Uitwerkingen Mei Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Maat: px
Weergave met pagina beginnen:

Download "Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek"

Transcriptie

1 Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

2

3

4 Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de functie f a. Dan moet de afgeleide van F a gelijk zijn aan f a. Aangezien F a (x het product is van de functies x en e ax moeten we de productregel gebruiken. Dat levert (F a (x = (x e ax = 1 e ax + x e ax ( a. Deze uitdrukking kunnen we nu verder vereenvoudigen om tot f a te komen. Dat gaat als volgt e ax + x ( a e ax = e ax a x e ax = (1 ax e ax. We zien dat dit laatste gelijk aan f a (x is. Hieruit volgt dat F a een primitieve is van de functie f a. Opgave. We noteren binnen de driehoek OAB de oppervlakte onder de grafiek van f a met O 1 en de oppervlakte boven de grafiek met O, zie onderstaande figuur. We moeten aantonen dat de verhouding van deze oppervlakten O1 O onafhankelijk van a is. Dat wil zeggen dat als de uitdrukking voor de breuk O1 O wordt vereenvoudigd dan is a verdwenen. Met behulp van de totale oppervlakte van de driehoek OAB berekenen we eerst deze twee oppervlakten. De formule van de oppervlakte van een driehoek is: 1 basis hoogte. De basis van de driehoek OAB is OA = 1 a en de hoogte OB = 1. De oppervlakte van OAB is dus gelijk aan 1 1 a 1 = 1 a. De oppervlakte O 1 wordt berekend met behulp van integraalrekening. In een primitieve van f a worden de grenzen ingevuld om de oppervlakte tussen de x-as en de grafiek van de functie te kunnen berekenen. In Opgave 1 is al berekend dat F a een primitieve van f a is (als dit om welke reden dan ook niet is gelukt VWO - Wiskunde B - Mei 01 4

5 om aan te tonen mag dit feit alsnog worden gebruikt. De grenzen zijn x = 0 en x = 1 a. Deze grenzen invullen in F a geeft O 1 = F a ( 1 a F a (0 = 1 a e a 1 a 0e a0 = 1 a e. De oppervlakte O is gelijk aan de totale oppervlakte van de driehoek ABO minus de oppervlakte O 1. Dat is O = 1 a 1 a e = e a e. De verhouding, waarin we geïnteresseerd zijn, is gelijk aan O 1 O = 1 a e e a e = 1 a e a e e = e. We zien dat deze laatste term onafhankelijk van a is. Het standaard proefglas Opgave. Het volume (in dit geval in mm van het omwentelingslichaam om de x-as met de functie voorschrift f(x op het interval [0; 55,] is 55, 0 π (f(x dx = 55, 0 ( 9 π + 8 e 0,45 x dx. Als we de uitdrukking tussen de haakjes kwadrateren wordt deze laatste integraal gelijk aan 55, ( 81 π e 0,45 x e 0,904 x dx. 0 We kunnen nu ieder component van deze integraal afzonderlijk berekenen. Dat levert [ 81 4 π x 5 0,45 e 0,45 x 784 ] 55, 0,904 e x = 7994 mm. Omdat 1000 mm = 1 cm, volgt hieruit dat de afgeronde inhoud gelijk is aan 8 cm. Opgave 4. De kromme CD is een gedeelte van een bergparabool waarbij C het toppunt van de parabool is. Deze parabool verschuiven zodat zijn toppunt op de oorsprong terecht komt, betekent dat alle coördinaten van de parabool in de x-richting 87,5 naar links gaan en in de y-richting,5 omlaag. Dit verhaal kan je omkeren vanuit de parabool y = a x, om terug op de kromme CD te komen. Maar dit keer in de x-richting 87,5 naar rechts en in de y-richting,5 omhoog. Het functievoorschrift van de verschoven parabool door de oorsprong wordt dan gegeven door (y,5 = a (x 87,5. 0 VWO - Wiskunde B - Mei 01 5

6 Resteert nu a te vinden. Hiervoor gebruiken we het punt D = (155,0;,0 dat eveneens op de parabool (y,5 = a (x 87,5 ligt. Invullen van het punt D in de formule van de parabool levert a = We kunnen nu deze parabool weer verschuiven vanuit de oorsprong naar zijn oude plaats zodat zijn top weer op het punt C terecht komt. Zoals eerder genoemd betekent dit in de x-richting 87,5 naar rechts en in de y-richting,5 omhoog verschuiven. Dit levert de volgende formule voor de kromme CD y = op het domein [87,5; 155,0] (x 87,5 +,5 Opgave 5. Laat x P de x-coördinaat van het punt P zijn. We willen x P berekenen met behulp van primitiveren. We zullen eerst de inhoud (50 ml = mm uitdrukken in termen van x P, waarbij x P in mm. In dit geval is de inhoud gelijk aan xp xp ( = π(g(x dx = π x + 175x 6600 dx. 55, 55, Wortel trekken en kwadrateren heffen elkaar op (let op alleen in deze volgorde!. Hierna kunnen we voor iedere component een primitieve berekenen: xp ( π x + 175x 6600 xp dx = π ( x 55, + 87,5x 6600x. 55, Grenzen invullen levert nu π (( (x P + 87,5(x P 6600x P ( 55, + 87,5(55, , Na vereenvoudigen en gelijk aan stellen hebben we de volgende derdegraads vergelijking om op te lossen met de GR π ( (x P + 87,5(x P 6600x P ,9 = Nu in de GR stellen we Y 1 gelijk aan Y 1 = π ( (x P + 87,5(x P 6600x P ,9 en Y gelijk aan Met de optie intersect vinden we als snijpunt x P = 80, Afgerond op een geheel getal is dat 81. VWO - Wiskunde B - Mei 01 6

7 Vanuit een parallellogram Opgave 6. We moeten bewijzen dat de driehoek BDE gelijkbenig is. We laten zien dat de hoeken BDE en BED gelijk zijn. Er geldt ADE = BDE omdat DE de bissectrice is van de hoek ADB, zie onderstaande figuur. Het punt E ligt in het verlengde van BC en ABCD is een parallellogram en dus is AD CE, zie wederom de figuur hieronder. Hieruit volgt dat de hoeken ADE en BED aan elkaar gelijk zijn omdat ze Z-hoeken zijn (dit is te zien in de figuur: BED = ADE. Maar deze laatste is ook gelijk aan BDE waaruit volgt dat BED = BDE. We mogen dus concluderen dat BDE gelijkbenig is. De volgende figuur verduidelijkt bovenstaande uitleg: Opgave 7. Merk op dat als BDF = α dan ook EBF = α vanwege de raaklijn-koorde stelling. Omdat de driehoek BDE gelijkbenig is geldt hier ook dat BEF = BDF = α, zie ook de figuur hieronder. Maar dan is BF E = 180 α omdat de som der hoeken binnen een driehoek gelijk is aan 180. Hieruit volgt dat BF D = 180 BF E = 180 (180 α = α = BEF. De volgende figuur verduidelijkt bovenstaande uitleg: VWO - Wiskunde B - Mei 01 7

8 Tussen twee sinusgrafieken Opgave 8. De te bepalen oppervlakte V wordt berekend met 4 π π (f(x g(x dx omdat tussen A en B geldt dat f > g. We berekenen dus een primitieve van f(x g(x ( (f(x g(xdx = sin(x sin (x + 1 ( π dx = cos(x+cos x + π +C waarbij C een willekeurige constante is. Grenzen invullen levert nu ( ( 4π 5π ( π ( π cos + cos + cos cos = =. Opgave 9. Volgens de formulekaart geldt ( x + y sin(x + sin(y = sin cos ( x y We gebruiken deze gelijkheid als volgt (let op dat y uit de vorige formule gelijk is aan x + π/ hieronder 1 (f(x + g(x = 1 ( ( sin(x + sin x + π = 1 ( ( x + x + π ( x x π sin cos ( = sin x + π ( π cos 6 6 = (x sin + π. 6 Dus dan a = en b = π 6. Drie vierkanten in een rechthoek Opgave 10. De totale oppervlakte van de rechthoek is 0 0 = 600. Hiervan moeten we de oppervlakten van de vierkanten A, B en C aftrekken. Als een zijde van A gelijk aan x is, dan is een zijde van B gelijk aan 0 x en een zijde van C gelijk aan 0 (0 x = x 10. De oppervlakten A, B en C zijn dus respectievelijk gelijk aan x, (0 x en (x 10. Hieruit volgt dat D = 600 (x + (0 x + (x 10. = 600 (x x + x + x 0x = x + 80x 400. De uitdrukking voor de oppervlakte D is een bergparabool en heeft inderdaad een maximum die hij in zijn top aanneemt. De x-coördinaat van de top van VWO - Wiskunde B - Mei 01 8

9 de parabool kunnen we via de afgeleide vinden. Omdat de afgeleide in de top gelijk aan nul is, kunnen we de afgeleide van de parabool gelijk aan nul stellen: Hieruit volgt dat x = 80 6 = 40. ( x + 80x 400 = 6x + 80 = 0. Een W Opgave 11. Punt P begint op het tijdstip t = 0 zich te verplaatsen volgens de gegeven vergelijkingen. Op het tijdstip t = 0 is P op het punt (1, 1, op de y = x lijn dus. Vanaf dat moment is P onder deze lijn tot het moment dat P weer op de y = x lijn komt. Dit moment is precies het snijpunt van de baan van P met de y = x lijn. Hierna bevindt P zich een aantal seconden boven de y = x lijn totdat de baan van P weer de y = x lijn snijdt, waarna P weer een aantal seconden onder de y = x lijn komt. Hierna zal de baan van P de y = x lijn nog één keer snijden en vanaf dat moment is P alleen maar boven de y = x lijn. Voor het gemak zullen we het moment t = 0 met M 0 noteren en de andere snijmomenten van de baan van P met de y = x lijn respectievelijk met M 1, M en M. We moeten nu bepalen voor welke waarden van t de momenten M 1 tot en met M worden bereikt. Immers, de tijd dat het punt P onder de y = x lijn is, is de som van de tijden tussen de momenten M 0 en M 1 en tussen de momenten M en M. Dus als we deze momenten weten, kunnen we ook de totale tijd dat P onder de lijn y = x is bepalen. De snijpunten van de baan van P met de y = x lijn zijn de punten waar de gegeven vergelijkingen voor beide coördinaten aan elkaar gelijk zijn ( π ( 4π x(t = cos 15 t = cos 15 t = y(t. Dit is een standaard vergelijking voor cosinus en de algemene vorm van deze vergelijking is cos (A = cos (B. De oplossingen van deze vergelijking zijn 1. A = B + k π voor elk geheel getal k.. A = B + k π voor elk geheel getal k. De oplossingen van het eerste stelsel zijn π 15 t = 4π 15 t + k π. Dit lossen we naar t op: t = 4 t + k 0, dus t = 10 k voor elk geheel getal k. Bedenk dat t nooit negatief mag zijn en dus is de oplossingsverzameling voor t = 0, 10, 0,.... De oplossingen van het tweede stelsel zijn π 4π 15 t = 15 t+k π. Naar t oplossen levert: t = 4 t + 0 k, dus t = 6 k voor elk geheel getal k. VWO - Wiskunde B - Mei 01 9

10 Ook hier mag t alleen de positieve waarden aannemen. De oplossingsverzameling is dus t = 0, 6, 1, 18,.... Omdat het domein van t het interval [0, 15] is nemen we van de boven genoemde oplossingsverzamelingen de t waarden die kleiner of gelijk zijn aan 15. Dat zijn de momenten t = 0, t = 6, t = 10, t = 1 en merk op dat deze momenten dus respectievelijk de momenten M 0 tot en met M zijn. Antwoord: tussen de momenten M 0 = 0 en M 1 = 6 is P dus 6 seconden lang onder de y = x lijn. Tussen de momenten M = 10 en M = 1 is P dus seconden onder de y = x lijn. Het punt P is in totaal 6 + = 8 seconden onder de lijn y = x. Opgave 1. Het moment dat P de y-as passeert, is het moment dat de x- coördinaat nul wordt: ( π x(t = cos 15 t = 0. Omdat cos(π/ = 0, hebben we dus π 15 t = π. Dit oplossen naar t geeft: t = 15 π π = 71 De y-as wordt dus precies na 7 1 seconden gepasseerd. De vraag is dus wat de snelheid van P in de x-richting is op t = 7 1 seconden. Dat berekenen we door 7 1 in te vullen in de afgeleide functie van x(t omdat x(t de beweging van P in de x-richting beschrijft. Aldus berekenen we de afgeleide van x(t: ( ( π ( π x (t = cos 15 t = sin 15 t π 15. Het invullen van 7 1 in x (t geeft ( x 7 1 (( 7 1 = sin π 15 π ( π 15 = sin π 15 = π 15 is de exacte snelheid (in m/s van P in de x-richting op dat moment. Verschoven platen Opgave 1. De driehoeken AP O en P QQ zijn gelijkvormig. De aard van gelijkvormigheid is hoek-hoek-hoek relatie. Immers, als AP O = α dan is OAP = 90 α en ook P QQ = 90 α. We zien dat de hoeken van de driehoek AP O gelijk zijn aan α, 90 α en 90. Dit geldt ook voor de driehoek P QQ. We gebruiken het feit dat de verhoudingen van de zijden van de gelijkvormige driehoeken bewaard blijven. Dat betekent in dit concrete geval dat OP AP = P Q P Q. Merk op dat de lengten OP = p, P Q = 80, P Q = p + q alle drie in de tekst gegeven zijn en dat AP berekend kan worden met de stelling van Pythagoras: AP = p + 5 en dus AP = p + 5. VWO - Wiskunde B - Mei 01 10

11 Deze lengten invullen in de hierboven genoemde verhouding en vervolgens beide kanten van de gelijkheid vermenigvuldigen met 80 levert p p + 5 = p + q 80 = 80 p p + 5 = p + q. We krijgen de gewenste uitdrukking voor q in termen van p als we van de beide kanten van deze laatste gelijkheid een p aftrekken q = 80 p p + 15 p. Opgave 14. Dit kunnen we aantonen door de afgeleide functie op de gebruikelijke wijze uit te rekenen met behulp van de quotientregel en de kettingregel. q (p = p 80 p p p +15 p = 80 p +15 p +15 p +15 p p p +15 = 80 (p p (p + 15 p = 80 p p (p + 15 p = (p + 15 p Opgave 15. In het voorgaande hebben we dus q opgevat als een functie van p en nu willen we zijn maximum bepalen. Dit maximum wordt bereikt in het punt waar de afgeleide functie van q gelijk aan nul is. q (p = (p + 15 p = 0. Door links en rechts 1 op te tellen, krijgen we Dit is hetzelfde als (p + 15 p + 15 = = ( p + 15, en door nu aan beide kanten te verheffen tot de /e-macht krijgen we Dit uitwerken levert ( (p (4.000 = = p + 15 p = 675, VWO - Wiskunde B - Mei 01 11

12 bedenk hier dat p een positieve afstand is en dus dat p = 675. De functie q(p bereikt zijn maximum in het punt p = 675. Dit getal invullen in q(p geeft het maximum van q: ( q 675 = ( = = = = 675. Evenwijdige lijnen en een rechthoek Opgave 16. We moeten bewijzen dat de vierhoek ABCD een rechthoek is. Het is voldoende te laten zien dat alle hoeken 90 graden zijn. Dat de hoeken ABC en ADC recht zijn is een directe conclusie die we uit de stelling van Thales mogen trekken: Een omtrekshoek is de helft van de bijbehorende middelpuntshoek. In de opgave is het namelijk gegeven dat AC een middellijn is. De omtrekshoeken ABC en ADC horen bij de middellijn AC en dus zijn ze recht. Noem de hoek ACD = α, dan is ook de hoek BAC = α, omdat ze Z-hoeken zijn, hier gebruiken we dat de lijnen AB en CD evenwijdig zijn. Dan geldt CAD = 90 α omdat de som van de hoeken van de driehoek ACD bij elkaar 180 graden is. Dat geldt ook voor de driehoek ABC en dus is de hoek ACB ook gelijk aan 90 α. Hoek BCD van de vierhoek is dus α + (90 α = 90. Op dezelfde wijze is de hoek BAD van de vierhoek gelijk aan α + (90 α = 90. We zien dat ABCD een vierhoek is met vier rechte hoeken en dus is ABCD een rechthoek. Opgave 17. Merk op dat CDE = ACD omdat ze Z-hoeken zijn. We gebruiken hier dat de lijn l en de middellijn AC parallel zijn. Noem nu de hoeken CDE = ACD = α. Dan is CM E = α omdat deze de middelpuntshoek is die bij de omtrekshoek CDE hoort. Er geldt dus binnen de driehoek CMS dat CMS = α en MCS = α. We mogen dus concluderen dat de derde hoek van CMS, de hoek CSM, gelijk aan 180 α is omdat de som van de hoeken in een driehoek 180 is. We zien nu direct dat de buitenhoek CSE van CMS gelijk aan α is. Dit bewijst dat CSE = α = CDE. VWO - Wiskunde B - Mei 01 1

2012 I Onafhankelijk van a

2012 I Onafhankelijk van a 0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: juli 00 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 07 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 4 vragen. Voor dit eamen zijn maimaal 7 punten te behalen. Voor elk vraagnummer

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Eindexamen vwo wiskunde B 2013-I

Eindexamen vwo wiskunde B 2013-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 maandag 15 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 maandag 15 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 017 tijdvak 1 maandag 15 mei 13:30-16:30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 14 vragen. Voor dit examen zijn maximaal 69 punten te behalen. Voor elk

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 015 tijdvak 1 woensdag 13 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2005-I

Eindexamen wiskunde B1-2 vwo 2005-I Eindexamen wiskunde B- vwo 005-I 4 Beoordelingsmodel Inademen Maximumscore,5t, 6( e ), 4,5t (: e 0,90) beschrijven hoe de oplossing van deze vergelijking (met de GR) kan worden gevonden t 0,9 ( t 0,9)

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen HAVO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Vliegende parkieten Opgave 1. Het energieverbruik van de parkiet als deze vliegt met

Nadere informatie

4 A: = 10 B: 4 C: 8 D: 8

4 A: = 10 B: 4 C: 8 D: 8 Hoofdstuk OPPERVLAKTE VWO 0 INTRO A: + 6 = 0 B: C: 8 D: 8 DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0 Daar gaan twee halve

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

12.1 Omtrekshoeken en middelpuntshoeken [1]

12.1 Omtrekshoeken en middelpuntshoeken [1] 12.1 Omtrekshoeken en middelpuntshoeken [1] Stelling van de constante hoek: Voor de punten C en D op dezelfde cirkelboog AB geldt: ACB = ADB. Omgekeerde stelling van de constante hoek: Als punt D aan dezelfde

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Eerste en derdegraadsfunctie

Eerste en derdegraadsfunctie Eerste en derdegraadsfunctie Gegeven zijn f (x) = (x 2 1)(x 1½) en g (x) = x + 1½ ; De grafieken van f en g snijden beide de y-as in A(0, 1½) en de x-as in B(1½, 0). De grafiek van g raakt in punt A aan

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

Vraag Antwoord Scores ( ) ( ) Voor de waterhoogte h geldt: ( 2h+ 3h 2h

Vraag Antwoord Scores ( ) ( ) Voor de waterhoogte h geldt: ( 2h+ 3h 2h Eindexamen vwo wiskunde B 0 - II Een regenton maximumscore 5 h V= ( rx ( )) d x 0 00 ( rx ( )) ( 5 5x 5x ) = + Een primitieve van 5+ 5x 5x is 5x+ 7 x 5x Dus = ( 5 + 7 5 ) V h h h 00 V = h+ h h = h+ h h

Nadere informatie

Eindexamen wiskunde B vwo II

Eindexamen wiskunde B vwo II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2006-I

Eindexamen wiskunde B1-2 vwo 2006-I Eindexamen wiskunde B- vwo 006-I Beoordelingsmodel Sauna 0,9 00 80 e t 00 beschrijven hoe deze vergelijking opgelost kan worden de oplossing t,07 het tijdstip 7:0 uur 0,9t S () t 80 0,9 e S () 9, 06 het

Nadere informatie

Eindexamen wiskunde B pilot havo II

Eindexamen wiskunde B pilot havo II Eindexamen wiskunde B pilot havo 0 - II Beoordelingsmodel Mosselen maximumscore L = 9 invullen in de gegeven formule geeft C 5 De hoeveelheid gefilterd water is (ongeveer) 5 = 8 ml per dag Dit is meer

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting.

Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking.

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking. G&R havo B deel Differentiaalrekening C von Schwartzenberg /0 Toets voorkennis EXTRA: Differentiëren op bladzijde 56 aan het einde van deze uitwerking a f ( ) 5 7 f '( ) 8 5 b g( ) ( 5) 5 g '( ) 6 0 c

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 donderdag 23 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 donderdag 23 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2016 tijdvak 2 donderdag 23 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 16 vragen. Voor dit examen zijn maximaal 76 unten te behalen. Voor

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2005-I

Eindexamen wiskunde B1-2 vwo 2005-I Inademen Bij controlemetingen aan de ademhaling wordt men gevraagd om diep uit te ademen en vervolgens gedurende vijf seconden zo diep mogelijk in te ademen. Tijdens het inademen is de hoeveelheid verse

Nadere informatie

2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen:

2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: e 00

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde B, (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Woensdag 3 juni 3.30 6.30 uur 0 04 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit 9 vragen.

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 0 tijdvak woensdag 8 mei 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 31 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 31 mei uur wiskunde B,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Dinsdag 3 mei 3.30 6.30 uur 20 05 Voor dit examen zijn maximaal 89 punten te behalen; het examen bestaat uit 20 vragen. Voor elk

Nadere informatie

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2.

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2. Bal in de sloot Een bal met een straal van cm komt in een figuur sloot terecht en blijft drijven. Het laagste punt van de bal bevindt zich h cm onder het wateroppervlak. In figuur zie je een doorsnede

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Examen VWO. wiskunde B1

Examen VWO. wiskunde B1 wiskunde B Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Dinsdag 3 mei 3.3 6.3 uur 5 Voor dit eamen zijn maimaal 87 punten te behalen; het eamen bestaat uit vragen. Voor elk vraagnummer is

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2014 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur Wiskunde B Profi Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Donderdag 25 mei 3.30 6.30 uur 20 00 Dit eamen bestaat uit 7 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

Eindexamen wiskunde B 1-2 vwo I

Eindexamen wiskunde B 1-2 vwo I Eindexamen wiskunde B - vwo - I Beoordelingsmodel Oppervlakte en inhoud bij f(x) = e x maximumscore e Lijn AB heeft richtingscoëfficiënt = (e ) Voor lijn AB geldt de formule y = (e ) x + De oppervlakte

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

15.1 Oppervlakten en afstanden bij grafieken [1]

15.1 Oppervlakten en afstanden bij grafieken [1] 15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

integreren is het omgekeerde van differentiëren

integreren is het omgekeerde van differentiëren Integraalrekening Als we een functie f(x) differentiëren is het resultaat de eerste afgeleide f (x). Dezelfde functie f(x) kunnen we ook integreren met als resultaat de zogenaamde primitieve functie F(x).

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Vraag Antwoord Scores. 1 (dus de oppervlakte. van V en de oppervlakte van driehoek OAB zijn gelijk ) 1

Vraag Antwoord Scores. 1 (dus de oppervlakte. van V en de oppervlakte van driehoek OAB zijn gelijk ) 1 Beoordelingsmodel Vraag Antwoord Scores Gelijke oervlakte maximumscore f' ( x) = x x = geeft x = Dit geeft x = ( ) ( ) f = = (dus de coördinaten van T zijn ( ) maximumscore 6 De oervlakte van V is ( )

Nadere informatie

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar 25 JAAR VLAAMSE WISKUNDE OLYMPIADE De slechtst beantwoorde vragen in de eerste ronde per jaar Samenstelling en lay-out: Daniël Tant Luc Gheysens Vlaamse Wiskunde Olympiade v.z.w. VWO 1 1986 Vraag 17 Een

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

2010-II bij vraag 1. Vooraf: De stelling van de constante (omtreks)hoek.

2010-II bij vraag 1. Vooraf: De stelling van de constante (omtreks)hoek. 200-II bij vraag Vooraf: De stelling van de constante (omtreks)hoek. Een applet (animatie) hierover is te vinden op bijvoorbeeld: http://home.planet.nl/~hietb062/java3.htm#constantehoek De punten P op

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B, (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Vrijdag 4 mei 3.30 6.30 uur 0 0 Voor dit examen zijn maximaal 86 punten te behalen; het examen bestaat uit 8 vragen.

Nadere informatie

Eindexamen vmbo gl/tl wiskunde I

Eindexamen vmbo gl/tl wiskunde I Beoordelingsmodel Snelwandelen maximumscore 4 50 km is 50 000 meter 3 uur, 35 minuten en 47 seconden is gelijk aan 947 seconden 50 000 = 3,86 (m/s) 947 Het antwoord: 3,9 (m/s) maximumscore maximale snelheid

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2008-II

Eindexamen wiskunde B1-2 vwo 2008-II Eindeamen wiskunde B- vwo 008-II Beoordelingsmodel Een zwaartepunt maimumscore 6 ( f( )) = ( ) = Een primitieve van is 4 4 ( ( )) d = 4 0 V = 4π= π 4 π Z = = (= 0,75) π 8 Onder een grafiek maimumscore

Nadere informatie

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek . Omtrekshoeken en middelpuntshoeken Opgave : ACB is constant Opgave : a. * b. * c. ACB AMB Opgave 3: a. * b. de drie cirkels gaan door één punt c. de drie lijnstukken gaan door één punt Opgave 4: a. Teken

Nadere informatie

Examen havo wiskunde B 2016-I (oefenexamen)

Examen havo wiskunde B 2016-I (oefenexamen) Examen havo wiskunde B 06-I (oefenexamen) De rechte van Euler Gegeven is cirkel c met middelpunt (, ) p Stel een vergelijking op van c. De punten B(, 0) en ( 4, 0) M die door het punt A( 0, 4) C liggen

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage. amen VWO 2009 tijdvak dinsdag 2 juni 3.30-6.30 uur wiskunde B,2 Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 9 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor elk vraagnummer

Nadere informatie

Eindexamen wiskunde B1 vwo 2002-I

Eindexamen wiskunde B1 vwo 2002-I Eindexamen wiskunde B1 vwo 00-I Verschuivend zwaartepunt Een kubusvormige bak met deksel heeft binnenmaten 10 bij 10 bij 10 cm en weegt 1 kilogram. Het zwaartepunt B van de bak ligt in het centrum van

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk

Nadere informatie

Eindexamen wiskunde B1-2 havo 2004-I

Eindexamen wiskunde B1-2 havo 2004-I Eindexamen wiskunde - havo 004-I 4 eoordelingsmodel Kogelstoten De score van André is,8 De score van ernard is,55 De conclusie dat voor k = 0, ernard niet de hoogste score heeft de vergelijking die hoort

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur Examen HAVO 011 tijdvak woensdag juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 009 tijdvak woensdag 4 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Correctievoorschrift VWO. Wiskunde B Profi. Voorbereidend Wetenschappelijk Onderwijs. Tijdvak 1

Correctievoorschrift VWO. Wiskunde B Profi. Voorbereidend Wetenschappelijk Onderwijs. Tijdvak 1 Wiskunde B Profi Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 00 Tijdvak 0000 CV5 Begin Regels voor de beoordeling Het werk van de kandidaten wordt beoordeeld met inachtneming van

Nadere informatie

Examen VWO. wiskunde B1,2

Examen VWO. wiskunde B1,2 wiskunde B1,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur 20 05 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

Eindexamen wiskunde b 1-2 havo 2002 - II

Eindexamen wiskunde b 1-2 havo 2002 - II Pompen of... Een cilindervormig vat met een hoogte van 32 dm heeft een inhoud van 8000 liter (1 liter = 1 dm 3 ). figuur 1 4p 1 Bereken de diameter van het vat. Geef je antwoord in gehele centimeters nauwkeurig.

Nadere informatie

Examen VWO. wiskunde B1 (nieuwe stijl)

Examen VWO. wiskunde B1 (nieuwe stijl) wiskunde B1 (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 2 juni 1.0 16.0 uur 20 04 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit 18

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE A: +6=0 B: C: 8 D: 8.0 INTRO. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve rechthoeken

Nadere informatie