Inleiding goniometrie

Maat: px
Weergave met pagina beginnen:

Download "Inleiding goniometrie"

Transcriptie

1 Inleiding goniometrie We bekijken de volgende twee hellingen: 1 2 Duidelijk is dat de tweede helling steiler is dan de eerste helling. Ook zien we dat hellingshoek 2 groter is dan hellingshoek 1. Er bestaat dus een verband tussen steilheid en hellingshoek: Hoe steiler de helling hoe groter de hellingshoek. Het onderstaande verkeersbord geeft aan dat het hellingspercentage van de weg 10 % is. Dat betekent dat, als we horizontaal 100 meter afleggen, we dan 10 meter omhoog gaan. a b Bij een bepaalde steilheid van de helling hoort een bepaalde hellingshoek. Om die hoek te kunnen berekenen moeten we eerst de steilheid in een getal uitdrukken. Daarvoor maken we gebruik van de bovenstaande rechthoekige driehoek. De steilheid is de verhouding van de overstaande rechthoekszijde (a) tot de aanliggende rechthoekszijde (c). In ons geval is die steilheid = 0,1. Het verband tussen de hellingshoek en de steilheid van een helling luidt: tan = steilheid tan staat voor de tangens van en is een goniometrische functie. Als we weten dat tan = 0,1 kunnen we de hellingshoek bepalen met onze rekenmachine. We spreken af dat we de hoek in graden berekenen dus zorg ervoor dat je rekenmachine ook op graden staat door het typen van [mode][mode][1]. Verder willen we het antwoord in de drijvende komma notatie met vier cijfers achter de komma dus zorg ook voor die instelling. Inleiding goniometrie Blz 1 van 6

2 We weten al hoe we bijvoorbeeld de tangens van 30 berekenen: tan(30 ) = 0,5774. Omgekeerd: als tan = 0,5774 kunnen we berekenen door de tan -1 -functie op onze rekenmachine te gebruiken. Op de CASIO fx-82 volgt [shift][tan][0,5774][=] met als antwoord 30,0021. (waarom vinden we niet precies 30?) Als tan = 0,1 berekenen we op dezelfde manier = 5,7106. Geef de antwoorden in de drijvende komma notatie met vier cijfers achter de komma: 1 Bereken de hellingshoek in graden die hoort bij een hellingspercentage van: a) 5 % b) 20 % c) 40 % d) 100 % 2 Bepaal van de volgende hellingen door opmeting de steilheid en bereken vervolgens met je rekenmachine de hellingshoek in graden. a) b) c) d) We gaan weer even terug naar onze helling met een hellingspercentage van 10 %. Als we horizontaal 100 meter afleggen, gaan we 10 meter omhoog. Maar hoeveel meter rijden we dan precies? We moeten dan de schuine zijde van een driehoek berekenen waarvan de aanliggende zijde 100 meter is en de overstaande zijde 10 meter. Herinneren we ons nog de stelling van pythagoras b 2 = c 2 + a 2? Voor de schuine zijde b geldt dan b = ( ) = = 100,4988 meter. Wat handig is dat onze rekenmachine een ingebouwde stelling van pythagoras bevat. Op de CASIO fx-82 volgt [Pol( ][100][,][10][ )][=] met als antwoord ook 100,4988º. Wat we eigenlijk doen is het omrekenen van rechthoek- in poolcoördinaten, we komen daar later uitgebreid op terug. Inleiding goniometrie Blz 2 van 6

3 Geef de antwoorden in de drijvende komma notatie met vier cijfers achter de komma: 3 Een helling heeft een hellingspercentage van 7 %. a) Hoe groot is de hellingshoek in graden? b) Hoeveel meter moeten we rijden als we 100 meter horizontaal afleggen? c) Hoeveel meter moeten we rijden als we 350 meter horizontaal afleggen? 4 Een helling heeft een hellingspercentage van 12 %. a) Hoe groot is de hellingshoek in graden? b) Hoeveel meter moeten we rijden als we 150 meter horizontaal afleggen? c) Hoeveel meter moeten we rijden om 10 meter te stijgen? 5 Een helling heeft een hellingshoek van 4,5739. a) Bereken het hellingspercentage. b) Hoeveel meter moeten we rijden als we 250 meter horizontaal afleggen? c) Hoeveel meter moeten we rijden om 15 meter te stijgen? 6 Een zeer steile helling heeft een hellingshoek van 50. Bereken het hellingspercentage. Behalve de tangens kennen we nog meer goniometrische functies zoals de sinus, de cosinus en de cotangens, alles op een rij: sin = overstaande zijde a schuine zijde b aanliggende zijde c cos = schuine zijde b b c a tan = overstaande zijde a aanliggende zijde c aanliggende zijde c cotan = overstaande zijde a We zien dat de cotangens niets anders is dan het omgekeerde van de tangens. Inleiding goniometrie Blz 3 van 6

4 Dat is ook de reden dat we de cotangens niet op onze rekenmachine terug vinden. Als we bijvoorbeeld de cotan(32 ) willen uitrekenen dan bepalen we eerst de tan(32 ), gevolgd door de [x -1 ]-toets. Typ maar in: [( ][tan][32][ )][x -1 ][=]. Het resultaat is dan cotan(32 ) = 1,6003. Kennen we nog het ezelsbruggetje om te onthouden wat sinus, cosinus en tangens zijn? SOSCASTOA SOS: Sinus is Overstaande zijde gedeeld door Schuine zijde; CAS: Cosinus is Aanliggende zijde gedeeld door Schuine zijde; TOA: Tangens is Overstaande zijde gedeeld door Aanliggende zijde. Geef de antwoorden van de volgende vraagstukken in de drijvende komma notatie met twee cijfers achter de komma: 7 Bereken in onderstaande driehoek sin, cos, tan, cotan β, sin β, cos β en cotan β β 87 8 Bepaal in onderstaande driehoek door opmeting de zijden en bereken vervolgens sin, tan, cos β en cotan β. Welke hulplijn moeten we trekken? Bereken ook de hoeken, β en γ. γ β Inleiding goniometrie Blz 4 van 6

5 In onderstaande rechthoekige driehoek geldt = 40 en zijde a = 12. We willen hoek γ en de overige zijden b en c berekenen. γ b a c β We weten + β + γ = 180 γ = 180 β = = 50. Als we zijde c willen bepalen kunnen we een verband zoeken tussen (bekend), zijde a (bekend) en zijde c (onbekend). a 12 tan tan = tan 40 = = kruislings vermenigvuldigen : c c 1 c 12 c tan 40 = 1 12 c = = 14,30. tan 40 De zijde b tenslotte berekenen we met de stelling van pythagoras. Op de CASIO fx-82 volgt [Pol( ][12][,][14,3][ )][=] met als antwoord b = 18,67. 9 In driehoek ABC geldt β = 90, γ = 47 en zijde c = 15. Bereken de overige hoek en zijden. 10 In driehoek ABC geldt β = 90, γ = 57 en zijde b = 20. Bereken de overige hoek en zijden. 11 In driehoek ABC geldt β = 90, = 47 en zijde b = 25. Bereken de overige hoek en zijden. Inleiding goniometrie Blz 5 van 6

6 Antwoorden inleiding goniometrie 1 a) 2,8624 b) 11,3099 c) 21,8014 d) 45, a) 20,6955 b) 30,3432 c) 24,8637 d) 22, a) 4,0042 b) 100,2447 c) 350, a) 6,8428 b) 151,0761 c) 83, a) 8 % b) 250,7987 c) 188, ,1754 % 7 sin = 0,40 cos = 0,91 tan = 0,44 cotan = 2,26 sin β = 0,91 cos β = 0,40 cotan β = 0,44 8 sin 0,48 tan 0,55 cos β 0,70 cotan β 1 28,94º β 45,76º γ 105,30º 9 = 43,00º a = 13,99 b = 20,51 10 = 33,00º a = 10,89 c = 16,77 11 γ = 43,00º a = 18,28 c = 17,05 Inleiding goniometrie Blz 6 van 6

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband tussen

Nadere informatie

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 1 2012-2013. M. van der Pijl.

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 1 2012-2013. M. van der Pijl. Noorderpoortcollege School voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 Periode 1 2012-2013 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen

Nadere informatie

Goniometrische verhoudingen

Goniometrische verhoudingen Samenvatting 7.1 en 7.2 e onderstaande driehoek heeft een rechte hoek in punt. kan berekend worden als 2 zijden gegeven zijn: r geldt: o (overstaande zijde) tan = overstaande zijde aanliggende zijde =

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie

2.1 Gelijkvormige driehoeken[1]

2.1 Gelijkvormige driehoeken[1] 2.1 Gelijkvormige driehoeken[1] 5 25 50 100 25 125 250 x Hierboven staat een verhoudingstabel. Kruiselings vermenigvuldigen van de getallen geeft: 5 x 125 = 25 x 25 (= 625) 5 x 250 = 25 x 50 (= 1250) 25

Nadere informatie

VOORBEREIDINGSWEEK BASISOPDRACHTEN

VOORBEREIDINGSWEEK BASISOPDRACHTEN DEEL I VOORBEREIDINGSWEEK BASISOPDRACHTEN In deze week werk je aan een grote serie opdrachten die gereedschap zullen zijn voor de rest van de periode. Je moet zelf je eigen uitwerking maken in een soort

Nadere informatie

De uitleg in dit moduul is gebaseerd op een CASIO rekenmachine fx-82ms. Voor de verschillen met de TI-30X II zie de bijlage achterin.

De uitleg in dit moduul is gebaseerd op een CASIO rekenmachine fx-82ms. Voor de verschillen met de TI-30X II zie de bijlage achterin. Rekenmachine 1. Rekenmachine De uitleg in dit moduul is gebaseerd op een CASIO rekenmachine fx-82ms. Voor de verschillen met de TI-30X II zie de bijlage achterin. Onze rekenmachine geeft het resultaat

Nadere informatie

Werken met de rekenmachine

Werken met de rekenmachine Werken met de rekenmachine De uitleg in dit moduul is gebaseerd op een CASIO rekenmachine van de nieuwe generatie met een twee-regelig display zoals de fx-82tl of de afgebeelde fx-82ms. Onze rekenmachine

Nadere informatie

Goniometrische verhoudingen.

Goniometrische verhoudingen. www.betales.nl Samenvatting 7.1 en 7.2 e onderstaande driehoek heeft een rechte hoek in punt. kan berekend worden als 2 zijden gegeven zijn: r geldt: o (overstaande zijde) tan = overstaande zijde aanliggende

Nadere informatie

Schuiven van een voertuig in een bocht met positieve verkanting

Schuiven van een voertuig in een bocht met positieve verkanting Voertuigtechniek Technisch Specialist LESBRIEF Schuiven van een voertuig in een bocht met positieve verkanting Deze lesbrief behandelt positieve verkanting en centripetale kracht in relatie tot het schuiven

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 8. M. van der Pijl. Transfer Database

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 8. M. van der Pijl. Transfer Database Noorderpoortcollege School voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 Periode 8 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

De beeldpunten P en P van gelijke hoeken vallen samen. y 1 P=P' cos α

De beeldpunten P en P van gelijke hoeken vallen samen. y 1 P=P' cos α 65 5 VERWANTE HOEKEN - Afstandsleren Opdracht: Surf naar het wiskundewebje dat je vindt op http://home.scarlet.be/~greetvrh en kies voor het vijfde jaar en voor Goniometrie. Gebruik de applets, 2, 3, 4,

Nadere informatie

Practicum hoogtemeting 3 e klas havo/vwo

Practicum hoogtemeting 3 e klas havo/vwo Deel (benaderbaar object) Om de hoogte van een bepaald object te berekenen hebben we geleerd dat je dat kunt doen als je in staat bent om een rechthoekige driehoek te bedenken waarvan je één zijde kunt

Nadere informatie

met tijdseenheden overig niet-metrisch moeten zelf bedacht of opgezocht worden a geheeltallig en < 10

met tijdseenheden overig niet-metrisch moeten zelf bedacht of opgezocht worden a geheeltallig en < 10 Meeteenheden omrekenen 1 2 3 4 5 Eenheid n n = 1 n = 2, n = 3 n > 3 Omrekeningsfactoren uitsluitend metrisch met tijdseenheden overig niet-metrisch Omrekeningsrichting van groot naar klein van klein naar

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

Goniometrische functies

Goniometrische functies Goniometrische functies gonè (Grieks) = hoek metron (Grieks) = maat Goniometrie, afkomstig van de Griekse woorden voor hoek en maat, betekent letterlijk hoekmeetkunde. Daarmee wordt aangegeven dat het

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Driehoeksmeting in een. Copyright. rechthoekige driehoek

Driehoeksmeting in een. Copyright. rechthoekige driehoek Driehoeksmeting in een opyright rechthoekige driehoek opyright Driehoeksmeting in een rechthoekige driehoek. Goniometrische getallen van een scherpe hoek.... Sinus, cosinus en tangens van een scherpe hoek...

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Notities Driehoeksmeting en initiatie coördinaatrekenen

Notities Driehoeksmeting en initiatie coördinaatrekenen Notities Driehoeksmeting en initiatie coördinaatrekenen Bij het lezen van deze nota s oefen je mee op een vers blad papier. Met: 4 kleurenstylo Potlood en gom Passer Schaallat Geo-driehoek. Rekenmachine

Nadere informatie

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B vmbo kader Inhoud deel 3A Hoofdstuk 1 Vlakke meetkunde Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Rekenen Hoofdstuk 4 Statistiek Hoofdstuk 5 Ruimtemeetkunde Hoofdstuk

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

Sinus en cosinus vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.

Sinus en cosinus vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd Licentie Webadres 12 April 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74212 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1

7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1 H GONIOMETRIE HAVO.0 INTRO a : 00 (het touw is in de tekening 6 cm) a 6 km : 00.000 = 6 cm b 6 a Schaal :. b 9. TEKENEN OP SCHAAL a 7 a (moeilijk nauwkeurig te meten) b : 000 c Ik meet cm dus in werkelijkheid

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B

Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B Inleiding Voor het oplossen van goniometrische vergelijkingen heb je een aantal dingen nodig:. Kennis over

Nadere informatie

4. Exponentiële vergelijkingen

4. Exponentiële vergelijkingen 4. Exponentiële vergelijkingen De gelijkheid 10 3 = 1000 bevat drie getallen: 10, 3 en 1000. Als we van die drie getallen er één niet weten moeten we hem kunnen berekenen. We kunnen dus drie gevallen onderscheiden:

Nadere informatie

Hoofdstuk 2 Oppervlakte en inhoud

Hoofdstuk 2 Oppervlakte en inhoud Hoofdstuk 2 Oppervlakte en inhoud Les 1 Aant. 2.1 Oppervlakte van vlakke figuren Theorie A: Oppervlakte van vlakke figuren Oppervlakte driehoek = ½ zijde bijbehorende hoogte Oppervlakte parallellogram

Nadere informatie

Goniometrie. Dr. Caroline Danneels Dr. Paul Hellings

Goniometrie. Dr. Caroline Danneels Dr. Paul Hellings Goniometrie Dr. Caroline Danneels Dr. Paul Hellings 1 Hoeken 1.1 De goniometrische cirkel De goniometrische cirkel wordt steeds gedefinieerd in een orthonormaal assenkruis. Het is een cirkel met het middelpunt

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Goniometrie, vlakke meetkunde en rekenen met vectoren in de fysica (versie 0 juli 008) Rekenen met vectoren is een basisvaardigheid voor vakken natuurkunde.

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie

Construeer telkens twee hoeken waarvan de cosinus of sinus gegeven is. Teken voor elke opgave een andere goniometrische cirkel.

Construeer telkens twee hoeken waarvan de cosinus of sinus gegeven is. Teken voor elke opgave een andere goniometrische cirkel. Herhalingsoefeningen Driehoeksmeting Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Construeer

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a Voorkennis C A m B C = 10 = 9 ABC is geen rehthoekige driehoek. V-a K m L d M = 10 = 90 L 0 M De rehthoekszijden zijn de zijden LM en KM. De langste zijde is zijde KL. d zijde kwadraat LM = 0 KL =

Nadere informatie

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk.

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk. Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar 2017 2018 Wiskunde 4 Basis Periode Wat moet je kennen en kunnen? (deel)taken Toets-vorm Duur Weging Herkan sing Wijze van

Nadere informatie

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A.

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Wiskunde voor het hoger onderwijs deel A Errata 00 Noordhoff Uitgevers Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Hoofdstuk. 4 Op blz. in het Theorieboek staat halverwege de

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie

TEKENEN OP SCHAAL 1. Veronderstel: AP = 200 meter en APB = 39. schaal 1 : 40000. » Maak hiernaast de tekening op schaal van driehoek

TEKENEN OP SCHAAL 1. Veronderstel: AP = 200 meter en APB = 39. schaal 1 : 40000. » Maak hiernaast de tekening op schaal van driehoek TEKENEN OP SCHAAL 1 Kanaalbrug Tussen twee peilers A en B ligt een brug over een kanaal. De peilers staan aan de oevers van het kanaal. De brug steekt het kanaal recht over. Je wilt de afstand tussen de

Nadere informatie

In de ruimte vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.

In de ruimte vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd Licentie Webadres 12 April 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74213 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Beoordelingsmodel VMBO GL/TL 2008-I Vraag Antwoord Scores Golfbaan maximumscore 4 Een kijklijn tekenen van het putje langs de punt van de bosrand 90 m in werkelijkheid komt overeen met 6 cm in de tekening

Nadere informatie

Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud

Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud antekening HVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud Les 1 Oppervlakte driehoeken Oppervlakte driehoek = ½ basis hoogte Oppervlakte parallellogram = basis hoogte Oppervlakte trapezium = ½ (basis + top)

Nadere informatie

2 Trigonometrie. Domein Meetkunde havo B

2 Trigonometrie. Domein Meetkunde havo B Domein Meetkunde havo B Trigonometrie Inhoud.. Sinus, cosinus en tangens.. Lijnen en hoeken.. De sinusregel.4. De cosinusregel.5. Overzicht In opdracht van: Commissie Toekomst Wiskunde Onderwijs ctwo Utrecht

Nadere informatie

1. cos α = 0,25 2. sin α = -0,75 3. tan α = -0,5

1. cos α = 0,25 2. sin α = -0,75 3. tan α = -0,5 Herhalingsoefeningen Willekeurige driehoeken Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef

Nadere informatie

Hoofdstuk 10 Meetkundige berekeningen

Hoofdstuk 10 Meetkundige berekeningen Hoofdstuk 10 Meetkundige berekeningen Les 0 (Extra) Aant. Voorkennis: Hoeken en afstanden Theorie A: Sinus, Cosinus en tangens O RHZ tan A = A RHZ O RHZ sin A = SZ A RHZ cos A = SZ Afspraak: Graden afronden

Nadere informatie

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht Hoofdstuk 1 : Hoeken -1 - Complementaire hoeken ( boek pag 7) Twee hoeken zijn complementair als... van hun hoekgrootten... is. Supplementaire hoeken ( boek pag 7) Twee hoeken noemen we supplementair als...

Nadere informatie

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld.

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Wiskunde juli 2009 Laatste aanpassing: 29 juli 2009. Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Vraag 1 Wat is de top van deze parabool 2 2. Vraag

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

Kleine didactiek DE VERSCHILFORMULE VOOR DE SINUS. [ Dick Klingens ]

Kleine didactiek DE VERSCHILFORMULE VOOR DE SINUS. [ Dick Klingens ] Kleine didactiek DE VERSCHILFORMULE VOOR DE SINUS [ Dick Klingens ] In de vierde klas vwo komt de uitbreiding van de goniometrische verhoudingen sinus en cosinus voor andere dan scherpe hoeken aan de orde.

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14 INHOUD 1 De cirkel 9 1.1 Definities en benamingen 9 Oefeningen 11 1.2 Cirkel door drie punten 13 Oefeningen 14 1.3 Onderlinge ligging van een rechte en een cirkel 20 1.3.1 Aantal snijpunten van een rechte

Nadere informatie

Wiskunde - MBO Niveau 4

Wiskunde - MBO Niveau 4 Wiskunde - MBO Niveau 4 De CASIO fx-82ms voor gevorderden OPLEIDING: Noorderpoort MBO Niveau 4 DOCENT: LEERJAAR: UITGAVE: VERSIE: H.J. Riksen Leerjaar 1 - Periode 1 2016/2017 1.1 Wiskunde - MBO Niveau

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

1 Meetkunde en Algebra

1 Meetkunde en Algebra 1 Meetkunde en Algebra Het eerste deel van dit hoofdstuk is een bewerking van Meetkunde met coördinaten, Blok Redeneren met vormen, getallen en formules van Aad Goddijn ten behoeve van het nieuwe programma

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk.

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk. Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar 2017 2018 Wiskunde 3 Basis Periode Wat moet je kennen en kunnen? (deel)taken Toets-vorm Duur Weging Herkan sing Wijze van

Nadere informatie

3.1 Soorten hoeken [1]

3.1 Soorten hoeken [1] 3.1 Soorten hoeken [1] Let op: Een lijn heeft geen eindpunt; Een halve lijn heeft één eindpunt Een lijnstuk heeft twee eindpunten; Het plaatje is een bovenaanzicht; De persoon kan het gedeelte binnen de

Nadere informatie

Opgave 4. Opgave 5. Opgave 6. (5) a) Isoleer de variabele B uit de formule P A B P B. (6) b) Isoleer de variabele B uit de formule

Opgave 4. Opgave 5. Opgave 6. (5) a) Isoleer de variabele B uit de formule P A B P B. (6) b) Isoleer de variabele B uit de formule EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 009 Datum: 14 jan 009 Aantal opgaven: 6 Beschikbare tijd: 100 minuten De maximale score is 90 punten, vooraf 10 punten: totaal 100 punten. Aantal te

Nadere informatie

Exponentiële vergelijkingen en groei

Exponentiële vergelijkingen en groei Exponentiële vergelijkingen en groei De gelijkheid 10 2 = 100 bevat drie getallen: 10, 2 en 100. Als we van die drie getallen er één niet weten moeten we hem kunnen berekenen. We kunnen dus drie gevallen

Nadere informatie

De Wetenschappelijke notatie

De Wetenschappelijke notatie De Wetenschappelijke notatie Grote getallen zijn vaak lastig te lezen. Hoeveel is bijvoorbeeld 23000000000000? Eén manier om het lezen te vergemakkelijken is het zetten van puntjes of spaties: 23.000.000.000.000

Nadere informatie

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB Deel 3 vwo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo Docentenhandleiding Netwerk 3e editie deel 3B havo 0 Hoofdstuk 7 Verschillende verbanden Beginniveau Al eerder hebben de leerlingen kennis gemaakt met lineaire, kwadratische en exponentiële verbanden.

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 6 les 4

Wiskunde D Online uitwerking 4 VWO blok 6 les 4 Wiskunde Online uitwerking 4 VWO blok 6 les 4 Paragraaf 4 Het inproduct om hoeken te berekenen Opgave a e hoek is kleiner dan 4, want het dak zelf staat onder een hoek van 45, en de kilgoot loopt schuin

Nadere informatie

Elde college Schijndel. Kernteam Techniek

Elde college Schijndel. Kernteam Techniek Elde college Schijndel Kernteam Techniek Wiskunde lesstof stapelaars docent: Joost van Veghel Voorwoord Gefeliciteerd! Als je dit leest, heb je het schooljaar afgesloten met een diploma voor de basisberoepsgerichte

Nadere informatie

Tangens vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74211

Tangens vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74211 Auteur VO-content Laatst gewijzigd Licentie Webadres 12 april 2016 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/74211 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet. Wikiwijs

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 15 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

1. Invoering van de goniometrische cirkel

1. Invoering van de goniometrische cirkel . Invoering van de goniometrische cirkel We beschouwen de eenheidscirkel. Beschouwen we eveneens twee loodrechte assen door O. We duiden (E o, E δ ) aan : een orthonormale basis van het vlak. We kunnen

Nadere informatie

1.1 Differentiëren, geknipt voor jou

1.1 Differentiëren, geknipt voor jou 1.1 Differentiëren, geknipt voor jou Je hebt leren omgaan met hellings of, wat hetzelfde is: s. We frissen de begrippen en rekenmethoden die hierbij horen nu wat op. Stel dat je met een (gewone) schaar

Nadere informatie

Calculus I, 19/10/2015

Calculus I, 19/10/2015 Calculus I, 9/0/05. a Toon aan dat de rationale functie f = 3 + 3 + voor alle 0 bekomen wordt via volgende procedure: Start met een gelijkbenige rechthoekige driehoek OAB, met B het punt, 0 op de -as,

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Leerlijnen REKENEN WISKUNDE (BB)

Leerlijnen REKENEN WISKUNDE (BB) Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij

Nadere informatie

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras inhoudsopgave 1 de grote lijn applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek 1 de grote lijn hoofdlijn de zijlijn De oppervlakte van rechthoekige driehoeken. Van een

Nadere informatie

1 Overzicht voorkennis algebraïsch rekenen

1 Overzicht voorkennis algebraïsch rekenen 1 Overzicht voorkennis algebraïsch rekenen 1 Merkwaardige producten, ontbinden in factoren 1.1 Merkwaardige producten ( ) ( ) a+ b = a + ab+ b a b = a ab+ b ( ) ( ) a+ b = a + ab+ ab + b a b = a ab+ ab

Nadere informatie

10 log sin 20. Naam:

10 log sin 20. Naam: 10 log 10 80 24sin 20 Naam: 1 Inhoud Voorbereiding op het examen 3 Onderwerpen in grote lijnen 4-9 LOC-methode 9 Tips voor het examen 10 Vergelijkingen van parabolen 11 Planning opgaven examenbundel 12-15

Nadere informatie

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort Eindtermen wiskunde TL en GL WI/K/1 Oriëntatie op leren en werken WI/K/2 Basisvaardigheden WI/K/3 Leervaardigheden in het vak wiskunde Algebraïsche verbanden Rekenen, meten en schatten Meetkunde WI/K/7

Nadere informatie

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 1 Voorwoord Satellieten zijn er in vele soorten en maten. Zo heb je bijvoorbeeld

Nadere informatie

Beginnen met Construeren Module ribbmc01c Opleiding: Bouwkunde / Civiele techniek / ROP Propadeuse, kernprogramma 1 e kwartaal

Beginnen met Construeren Module ribbmc01c Opleiding: Bouwkunde / Civiele techniek / ROP Propadeuse, kernprogramma 1 e kwartaal Week 01 Theorie: Beginnen met Construeren Samenstellen en ontbinden van krachten Vectormeetkunde Onderwerp: Kracht en Massa Opdracht: Schematiseer de constructie van de windverbanden Bereken de krachten

Nadere informatie

Goniometrie. Dr. Caroline Danneels Dr. Paul Hellings

Goniometrie. Dr. Caroline Danneels Dr. Paul Hellings Goniometrie Dr. Caroline Danneels Dr. Paul Hellings 1 Hoeken 1.1 De goniometrische cirkel De goniometrische cirkel wordt steeds gedefinieerd in een orthonormaal assenkruis. Het is een cirkel met het middelpunt

Nadere informatie

Eerste deel van de cursus Algebra

Eerste deel van de cursus Algebra Eerste deel van de cursus Algebra Procentrekenen Toename met p%: groeifactor = 1 + p% Afname met p% : groeifactor = 1 p% Toename in procenten = Afname in procenten = toename beginwaarde afname beginwaarde

Nadere informatie

tan c b + a c c b HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN

tan c b + a c c b HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN ) Gegeven: een rechthoekige driehoek ABC. Schrijf de volgende goniometrische getallen in functie van de lengten van de zijden van

Nadere informatie

1 Meetkunde en Algebra

1 Meetkunde en Algebra 1 Meetkunde en Algebra Het eerste deel van dit hoofdstuk is een bewerking van Meetkunde met coördinaten, Blok Redeneren met vormen, getallen en formules van Aad Goddijn ten behoeve van het nieuwe programma

Nadere informatie

GONIOMETRIE MAAR DAN ANDERS. Dit materiaal is gemaakt binnen de Leergang Wiskunde schooljaar 2013/14

GONIOMETRIE MAAR DAN ANDERS. Dit materiaal is gemaakt binnen de Leergang Wiskunde schooljaar 2013/14 GONIOMETRIE MAAR DAN ANDERS Inhoudsopgave Achtergrondinformatie... 3 Docentenhandleiding... 5 BIJLAGEN... 10 Goniometrie, leerling blad 1... 10 INTRODUCTIE sinusoïde... 11 WISKUNDIGE DENKACTIVITEIT GONIOMETRIE...

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie