omschrijfregels

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 maandag 15 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 maandag 15 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 017 tijdvak 1 maandag 15 mei 13:30-16:30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 14 vragen. Voor dit examen zijn maximaal 69 punten te behalen. Voor elk

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Tweede ronde De tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 008 VK : WISKUNE TUM : ONERG 0 JULI 008 TIJ : 09.45.5 UUR (MULO-III KNITEN) 09.45.45 UUR (MULO-IV

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

Eindexamen vwo wiskunde B 2013-I

Eindexamen vwo wiskunde B 2013-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn Codelijst: : de dynamisch gegenereerde waarde van INVUL: invuloefening ( Short answer ) KLEUR: gebruik kleur! MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn MC: multiple

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: sinusfuncties 13/7/2014. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: sinusfuncties 13/7/2014. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: sinusfuncties 13/7/2014 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Uitwerkingen tentamen Wiskunde B 16 januari 2015

Uitwerkingen tentamen Wiskunde B 16 januari 2015 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Uitwerkingen tentamen Wiskunde B 6 januari 5 Vraag a f(x) = (x ) f (x) = (x ) = 6 (x ) Dit geeft f () = 6 = 6. y = ax + b met y =, a = 6 en x = geeft = 6 + b b

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Eindexamen havo wiskunde B pilot 0-II Beoordelingsmodel Windenergie maximumscore Als de 60 000 gigawattuur windenergie 0% van het totaal is, dan is de voorspelde totale energiebehoefte maximaal Het totaal

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ² 1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

10 log sin 20. Naam:

10 log sin 20. Naam: 10 log 10 80 24sin 20 Naam: 1 Inhoud Voorbereiding op het examen 3 Onderwerpen in grote lijnen 4-9 LOC-methode 9 Tips voor het examen 10 Vergelijkingen van parabolen 11 Planning opgaven examenbundel 12-15

Nadere informatie

Paragraaf 7.1 : Eenheidscirkel en radiaal

Paragraaf 7.1 : Eenheidscirkel en radiaal Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2005-I

Eindexamen wiskunde B1-2 vwo 2005-I Eindexamen wiskunde B- vwo 005-I 4 Beoordelingsmodel Inademen Maximumscore,5t, 6( e ), 4,5t (: e 0,90) beschrijven hoe de oplossing van deze vergelijking (met de GR) kan worden gevonden t 0,9 ( t 0,9)

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

Tweede graadsfuncties

Tweede graadsfuncties CAMPUS BRUSSEL Opfriscursus Wiskunde Tweede graadsfuncties Deel 1: kwadratische vergelijkingen en ongelijkheden Tweede-graadsfuncties 1 Gevraagd: hoeveel moet je aan het reisagentschap betalen als er 20

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,

Nadere informatie

wiskunde B vwo 2017-I

wiskunde B vwo 2017-I wiskunde vwo 017-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek,

Nadere informatie