1 Vlaamse Wiskunde Olympiade : Tweede Ronde.
|
|
- Ludo Pieter-Jan Verstraeten
- 1 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Vlaamse Wiskunde Olympiade : Tweede Ronde De tweede ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij 4 punten bij, een blanco antwoord bezorgt hem of haar 0 punten en een foutief antwoord wordt als aangerekend De voorziene antwoordduur bedraagt uur De problemen Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen, 44, 7 5, 6 7, 6458 π, 46 Hoeveel verschillende geldige antwoordpatronen zijn er mogelijk bij deze ronde van de Vlaamse Wiskunde Olympiade? (A) 0 6! (B) 5 0 (C) 80 (D) 0 6 (E) 6 0 Als een diagonaal van een vierkant lengte heeft, dan is de oppervlakte van het vierkant gelijk aan (A) (B) (C) (D) 4 (E) 4 Beschouw de functies: f() =, g() =, h() = Dan is (h g f)() gelijk aan (A) (B) 8 (C) 8 (D) 8 (E) 4 In een gelijkbenige driehoek met tophoek 0 beschouwen we alle hoogtelijnen, zwaartelijnen en binnenbissectrices uit de drie hoekpunten Hoeveel verschillende rechten zijn dit? (A) 9 (B) 7 (C) 6 (D) 5 (E) 5 Hoeveel van de volgende veeltermen kunnen ontbonden worden als een produkt van veeltermen met reële coëfficiënten en van strikt lagere graad? + 4, + 8, 4 + 6, 5 + (A) 0 (B) (C) (D) (E) 4 c Vlaamse Wiskunde Olympiade vzw Overname enkel toegelaten mits bronvermelding
2 6 Wat is het laatste cijfer van de volgende som? S =! +! +! ! + 996! (Voor n N 0 : n! = n (n ) ) (A) 9 (B) 7 (C) 5 (D) (E) 7 Hoeveel natuurlijke getallen kleiner dan 00 hebben minstens 4 verschillende priemdelers? (A) 0 (B) (C) (D) (E) 5 8 Een blad papier is vierkant geruit Hoeveel niet-congruente samenhangende figuren kan men tekenen die precies 4 volledige ruitjes bevatten? (Twee ruitjes noemen aanliggend als ze een gemeenschappelijke zijde hebben Een figuur heet samenhangend wanneer men van elk ruitje naar elk ander ruitje kan gaan via opeenvolgende aanliggende ruitjes) (A) (B) 4 (C) 5 (D) 6 (E) 7 9 Beschouw de volgende uitspraken: I Als een vierhoek, ingeschreven in een cirkel, gelijkzijdig is, dan zijn al zijn hoeken gelijk II Als een vierhoek, ingeschreven in een cirkel, gelijke hoeken heeft, dan zijn al zijn zijden gelijk III Als een vierhoek, omgeschreven aan een cirkel, gelijkzijdig is, dan zijn al zijn hoeken gelijk Er geldt: (A) I, II en III zijn juist (B) I en II zijn juist, III is fout (C) I en III zijn juist, II is fout (D) Enkel I is juist (E) Geen enkele uitspraak is juist 0 Hoeveel natuurlijke getallen n bestaan er (0 n 996) zodat 96n een natuurlijk getal is? (A) 4 (B) 5 (C) 6 (D) 0 (E) Een kegelvormig reservoir heeft een hoogte van m en een grondvlakdiameter van m Wanneer het reservoir recht op zijn punt staat, bereikt de vloeistof een maimale hoogte van m Op de wand wordt een merkteken aangebracht ter hoogte van het
3 vloeistofoppervlak Het reservoir wordt nu met de punt omhoog gezet en de vloeistof stabiliseert zich weer op de hoogte van het merkteken Bereken (A) = (B) = (C) = 4 (D) = (E) = Het aantal oplossingen in R van de vergelijking ( + )( + ) = is (A) 0 (B) (C) (D) (E) 4 De verzameling van de punten (, y) in het vlak die voldoen aan + y = wordt voorgesteld door y y (A) (B) y y (C) (D) y (E) 4 Hoeveel oplossingen in Z bezit het stelsel { y < + y < 5? (A) (B) (C) 4 (D) 5 (E) meer dan 5
4 5 Als ( ) 4 = a 8 8 +a a +a 0, dan is de waarde van a 8 +a 6 +a 4 +a gelijk aan (A) 56 (B) 55 (C) 54 (D) 8 (E) 7 6 Hoeveel koppels gehele getallen (n, k) bestaan er met de eigenschap dat = n + 5k? (A) 0 (B) 7 (C) 8 (D) 5 (E) oneindig veel 7 De middelpunten m en m van twee cirkels met straal 4 worden verbonden door een rechte Die cirkels snijden het lijnstuk [m m ] in nog twee punten zodanig dat het lijnstuk [m m ] in precies drie gelijke delen verdeeld wordt Hoe groot is de straal van de cirkel, die de rechte m m raakt en die tevens de beide cirkels uitwendig raakt? m m (A) (B) 0 (C) 5 (D) 6 (E) 8 8 In een orthonormaal assenstelsel beschouwen we twee parabolen die congruent zijn met de parabool met vergelijking y = De ene is een parabool met de holle zijde naar boven en met de top in (0, ) De andere is een parabool met de holle zijde naar beneden en met de top in (, 0) Een rechte evenwijdig met de y-as snijdt deze parabolen in a en b Wat is de kortste afstand tussen a en b? (A) (B) (C) 5 (D) (E) 4 9 Van drie beweringen A, B en C is het volgende geweten: Als A juist is, dan zijn B en C juist Als B juist is, dan is er van A en C tenminste één juist Als C juist is, dan is A juist en B fout Welke van de beweringen A, B, C zijn dan juist? (A) enkel A (B) enkel B (C) enkel C (D) geen enkele (E) allemaal 4
5 0 In de gelijkbenige driehoek abc met tophoek b van 0 trekt men de bissectrice van de hoek in a Deze verdeelt het lijnstuk [bc] in twee delen, waarvan de verhouding van de grootste lengte tot de kleinste lengte gelijk is aan (A) (B) (C) + (D) (E) Gegeven is een driehoek abc met ac = B, ab = C en bc = A Als A + B + B + C = A + B + C, dan is b gelijk aan (A) 0 (B) 45 (C) 60 (D) 90 (E) geen van de vorige Vier dorpen die de hoekpunten vormen van een vierkant met zijde, worden met elkaar verbonden door wegen Welke van de 5 volgende wegenconfiguraties levert de kleinste totale wegafstand (= som van de lengten van de lijnen) op? Elke figuur bevat minstens twee symmetrieassen (A) (B) (C) (D) (E) In een driehoek abc is pq de middenparallel ( bc, p [ab]) en r een punt van [bc], zodanig dat br = rc Noem s het snijpunt van pq en ar Als je de oppervlakte van de driehoek aqs als eenheid neemt, dan is de oppervlakte van het trapezium psrb gelijk aan (A) (B) 4 (C) 5 (D) 6 (E) 7 4 Een vader bezit een aantal goudstukken en verdeelt ze onder zijn zonen Hij geeft aan de eerste zoon de helft van het aantal stukken plus één en aan de tweede één derde van de overblijvende stukken Wat is het minimum aantal stukken dat de vader moet bezitten zodat de derde zoon meer dan 0 goudstukken krijgt? (A) (B) (C) 8 (D) 6 (E) 00 5 Een Egyptische piramide heeft vier gelijkzijdige driehoeken als opstaande zijvlakken Bepaal de hoek tussen twee overstaande zijvlakken (y = Bgcos = cos y en y [0, π]) (y = Bgsin = sin y en y [ π, π ]) 5
6 (A) π 4 (B) π (C) Bgcos (D) π (E) Bgsin 6 Beschouw de getallen,4,6,, 994, 996 Teken één pijl van getal a naar getal b enkel en alleen als a < b Hoeveel pijlen verkrijg je zo? (A) 997 (B) 998 (C) 996 (D) (E) Een cirkel met middelpunt o en straal r wordt gesneden door twee niet-evenwijdige rechten K en L Het snijpunt s van deze rechten ligt buiten de cirkel De rechte K gaat door o en snijdt de cirkel in de punten a en b (b [as]) De rechte L snijdt de cirkel in de punten c en d (d [cs]) De lengte sd is gelijk aan r Het verband tussen α = aôc en β = bŝd is: L c d K b s o a (A) α = β (B) α = 5 β (C) α = β (D) α = 7 β (E) α = 4β 8 Drie punten in R liggen niet op een rechte Hoeveel verschillende rechten bestaan er waarvoor geldt dat de drie punten op dezelfde afstand liggen van die rechte? (A) (B) (C) 4 (D) 6 (E) oneindig veel 9 Hoeveel oplossingen zijn er voor het volgende probleem? Bepaal drie verschillende natuurlijke getallen a < b < c met de eigenschap dat de som a + b + geheel is c (A) geen (B) (C) (D) 6 (E) oneindig veel 0 Welke vergelijking heeft y = tg0 als oplossing? (A) y y y + = 0 (B) y + y + y + = 0 (C) y + y y = 0 (D) y y + y = 0 (E) y = 6
1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.
1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij
1 Vlaamse Wiskunde Olympiade: tweede ronde
Vlaamse Wiskunde Olympiade: tweede ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt
1 Vlaamse Wiskunde Olympiade : Tweede ronde.
1 Vlaamse Wiskunde Olympiade 1998-1999: Tweede ronde De tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt
1 Vlaamse Wiskunde Olympiade : Eerste Ronde.
Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten
1 Vlaamse Wiskunde Olympiade : Eerste Ronde.
1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten
1 Vlaamse Wiskunde Olympiade : Eerste Ronde.
Vlaamse Wiskunde Olympiade 99 99 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per
13 Vlaamse Wiskunde Olympiade : Tweede ronde.
13 Vlaamse Wiskunde Olympiade 1999-000: Tweede ronde De tweede ronde bestaat eveneens uit 30 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt
1 Vlaamse Wiskunde Olympiade : Tweede Ronde.
1 Vlaamse Wiskunde Olympiade 1996 1997: Tweede Ronde e tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem werkt (opnieuw) als volgt : een deelnemer start met 0 punten Per goed antwoord
1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.
Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -
Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)
Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.
Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen
Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden
1 Vlaamse Wiskunde Olympiade : eerste ronde
1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan
1 Junior Wiskunde Olympiade : tweede ronde
1 Junior Wiskunde Olympiade 200-2005: tweede ronde De tweede ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord
1 Vlaamse Wiskunde Olympiade : Tweede Ronde
Vlaamse Wiskunde Olympiade 988-989: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -
1 Junior Wiskunde Olympiade: tweede ronde
Junior Wiskunde Olympiade: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt hem
1 Vlaamse Wiskunde Olympiade : Eerste ronde.
1 Vlaamse Wiskunde Olmpiade 1997-1998: Eerste ronde De eerste ronde bestaat uit meerkeuzevragen Het quoteringsssteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord
1 Vlaamse Wiskunde Olympiade : Eerste Ronde.
Vlaamse Wiskunde Olympiade 986 987: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij
1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde
Vlaamse Wiskunde Olmpiade 008-009: tweede ronde Wat is het voorschrift van deze tweedegraadsfunctie? (0, ) (, ) 0 (A) f() = ( + ) (B) f() = ( + ) + (C) f() = ( ) + (D) f() = ( ) (E) f() = ( ) + In volgend
1 Vlaamse Wiskunde Olympiade : Tweede Ronde.
Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination
Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde
Vlaamse Wiskunde lmpiade 2007-2008: tweede ronde 1 Jef mit cola met whisk in de verhouding 1 : In whisk zit 40% alcohol Wat is het alcoholpercentage van de mi? () 1, (B) 20 (C) 25 () 0 (E) 5 2 ver jaar
Vlaamse Wiskunde Olympiade 2011-2012: tweede ronde
Vlaamse Wiskunde Olympiade 011-01: tweede ronde 1. Op hoeveel manieren kan deze ronde van de wiskunde olympiade opgelost worden met precies één antwoord dat foutief of blanco is? () 0 () 10 (C) 150 (D)
1 Junior Wiskunde Olympiade : eerste ronde
Junior Wiskunde Olympiade 003-004: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt
1 Junior Wiskunde Olympiade 2010-2011: tweede ronde
1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1. Het quotiënt 28 is gelijk aan 82 (A) 2 0 () 2 1 (C) 2 2 (D) 2 3 (E) 2 4 2. Het resultaat van de vermenigvuldiging 1 3 5 7 9 2011 eindigt op het cijfer
Overzicht eigenschappen en formules meetkunde
Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules
1 Vlaamse Wiskunde Olympiade : tweede ronde
1 Vlaamse Wiskunde Olympiade 006-007: tweede ronde 1 In een rechthoekige driehoek verdeelt de bissectrice uit een scherpe hoek de overstaande zijde in twee stukken met lengten 4 en 5 (zie figuur) De oppervlakte
11 Junior Wiskunde Olympiade 2001-2002: tweede ronde
Junior Wiskunde Olympiade 200-2002: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord
1 Vlaamse Wiskunde Olympiade 2009-2010: eerste ronde
Vlaamse Wiskunde Olympiade 009-00: eerste ronde Hoeveel is 5 % van 5 % van? (A) 6 (C) 5 (D) 5 (E) 65 Wat is de ribbe van een kubus als zijn volume 5 is? (A) 5 5 (C) 5 (D) 5 (E) 5 De oplossingen van de
1 Vlaamse Wiskunde Olympiade : Tweede Ronde.
1 Vlaamse Wiskunde Olympiade 1994-1995 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination
Meetkundige Ongelijkheden Groep 2
Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus
1 Vlaamse Wiskunde Olympiade 2009-2010: tweede ronde
Vlaamse Wiskunde Olympiade 009-00: tweede ronde Welke van de volgende vergelijkingen heeft als oplossing precies alle gehele veelvouden van π? () sinx = 0 (B) cos x = 0 (C) sinx = 0 (D) cosx = 0 (E) sinx
PQS en PRS PS is de bissectrice van ˆP
OEFENINGEN 1 Kleur de figuren die congruent zijn met elkaar in dezelfde kleur. 2 Gegeven: PQS en PRS PS is de bissectrice van ˆP Gevraagd: Zijn de driehoeken congruent? Verklaar. 3 Gegeven: Gevraagd: Is
1 Junior Wiskunde Olympiade: eerste ronde
Junior Wiskunde Olympiade: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord bezorgt
Junior Wiskunde Olympiade : tweede ronde
Junior Wiskunde Olympiade 2007-2008: tweede ronde 1 Op de figuur stellen de getallen de grootte van de hoeken voor De waarde van x in graden is gelijk aan 2x 90 x 24 (A) 22 (B) 1 (C) (D) 8 (E) 57 2 Welke
Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer
Voorbereidende sessie toelatingsexamen
1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal
1 Junior Wiskunde Olympiade 2006-2007: eerste ronde
1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Welke ongelijkheid is juist? (A) 3 5 < 2 6 (C) 5 6 < 3 (B) 3 7 < 2 (D) 5 7 < 2 10 (E) 5 < 6 7 2 Hoeveel vierkante meter is 1600 vierkante centimeter?
Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk
1 Vlaamse Wiskunde Olympiade : Tweede Ronde.
Vlaamse Wiskunde Olympiade 97-9: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (Annual High School Mathematics Examination - USA en
10 Junior Wiskunde Olympiade : eerste ronde
10 Junior Wiskunde Olympiade 2001-2002: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord
1 Junior Wiskunde Olympiade : eerste ronde
1 Junior Wiskunde Olympiade 2008-2009: eerste ronde 1 Hoeveel is 2 5 7? (A) 10 21 (B) 25 7 (C) 7 10 (D) 1 15 (E) 29 21 2 Welke van volgende sommen is gelijk aan 10? (A), + 5,555 (B) 2,222 + 6,666 (C),
Antwoordmodel - Vlakke figuren
Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.
Eindexamen vwo wiskunde B 2013-I
Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande
1 Junior Wiskunde Olympiade : eerste ronde
1 Junior Wiskunde Olympiade 2005-2006: eerste ronde 1 Vier van de volgende figuren zijn het beeld van minstens één andere figuur door een draaiing in het vlak Voor één figuur is dit niet het geval Welke?
wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen
Kleur de congruente vierhoeken in onderstaand mozaïek in eenzelfde kleur.
VRAAG 1 Kleur de congruente vierhoeken in onderstaand mozaïek in eenzelfde kleur. VRAAG 2 Duid in de onderstaande figuur de overeenkomstige zijden en hoeken van de congruente driehoeken aan met eenzelfde
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),
13 Vlaamse Wiskunde Olympiade: tweede ronde
3 Vlaamse Wiskunde Olympiade: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord bezorgt
RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want
ANALYTISCHE MEETKUNDE: HERHALING DERDE JAAR OEFENINGEN Lees eerst de formules op het andere blad, en los vervolgens de oefeningen van het bijbehorende deel op. Wanneer je alles hebt opgelost, maak je de
1 Junior Wiskunde Olympiade : tweede ronde
1 Junior Wiskunde Olympiade 2003-2004: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord
Construeer telkens twee hoeken waarvan de cosinus of sinus gegeven is. Teken voor elke opgave een andere goniometrische cirkel.
Herhalingsoefeningen Driehoeksmeting Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Construeer
Eindexamen wiskunde B vwo 2010 - I
Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande
Hoofdstuk 7 : Gelijkvormige figuren
Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor
Hoofdstuk 2 : VLAKKE FIGUREN
1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.
Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat
CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus
CEVA-DRIEHOEKEN Eindwerk wiskunde 010 Heilige-Drievuldigheidscollege 6WeWIi Soetemans Dokus Inhoud 1. Inleiding... 4 1.1. Info over Giovanni Ceva... 4 1.. Wat zijn Ceva-driehoeken?... 4 1.3. Enkele voorbeelden...
Hoofdstuk 4: Meetkunde
Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair
2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een
Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig
Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.
1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.
Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord
Eindexamen vwo wiskunde B 2014-I
Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte
2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β.
1 Synthetische RM 1. (a) Geef de definitie van de loodrechte stand van twee vlakken. (b) Geen stellingen die voorwaarden uitdrukken opdat twee vlakken orthogonaal zijn. (c) Steun op 1a of 1b om te bewijzen
Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een
Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer
Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer staat
Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi
Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi Trainingsweekend 23 25 januari 2009 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen voor de verschillende
Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage.
amen VWO 2009 tijdvak dinsdag 2 juni 3.30-6.30 uur wiskunde B,2 Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 9 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor elk vraagnummer
4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden
4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In
25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar
25 JAAR VLAAMSE WISKUNDE OLYMPIADE De slechtst beantwoorde vragen in de eerste ronde per jaar Samenstelling en lay-out: Daniël Tant Luc Gheysens Vlaamse Wiskunde Olympiade v.z.w. VWO 1 1986 Vraag 17 Een
Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht
Hoofdstuk 1 : Hoeken -1 - Complementaire hoeken ( boek pag 7) Twee hoeken zijn complementair als... van hun hoekgrootten... is. Supplementaire hoeken ( boek pag 7) Twee hoeken noemen we supplementair als...
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,
R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet.
R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@gmail.com Van Nieuwenhuyze Roger Probleemoplossend werken in de tweede graad
Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VWO 0 tijdvak woensdag 8 mei 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer
Hoofdstuk 6 Driehoeken en cirkels uitwerkingen
Kern Meetkundige plaatsen a Zie afbeelding rechts. b In het niet-gearceerde deel. c Op de middenparallel. l m 2 a Teken lijn m en lijn n, beide evenwijdig aan l en op een afstand van 3 cm van l. b Punten
Meetkundige constructies Leerlingmateriaal
Meetkundige constructies Leerlingmateriaal Nynke Koopmans Roeland Hiele Historical Aspects of Classroom Mathematics Universiteit Utrecht, juni 2013 Inleiding Inleiding Een meetkundige constructie is een
wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan
www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl
Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²
1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand
handleiding pagina s 687 tot Handleiding 1.1 Kopieerbladen pagina 444: tangram 2 Werkboek 3 Posters
week 22 les 4 toets en foutenanalyse handleiding pagina s 687 tot 695 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 444: tangram 12 Huistaken huistaak 14: bladzijde 445 (vierhoeken tekenen)
Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Eamen VWO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen
Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur
Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten
Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra
Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2
Voorbeeld paasexamen wiskunde (oefeningen)
Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een
1 Junior Wiskunde Olympiade : tweede ronde
1 Junior Wiskunde Olympiade 009-010: tweede ronde 1 Wat is de straal van een cirkel met oppervlakte? () π π (C) π (D) π (E) π an de diagonaal [] van een vierkant met zijde 1, bouwt men links en rechts
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: juli 00 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening
Hoofdstuk 5 : De driehoek
Hoofdstuk 5 : De driehoek - 89 1. Congruente figuren Figuren die elkaar volkomen kunnen bedekken noemen we congruente figuren. Congruente figuren hebben dezelfde vorm (~ ) en dezelfde grootte (=). Als
Lijnen van betekenis meetkunde in 2hv
Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module
Eigenschappen van driehoeken
5 igenschappen van driehoeken it kun je al een hoek meten de verschillende soorten driehoeken definiëren 3 de verschillende soorten hoeken definiëren 4 de eigenschappen van de verschillende soorten hoeken
Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.
3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord
Eindexamen wiskunde B vwo II
Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande
Wiskunde D Online uitwerking 4 VWO blok 6 les 4
Wiskunde Online uitwerking 4 VWO blok 6 les 4 Paragraaf 4 Het inproduct om hoeken te berekenen Opgave a e hoek is kleiner dan 4, want het dak zelf staat onder een hoek van 45, en de kilgoot loopt schuin
1 Junior Wiskunde Olympiade : eerste ronde
Junior Wiskunde Olympiade 009-00: eerste ronde Van een rechthoek is de lengte het dubbel van de breedte Als de oppervlakte cm bedraagt, hoe lang is dan de langste zijde? (A) cm (B) cm (C) cm (D) 8 cm (E)
De Cirkel van Apollonius en Isodynamische Punten
januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand
IJkingstoets Wiskunde-Informatica-Fysica 1 juli 2015 Oplossingen
IJkingstoets Wiskunde-Informatica-Fysica 1 juli 15 Oplossingen IJkingstoets wiskunde-informatica-fysica 1 juli 15 - p. 1/1 Oefening 1 Welke studierichting wil je graag volgen? (vraag zonder score, wel
Junior Wiskunde Olympiade : eerste ronde
Junior Wiskunde lympiade 200-20: eerste ronde. Waaraan is xyz + xyz + xyz gelijk? () 3xyz () 27xyz () x 3 y 3 z 3 () 3x 3 y 3 z 3 () 27x 3 y 3 z 3 2. Welke van volgende ongelijkheden is waar? () 2 > 0,5
1 Middelpunten. Verkennen. Uitleg
1 Middelpunten Verkennen Middelpunten Inleiding Verkennen Probeer vanuit drie gegeven punten (niet op één lijn) die op een cirkel moeten liggen het middelpunt van die cirkel te construeren. Je kunt hem
Uitgewerkte oefeningen
Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4
12.1 Omtrekshoeken en middelpuntshoeken [1]
12.1 Omtrekshoeken en middelpuntshoeken [1] Stelling van de constante hoek: Voor de punten C en D op dezelfde cirkelboog AB geldt: ACB = ADB. Omgekeerde stelling van de constante hoek: Als punt D aan dezelfde
3.1 Soorten hoeken [1]
3.1 Soorten hoeken [1] Let op: Een lijn heeft geen eindpunt; Een halve lijn heeft één eindpunt Een lijnstuk heeft twee eindpunten; Het plaatje is een bovenaanzicht; De persoon kan het gedeelte binnen de
Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen.
Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Achter dit eamen is een erratum opgenomen. Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer