Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli dr.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr."

Transcriptie

1 Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne ( Leen Goyens (

2 1. Inleiding Dit oefeningenoverzicht is opgebouwd vanuit de vragen van de vorige examens, gerangschikt per thema. De vragen komen van diverse sites. Vooral de site van Leen Goyens was handig en het atheneum van Veurne heeft een prachtige website met uitgewerkte antwoorden en extra oefeningen. 2. Oefeningen uit vorige examens 2001 Augustus Vraag 4 (ook 2007 Vraag 4) Als x 4 + 4x 3 + 6px 2 + 4qx + r deelbaar is door x 3 + 3x 2 + 9x + 3, dan is p.(q+r) gelijk aan A. 12 B. 15 C. 18 D Juli Vraag 2 Als 8x 4 +10x 3 7px 2-5qx+9r deelbaar is door 4x 3 +7x 2 21x 18, dan is p+q+r gelijk aan: A. 12 B. 13 C. 14 D Augustus Vraag 10 Gegeven is de vergelijking van een parabool: y = ax 2 + ax + 4 Als x = 2 een nulpunt is van deze functie, hoeveel bedraagt dan de waarde van parameter a? A. -2/3 B. 2/3 C. -3/2 D. 3/2 dr. Brenda Casteleyn Page 2

3 2010 Augustus Vraag 8 als x 3 +px 2 qx 4 deelbaar is door x2 x+2. Waaraan is p q dan gelijk? A. -1 B. 1 C. 3 D Augustus Vraag 4 We beschouwen de volgende veeltermfunctie: f(x)=x 4 19x Van deze veeltermfunctie is geweten dat ze x=4 en x=-4 als nulpunten heeft. De veeltermfunctie is dan deelbaar door: A. x²-3 B. x²+3 C. x²+4 D. x² Augustus Vraag 9 versie 1 We beschouwen de volgende veeltermfunctie: y = x 3 +ax 2 +9x. Men weet dat deze functie slechts een nulpunt heeft. Welke waarde kan parameter A hebben? A. -6>a>6 B. -6<a<6 C. - 6<a< 6 D. a=-3 en a= Augustus Vraag 9 versie 2 We beschouwen de volgende 2 de graadsfunctie y = 2x 2 +ax+18. Men weet dat deze functie slechts 1 nulpunt heeft. Welke waarde kan parameter a dan hebben A. a=0 B. a=-3 en a=+3 C. a=-6 en a=+6 D. a=-12 en a=+12 dr. Brenda Casteleyn Page 3

4 2012 Juli Vraag 3 Gegeven de volgende gelijkheid: = + Hoeveel bedraagt de som (p+q) A. -2 B. 1 C. 2 D Augustus Vraag 2 versie 1 Gegeven is de volgende gelijkheid tussen twee breuken: = Hoeveel bedraagt de waarde van de uitdrukking: p.q + q A. -2 B. 0 C. 2 D Augustus Vraag 2 versie 2 Gegeven is de volgende gelijkheid tussen twee breuken: = Hoeveel bedraagt de waarde van de uitdrukking: p.q + q A. -6 B. 0 C. 6 D Augustus Vraag 2 versie 3 Gegeven is de volgende gelijkheid tussen twee breuken: = Hoeveel bedraagt de waarde van de uitdrukking: p.q + q dr. Brenda Casteleyn Page 4

5 A. -6 B. 0 C. 6 D Juli Vraag 10 We beschouwen drie rechten: y + x = 3 2x-y = 3 y - mx =5 Voor welke waarde van m hebben deze drie rechten een gemeenschappelijk snijpunt? A. 2 B. 1 C. -1 D Augustus Vraag 10 We beschouwen de volgende drie functies van de eerste graad: 2x - 7y = 23 4x + 5y = -11 m.x + y = 2.m - 3 Als deze drie rechten een gemeenschappelijk snijpunt hebben, hoeveel bedraagt dan de parameter m? A. m = 0 B. m =1 C. m = 2 D. m = Juli Vraag 1 De rest na deling van veelterm A(x) door (x+1) is 2. De rest na deling vabn veelterm A(x) door (x-3) is 10. Hoeveel bedraagt de rest na deling van veelterm A(x) door x 2 2x 3 A. 20 dr. Brenda Casteleyn Page 5

6 B. 2x + 4 C. 2x + 10 D. -2x Augustus Vraag 1 versie 1 De rest na deling van veelterm van de tweede graad A(x) door (x-1) is -2. De rest na deling van veelterm A(x) door (x 2-1) is 2x 4. Hoeveel bedraagt de rest na deling van veelterm A(x) door (x+1)? A. -6 B. -4 C. -5 D Augustus Vraag 1 versie 2 De rest na deling van veelterm van de derde graad A(x) door (x-1) is -2. De rest na deling van veelterm A(x) door (x 2-1) is 2x 4. Hoeveel bedraagt de rest na deling van veelterm A(x) door (x+1)? A. -6 B. -4 C. -5 D Augustus Vraag 8 Gegeven zijn de vergelijking van een parabool en van een rechte: Y = mx + 1/3 Y = -x 2 + x + 2 Voor hoeveel waarden van m heeft de rechte een raakpunt aan de parabool? A. 0 B. 1 C. 2 D. Meer dan Juli Vraag 8 Gegeven is een stelsel van twee vergelijkingen met een parameter a. x + ay = 2 dr. Brenda Casteleyn Page 6

7 ax + y = a - 1 Dit stelsel is oplosbaar als en slechts als: A. a ϵ R B. a -1 C. a 1 D. a ϵ ]-1;1[ dr. Brenda Casteleyn Page 7

8 3. Oplossingen oefeningen 2001 Augustus Vraag 4 (ook opgave van 2007 augustus) Gegeven: x 4 + 4x 3 + 6px 2 + 4qx + r is deelbaar is door x 3 + 3x 2 + 9x + 3 Gevraagd: p.(q+r) =? Vermits de veelterm deelbaar is, geldt: F(x) = quotiënt. g(x) waarbij het quotiënt = (x+a) Dus: x 4 + 4x 3 + 6px 2 + 4qx + r = (x+a)( x 3 + 3x 2 + 9x + 3) Werk het rechterlid uit: x 4 + 4x 3 + 6px 2 + 4qx + r = x 4 + 3x 3 + 9x 2 + 3x + ax 3 +3ax 2 + 9ax + 3a x 4 + 4x 3 + 6px 2 + 4qx + r = x 4 +(3+a)x 3 + (9+3a)x 2 + (3+9a)x + 3a Vergelijk nu de beide leden (let op de kleurtjes): 4 = 3+a a =1 6p = 9+3a p =2 4q = 9+3a q =3 r = 3a r = 3 Dus dan is p(q+r) = 2(3+3) =12 Antwoord A Je kan dit ook oplossen door een staartdeling uit te voeren en de rest dan gelijk te stellen aan Juli Vraag 2 Gegevens: 8x 4 +10x 3 7px 2-5qx+9r deelbaar is door 4x 3 +7x 2 21x 18, Gevraagd: p+q+r =? Vermits de veelterm deelbaar is, geldt: dr. Brenda Casteleyn Page 8

9 F(x) = quotiënt. g(x) en neem voor het quotiënt = (2x+a) want als je (x+a) neemt kan je nooit aan 8x 4 komen. Dus 8x 4 +10x 3 7px 2-5qx+9r = (2x+a)( 4x 3 +7x 2 21x 18) Werk het rechterlid uit: 8x 4 +10x 3 7px 2-5qx+9r = 8x x 3-42x 2 36x + 4ax 3 +7ax 2-21ax-18a 8x 4 +10x 3 7px 2-5qx+9r = 8x 4 + (14+4a)x 3 + (7a-42)x 2 = (-21a+36)x -18a Coëfficiënten gelijk stellen a = 10 a = -1 7a-42 = -7p p = 7-18a = 9r r = 2-21a-36 = -5q q = 3 P+q+r = = 12 Antwoord A Augustus Vraag 10 Gegeven: de vergelijking van een parabool: y = ax 2 + ax + 4 Gevraagd: Als x = 2 een nulpunt is van deze functie, hoeveel bedraagt dan de waarde van parameter a? a.(2) 2 + a = 0 4a + 2a = -4 a = -4/6 a = -2/3 Antwoord A 2010 Augustus Vraag 8 Gegeven: x 3 +px 2 qx 4 deelbaar is door x 2 x+2. Gevra agd: p q =? dr. Brenda Casteleyn Page 9

10 x 3 +px 2 qx 4 = (x+a) (x2 x+2) x 3 +px 2 qx 4 = x 3 +ax 2 x 2 +2x +2a ax x 3 +px 2 qx 4 = x 3 +(a-1)x 2 +(2-a)x +2a Coëfficiënten gelijk stellen: a-1 = p 2-a = q 2a = -4 a = -2 Dus: p = -3 en q = -4 p-q = 1 Antwoord B 2011 Augustus Vraag 4 Gegeven: veeltermfunctie f(x)=x 4 19x heeftx=4 en x=-4 als nulpunten Gevraagd: veeltermfunctie is deelbaar door? (x 4 19x 2 +48) =? (x+4)(x-4) Via Horner: Dus: (x 4 19x 2 +48) = (x+4) (x 3-4x 2-3x+12) Opnieuw Horner op de laatste factor: (x 2-3) Antwoord A 2011 Augustus Vraag 9 versie 1 dr. Brenda Casteleyn Page 10

11 Gegeven: veeltermfunctie: y = x 3 +ax 2 +9x, die slechts één nulpunt heeft. Gevraagd waard van parameter a? = x 3 +ax 2 +9x = x(x 2 +ax+9) Nulpunten: x = o of (x 2 +ax+9) = 0 Maar slechts één nulpunt nl x =0, dus dan mag (x 2 +ax+9) geen nulpunt hebben. Dat is het geval als discriminant negatief is: dus als a 2 36 < 0 of a 2 <36-6<a<6 Antwoord B 2011 Augustus Vraag 9 versie 2 Gegeven: 2 de graadsfunctie y = 2x 2 +ax+18 heeft slechts 1 nulpunt heeft. Gevraagd: waarde van parameter a De functie 2x 2 +ax+18 heeft één nulpunt als discriminant gelijk is aan 0 Dus als a = 0 a 2 =144 of a = 12 en a=-12 Antwoord D 2012 Juli Vraag 3 Gegeven: = + Gevraagd: Hoeveel bedraagt de som (p+q) = + Zet op gelijke noemers: = 2x 2 +3x=p(x 2 +2x+1)+qx+2q 2x 2 +3x=px 2 +2px+p+qx+2q dr. Brenda Casteleyn Page 11

12 2x 2 +3x=px 2 +(2p+q)x+p+2q Stel de coëfficiënten gelijk: p = 2 2p+q = 3 q=-1 P+2q = 0 q=-1 P+q = 2-1 =1 Antwoord B 2012 Augustus Vraag 2 versie 1 Gegeven: = + Gevraagd: p.q + q? Zet rechterlid op gelijke noemer: = = Stel coëfficiënten gelijk aancoëfficienten in linkerlid van gegeven vergelijking: p+q = -6 -p+q+2 = 8 p+2 = -4 p = -6 Dus p+q = -6 wordt: -6 + q = -6 q = 0 p.q + q = = 0 Antwoord B 2012 Augustus Vraag 2 versie 2 Gegeven = + Gevraagd: p.q + q? Zet op gelijke noemers: = = dr. Brenda Casteleyn Page 12

13 Stel de coëfficiënten gelijk aan coëfficienten in linkerlid van gegeven vergelijking: p+q = 6 -p+q+2 = 0 P+2 = 6 0 = 4 Dus p+q q = 6 q =2 En p+q+2 = 0 of = 0 Dus p.q + q = = 10 Antwoord D 2012 Augustus Vraag 2 versie 3 Gegeven: = + Gevraagd: p.q + q? Zet op gelijke noemer: = = Stel coëfficiënten gelijk aan coëfficienten in linkerlid van gegeven vergelijking: p + q = -6 -p + q -2 = 0 p 2 = -6 p = -4 Dan wordt p + q = q = -6 q = -2 Test: -p + q -2 = = 0 p.q + q = 6 Antwoord C Juli Vraag 10 Gegeven: drie rechten: y + x = 3 2x-y = 3 y - mx =5 dr. Brenda Casteleyn Page 13

14 Gevraagd: Voor welke waarde van m hebben deze drie rechten een gemeenschappelijk snijpunt? Bepaal het snijpunt van de eerste twee rechten y = -x +3 = 2x > x = 2. dus y = of y = = 1 Vul dit punt in in de derde vergelijking om m te vinden: y - mx =5 --> 1 - m.2 = 5 dus m = -2 Antwoord D Augustus Vraag 10 Gegeven: drie functies van de eerste graad: 2x - 7y = 23 4x + 5y = -11 m.x + y = 2.m - 3 Gevraagd: Als deze drie rechten een gemeenschappelijk snijpunt hebben, hoeveel bedraagt dan de parameter m? Bepaal het snijpunt van de eeste twee rechten: y = = (23-2x).5 = (-4x-11)(-7) x = 28x = 38x --> x =1 Bepaal y: (23-2)/-7 = (-4-11)/5 = -3 Vul nu de waarde van x en y in in de derde vergelijking om m te vinden: m.x + y = 2.m - 3 dr. Brenda Casteleyn Page 14

15 m.1-3 = 2.m -3 m =0 Antwoord A 2014 Juli Vraag 1 Gegeven: De rest na deling van veelterm A(x) door (x+1) is 2. De rest na deling van veelterm A(x) door (x-3) is 10. Gevraagd: Hoeveel bedraagt de rest na deling van veelterm A(x) door x 2 2x 3 Bereken de rest van veelterm A(x) = x 2 + bx + c bij deling door x+1 met regel van Horner: dr. Brenda Casteleyn Page 15

16 a b c -1 -a -b+a a b-a c-b+a Deze rest: c-b+a = 2 (gegeven) Bereken de rest van veelterm A(x) = x 2 + bx + c bij deling door x-3 met regel van Horner: a b c 3 3a 3b+9a a b+3a c+3b+9a Deze rest: c+3b+9a = 10 (gegeven) We vinden nu twee vergelijkingen: c b + a = 2 c + 3b + 9a = 10 Door de eerste vergelijking af te trekken van de eerste kunnen we c elimineren: 4b +8a = 8 of b+2a = 2 Door de eerste vergelijking met 3 te vermenigvuldigen en daarna op te tellen bij de tweede kunnen we b elimineren: 4c +12a = 16 of c+3a =4 We delen de veelterm nu door x 2-2x -3 : ax 2 + bx +c x 2 2x -3 ax 2 2ax -3a a (b+2a)x +(c+3a) We weten al dat b+2a = 2 en c+3a = 4; dus vinden we als rest: 2x + 4 Antwoord B 2014 Augustus Vraag 1 versie 1 Gegeven: De rest na deling van veelterm van de tweede graad A(x) door (x-1) is -2. De rest na deling van veelterm A(x) door (x 2-1) is 2x 4. Gevraagd: Hoeveel bedraagt de rest na deling van veelterm A(x) door (x+1)? dr. Brenda Casteleyn Page 16

17 Bereken de rest van veelterm A(x) = x 2 + bx + c bij deling door x-1 met regel van Horner: a b c 1 a b+a a b+a c+b+a Deze rest: c+b+a = -2 (gegeven) Bereken de rest van veelterm A(x) = bij deling door x 2-1: ax 2 + bx +c x 2 1 ax 2 -a a bx +(a+c) bx + (a+c) = 2x -4 (gegeven) b = 2 a + c = -4 a + b + c =-2 Deel nu de veelterm door x + 1 ax 2 + bx +c x +1 ax 2 + ax ax + (b-a) (b-a)x + c (b-a)x + b-a a+c-b De rest is dus a+c-b. Invullen met waarden: a+ c = 4 en b = 2 geeft: -4-2 = -6 Antwoord A 2014 Augustus Vraag 1 versie 2 Gegeven: De rest na deling van veelterm van de derde graad A(x) door (x-1) is -2. De rest na deling van veelterm A(x) door (x 2-1) is 2x 4. Gevraagd: Hoeveel bedraagt de rest na deling van veelterm A(x) door (x+1)? Bereken de rest van veelterm A(x) = bij deling door x 2-1: dr. Brenda Casteleyn Page 17

18 ax 3 + bx 2 + cx +d x 2 1 ax 3 -ax ax + b bx 2 bx 2 +(c+a)x + d - b (c+a)x + (b+d) (c+a)x + (b+d) = 2x 4 (gegeven) c + a = 2 b + d =-4 Deel nu de veelterm door x + 1 ax 3 + bx 2 + cx +d x+1 ax 3 + ax 2 ax 2 + (b-a)x + (c+a-b) (b-a)x 2 +cx + d (b-a)x 2 + (b-a)x (c+a-b)x +d (c+a-b)x + c+a-b d+b-(c+a) De rest is dus d + b (c+a). Invullen met waarden: -4-2 = -6 Antwoord A 2014 Augustus Vraag 8 Gegeven zijn de vergelijking van een parabool en van een rechte: Y = mx + 1/3 Y = -x 2 + x + 2 Gevraagd: Voor hoeveel waarden van m heeft de rechte een raakpunt aan de parabool? mx + 1/3 = -x 2 + x + 2 x 2 + (m - 1)x + 1/3 2 = 0 dr. Brenda Casteleyn Page 18

19 x 2 + (m - 1)x -5/3 = 0 Voor raakpunten is discriminant = 0 (m-1) 2 4.(-5/3) = 0 (m-1) 2 = - 20/3 Geen enkele waarde van m voldoet want een negatief getal kan nooit een kwadraat zijn. Antwoord A Juli Vraag 8 Gegeven is een stelsel van twee vergelijkingen met een parameter a. x + ay = 2 ax + y = a - 1 Dit stelsel is oplosbaar als en slechts als? x + ay = 2 ax + y = a - 1 ax + a 2 y = 2a (beide leden vermenigvuldigd met a) ax + y = a - 1 De vergelijkingen van elkaar aftrekken zodat 'ax' wegvalt: a 2 y - y = 2a - (a-1) a 2 y - y = 2a - (a-1) (a 2-1)y = a + 1 y = = = 1/a-1 De noemer mag niet nul zijn, dus a 1 Antwoord C dr. Brenda Casteleyn Page 19

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters, stelsels 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool 11/5/2013. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool 11/5/2013. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: cirkel en parabool 11/5/2013 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool. 16 september dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool. 16 september dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: cirkel en parabool 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening 307 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http:users.telenet.betoelating) . Inleiding Dit oefeningenoverzicht

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: sinusfuncties 13/7/2014. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: sinusfuncties 13/7/2014. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: sinusfuncties 13/7/2014 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening juli 05 dr. Brenda Castelen Met dank aan: Atheneum van Veurne (http:www.natuurdigitaal.begeneeskundefsicawiskundewiskunde.htm),

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: mengsels 23/5/2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: mengsels 23/5/2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: mengsels 23/5/2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functies 1/5/2013 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 13 september 2017 dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 13 september 2017 dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 13 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functies 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding Dit

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 15 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrodynamica. 25 juli 2015 dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrodynamica. 25 juli 2015 dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Elektrodynamica 25 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Rekenvaardigheden voor klas 3 en 4 VWO

Rekenvaardigheden voor klas 3 en 4 VWO Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)

Nadere informatie

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a.

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a. 98 Algebra 3.3 Variabelen 3.3.1 Inleiding F= 9 5 15+32= 27+32=59 15 C= 59 F In de inleidende tekst aan het begin van dit hoofdstuk staat een afkorting waarmee de temperatuur in graden Celsius in graden

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Geluid 10/6/2014. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Geluid 10/6/2014. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Geluid 10/6/2014 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm), Leen

Nadere informatie

6 Ringen, lichamen, velden

6 Ringen, lichamen, velden 6 Ringen, lichamen, velden 6.1 Polynomen over F p : irreducibiliteit en factorisatie Oefening 6.1. Bewijs dat x 2 + 2x + 2 irreducibel is in Z 3 [x]. Oplossing 6.1 Aangezien de veelterm van graad 3 is,

Nadere informatie

Grafieken van veeltermfuncties

Grafieken van veeltermfuncties (HOOFDSTUK 43, uit College Mathematics, door Frank Ayres, Jr. and Philip A. Schmidt, Schaum s Series, McGraw-Hill, New York; dit is de voorbereiding voor een uit te geven Nederlandse vertaling). Grafieken

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden, evenredigheden. 16 september dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden, evenredigheden. 16 september dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: gemiddelden, ongelijkheden, evenredigheden 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen arts/tandarts Oplossingen van 2016 Augustus Geel 2/1/2017 dr. Brenda Casteleyn Vraag 1. Als f(x) = e 4x-3, wat is dan f(1 ln (1/x))? e + ex 4 (ex) 4 e - x

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

7.1 Ongelijkheden [1]

7.1 Ongelijkheden [1] 7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

Tussenhoofdstuk - oplossen tweedegraads vergelijkingen

Tussenhoofdstuk - oplossen tweedegraads vergelijkingen Wiskunde Leerjaar 3 - periode 3 Hogere machtsverbanden, gebroken functies, exponentiële functies en logaritmen Tussenhoofdstuk - oplossen tweedegraads vergelijkingen A. Ontbinden in factoren 1. Bij het

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Rekenen met procenten en evenredigheden Oefening Een patiënt had vorig jaar een cholesterol van 60 mg/dl. Een jaar later is zijn cholesterol met 5% toegenomen. Wat is zijn cholesterol

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrodynamica. 4 november Brenda Casteleyn, PhD

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrodynamica. 4 november Brenda Casteleyn, PhD Voorbereiding toelatingsexamen arts/tandarts Fysica: Elektrodynamica 4 november 2017 Brenda Casteleyn, PhD Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Geluid. 4 november Brenda Casteleyn, PhD

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Geluid. 4 november Brenda Casteleyn, PhD Voorbereiding toelatingsexamen arts/tandarts Fysica: Geluid 4 november 2017 Brenda Casteleyn, PhD Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding Dit oefeningenoverzicht

Nadere informatie

Hoofdstuk 7 : Delen van veeltermen

Hoofdstuk 7 : Delen van veeltermen - 19 - Hoofdstuk 7 : Delen van veeltermen Delen van veeltermen door een veelterm: (boek pag 16) Bepaal het quotient en de rest van de volgende delingen (oefeningen pag 19 nr. - 5-6) 1.. 18 9 + 11 + 6........................

Nadere informatie

Te kennen leerstof wiskunde voor het toelatingsexamen graduaten. Lea De Bie lea.debie@cvoleuven.be

Te kennen leerstof wiskunde voor het toelatingsexamen graduaten. Lea De Bie lea.debie@cvoleuven.be Te kennen leerstof wiskunde voor het toelatingsexamen graduaten Lea De Bie lea.debie@cvoleuven.be SOORTEN GETALLEN (Dit hoofdstukje geldt als inleiding en is geen te kennen leerstof). Natuurlijke getallen

Nadere informatie

Producten, machten en ontbinden in factoren

Producten, machten en ontbinden in factoren Joke Smit College Producten, machten en ontbinden in factoren Voor cursisten uit de volgende klassen: alle Havo en VWO klassen (wiskunde, wiskunde A en wiskunde B) Wat kun je oefenen? 1. Het uitrekenen

Nadere informatie

Paragraaf 8.1 : Lijnen en Hoeken

Paragraaf 8.1 : Lijnen en Hoeken Hoofdstuk 8 Meetkunde met coördinaten (V5 Wis B) Pagina 1 van 11 Paragraaf 8.1 : Lijnen en Hoeken Les 1 Lijnen Definities Je kunt een lijn op verschillende manieren bepalen / opschrijven : (1) RC - manier

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Complexe getallen: oefeningen

Complexe getallen: oefeningen Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Paragraaf 1.1 : Lineaire verbanden

Paragraaf 1.1 : Lineaire verbanden Hoofdstuk 1 Formules, grafieken en vergelijkingen (H4 Wis B) Pagina 1 van 11 Paragraaf 1.1 : Lineaire verbanden Les 1 Lineaire verbanden Definitie lijn Algemene formule van een lijn : y = ax + b a = richtingscoëfficiënt

Nadere informatie

Vergelijkingen in één onbekende

Vergelijkingen in één onbekende Module 3 Vergelijkingen in één onbekende 3.1 Lineaire vergelijkingen Dit zijn vergelijkingen die herleid kunnen worden tot de gedaante ax+b = 0 met a,b Ê en a 0 ax+b = 0 ax = b x = b a V = { b } a Voorbeelden

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

1 Middelpunten. Verkennen. Uitleg

1 Middelpunten. Verkennen. Uitleg 1 Middelpunten Verkennen Middelpunten Inleiding Verkennen Probeer vanuit drie gegeven punten (niet op één lijn) die op een cirkel moeten liggen het middelpunt van die cirkel te construeren. Je kunt hem

Nadere informatie

2. Kwadratische functies.

2. Kwadratische functies. Uitwerkingen R-vragen hoofdstuk. Kwadratische functies.. R De term a is bepalend voor zeer grote waardes van. Als a < 0 dan wordt de term a zeer groot en negatief zowel bij. en Er is sprake van een bergparabool

Nadere informatie

Eerste deel van de cursus Algebra

Eerste deel van de cursus Algebra Eerste deel van de cursus Algebra Procentrekenen Toename met p%: groeifactor = 1 + p% Afname met p% : groeifactor = 1 p% Toename in procenten = Afname in procenten = toename beginwaarde afname beginwaarde

Nadere informatie

De wortel uit min één, Cardano, Kepler en Newton

De wortel uit min één, Cardano, Kepler en Newton De wortel uit min één, Cardano, Kepler en Newton Van de middelbare school kent iedereen wel de a, b, c-formule (hier en daar ook wel het kanon genoemd) voor de oplossingen van de vierkantsvergelijking

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2 Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

Paragraaf 1.1 : Lineaire functies en Modulus

Paragraaf 1.1 : Lineaire functies en Modulus Hoofdstuk 1 Functies en Grafieken (V4 Wis B) Pagina 1 van 9 Paragraaf 1.1 : Lineaire functies en Modulus Les 1 : Lineaire Formules Definities Algemene formule van een lijn : y = ax + b a = hellingsgetal

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A

Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A . Bereken zonder rekenmachine: + d. + 0 + 6 6 6 Hogeschool Rotterdam Voorbeeldeamen Wiskunde A 6 6 Oplossingen. Bereken zonder rekenmachine: + 6 b. + 6 0 + 9. Bereken zonder rekenmachine: 9 9 d.. Een supermarkt

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

Leerlijnen REKENEN WISKUNDE (BB)

Leerlijnen REKENEN WISKUNDE (BB) Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Types differentiaal vergelijkingen

Types differentiaal vergelijkingen 1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking

Nadere informatie

De kandidaten: jullie taak is het maken van de opdrachten, opzoeken van theorie en het zoeken naar de mol.

De kandidaten: jullie taak is het maken van de opdrachten, opzoeken van theorie en het zoeken naar de mol. Dossieropdracht 4 Wie is de mol? Opdracht Je gaat het spel Wie is de mol? spelen. Dit doe je in een groep van circa acht personen, die wordt gemaakt door de docent. In je groep moet je acht vragen beantwoorden

Nadere informatie

Tweede graadsfuncties

Tweede graadsfuncties CAMPUS BRUSSEL Opfriscursus Wiskunde Tweede graadsfuncties Deel 1: kwadratische vergelijkingen en ongelijkheden Tweede-graadsfuncties 1 Gevraagd: hoeveel moet je aan het reisagentschap betalen als er 20

Nadere informatie

kwadratische vergelijkingen

kwadratische vergelijkingen kwadratische vergelijkingen In deze paragraaf: 'exact berekenen van oplossingen', 'typen kwadratische vergelijkingen' en 'de abc-formule en de discriminant'. de abc-formule Voor een tweedegraads vergelijking

Nadere informatie

Statistiek: Centrummaten 12/6/2013. dr. Brenda Casteleyn

Statistiek: Centrummaten 12/6/2013. dr. Brenda Casteleyn Statistiek: Centrummaten 12/6/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie 1) Nominaal niveau: Gebruik de Modus, dit is de meest frequente waarneming 2) Ordinaal niveau:

Nadere informatie

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis Wiskunde voor economie drs. H.J.Ots Hellevoetsluis 15-2-2004, Wiskunde voor economie, ISBN 90-70619-05-9,drs. H.J. Ots, www.webecon.nl Wiskunde voor economie Drs. H.J. Ots ISBN 90-70619-05-9 Webecon, Hellevoetsluis,

Nadere informatie

7.1 Grafieken en vergelijkingen [1]

7.1 Grafieken en vergelijkingen [1] 7.1 Grafieken en vergelijkingen [1] Voorbeeld: Getekend zijn de grafieken van y = x 2 4 en y = x + 2. De grafieken snijden elkaar in de punten A(-2, 0) en B(3, 5). Controle voor x = -2 y = x 2 4 y = x

Nadere informatie

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld.

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Wiskunde juli 2009 Laatste aanpassing: 29 juli 2009. Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Vraag 1 Wat is de top van deze parabool 2 2. Vraag

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong Hoofdstuk 4 Verloop van functies Met DERIVE is het mogelijk om tal van eigenschappen van functies experimenteel te ontdekken. In een eerste paragraaf onderzoeken we het verband tussen de grafieken van

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

H28 VIERKANTSVERGELIJKINGEN

H28 VIERKANTSVERGELIJKINGEN H8 VIERKANTSVERGELIJKINGEN vwo 8.0 INTRO - - 8. TERUGBLIKKEN 3 a x = 3½ b x + 7 = x + 7 = x + 6 = x Dus x = 3 c x = of x = - d x + 6 = of x + 6 = - x= - of x = -0 e Er is geen olossing, want het kwadraat

Nadere informatie

Families parabolen en fonteinen met de TI-Nspire

Families parabolen en fonteinen met de TI-Nspire Families parabolen en fonteinen met de TI-Nspire Dr Didier Deses Samenvatting We bestuderen 1-parameterfamilies van parabolen. De klassieke families (bijv.: y = ax 2 ) komen aan bod alsook de parabolen

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden.

Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden. - 239 - Naam:... Klas:... Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden. Eventjes herhalen!!! Voor een vergelijking van de eerste graad, herleid op nul, is het linkerlid een veelterm

Nadere informatie

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Bijlage 7 Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Deze vragen kunnen gebruikt worden om aan het eind van klas 3 havo/vwo na te gaan in hoeverre leerlingen in staat zijn te

Nadere informatie

VIDEO 4 4. MODULUSVERGELIJKINGEN

VIDEO 4 4. MODULUSVERGELIJKINGEN VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

Het rechterlid van het voorschrift van een veeltermfunctie is een veelterm in één veranderlijke.

Het rechterlid van het voorschrift van een veeltermfunctie is een veelterm in één veranderlijke. 5 ASO H zwak leerboek 5-8- 6:9 Pagina. INLEIDING Vorig jaar maakten we al kennis met een basispakket functies : h g a) de constante functies : f () = a b) de eerstegraadsfuncties : g () = a + b c) de tweedegraadsfuncties

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Functies van één veranderlijke 191512600

Functies van één veranderlijke 191512600 Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /40 Elektrotechniek, Wiskunde en Informatica EWI Partieel Breuksplitsen a0 x m C a x m C C a m x C a m

Nadere informatie

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel

Nadere informatie