Leerlijnen REKENEN WISKUNDE (BB)

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Leerlijnen REKENEN WISKUNDE (BB)"

Transcriptie

1 Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij een geheel getal een breuk optellen of aftrekken De leerlingen kunnen breuken met elkaar vermenigvuldigen en met een geheel getal en andersom. ; -, 4 - = 4 + = 2 x 1 3 x 3 = ; x 2 5 1

2 Leerlijn rekenen wiskunde elfjarig basisschool Domein: Plaatsbepaling Onderwerp: Coördinaten Code Leerdoel Inhoud P11 De leerlingen kunnen een assenstelsel aanbrengen op een roosterpapier. De horizontale lijn vanuit een punt naar rechts is de positieve X as. De verticale lijn vanuit hetzelfde punt naar boven is de positieve Y as. Het snijpunt van de positieve x as met de positieve y as heet de oorsprong (O). P11 De leerlingen kunnen een plaats bepalen in een Steeds vanuit O horizontaal naar rechts en daarna vertikaal naar P11 P11 assenstelsel,waarbij er steeds vanuit de oorsprong gestart wordt. De leerlingen weten dat het aantal stappen horizontaal naar rechts de x waarde is en het aantal stappen vertikaal naar boven de y waarde is. De leerlingen kunnen een verzameling van punten in een assenstelsel uitzetten en aflezen. boven. Vanuit O twee stappen horizontaal naar rechts en daarna drie stappen vertikaal naar boven komen we terecht in een punt dat wordt aangeduid met ( 2, 3 ) 2 is de x waarde en 3 is de y waarde. Dit punt noemen we een geordend getallenpaar of coördinaat. Een verzameling van punten wordt een grafiek genoemd. 2

3 Leerlijn rekenen wiskunde elfjarig basisschool Domein: Bewerkingen Onderwerp: distributieve eigenschap, commutatieve eigenschap, substitueren, gelijksoortige termen. Code Leerdoel Inhoud B11 De leerlingen kunnen de distributieve eigenschap bij vermenigvuldigen toepassen. 5 x 91 = 5(90 + 1) 5 x 99 = 5(100 1) B11 De leerlingen kunnen de commutatieve bewerkingen uitvoeren bij optellen en vermenigvuldigen = x 12 = 12 x 8 B11 De leerlingen kunnen substitueren Als we 3x moeten berekenen voor x = 4, dan zeggen we dat x wordt vervangen door 4 ( substitueren ) B11 De leerlingen weten wat gelijksoortige termen zijn en kunnen ermee werken. 15 a + 2b + 3a + 10b = 15a + 3a + 2b + 10b 15a en 3a zijn gelijksoortige termen; 2b en 10b zijn gelijksoortige termen. Gelijksoortige termen nemen we samen. B11 De leerlingen weten wat de betekenis is van een coëfficiënt P + P + P + P + P = 5 p 5 noemen we de coëfficiënt in het getal 5P De coëfficiënt van P is 1 deze wordt weggelaten. 3

4 Leerlijn rekenen wiskunde elfjarig basisonderwijs Domein: Bewerkingen Onderwerp: Machtsverheffen (M)/Ontbinden in factoren Code Leerdoel Inhoud B11 De leerlingen kennen het begrip machtsverheffen. Machtsverheffen is een wiskundige bewerking, waarbij een getal (het grondtal) herhaaldelijk met zichzelf wordt vermenigvuldigd. - Het grondtal wordt ook wel factor genoemd. - Het aantal keren waarop het grondtal met zichzelf wordt vermenigvuldigd wordt exponent genoemd Voorbeeld: is het grondtal of factor 2 is de exponent B11 De leerlingen kunnen het begrip machtsverheffen toepassen Voorbeeld: 4 2 betekend 4 x 4 In plaats van 4 x 4 kunnen we kort opschrijven. We zeggen: vier tot de tweede macht of vier tot de tweede, of vier kwadraat. 4 Voorbeeld: 5 7 betekent 5 x 5 x 5 x 5 x 5 x 5 x 5 I.p.v. 5x5x5x5x5x5x5 kunnen we kort opschrijven 5 7. We zeggen: vijf tot de zevende macht of vijf tot de zevende. duiden we aan met macht. Elk getal tot de macht 1 is gelijk aan zichzelf. Elk positief getal tot de macht 0 is gelijk aan 1. 0 x 0 x 0 x 0= 0

5 B11 De leerlingen kunnen m.b.v machtsverheffen een getal ontbinden in factoren.. Voorbeelden : 40 = 2x2x2x5 = x 5 36 = 2x2x3x3 = x De getallen 40 en 36 zijn ontbonden in factoren. Een getal ontbinden betekent het getal schrijven als een product van priemfactoren. Getallen die slechts deelbaar zijn door 1 en zichzelf heten priemgetallen. Bv 2,3,5, 7, 11 enz.. B11 B11 De leerlingen kunnen op de juiste manier ontbinden in factoren toepassen. Leerlingen kunnen vraagstukken maken, waarin machten voorkomen Vereenvoudig 16 = 2 x 2 x 2 x 2 = x 36 = 2 x 2 x 3 x 3 = x De grootste gemeenschappelijke deler ( g g d ) van 16 en 36 is. We delen zowel 16 als 36 door 4..Dus = Voorbeeld: Bereken :(3x5) 2 : 5 = (3x5) 2 =

6 Leerlijnen rekenen wiskunde elfjarig basisschool Domein: Vergelijkingen/ongelijkheden/functies Onderwerp Lineaire vergelijkingen, stelsels van vergelijkingen, ongelijkheden, lineaire functies en grafieken. Code Leerdoel Inhoud LV11 LV11 LV11 LV11 LV11 LV11 Leerlingen kunnen het bouwschema van een lineaire vergelijking op schrijven Leerlingen kunnen aan de hand van een gegeven lineaire vergelijking 2 punten zoeken en vervolgens een lijn tekenen. Leerlingen kunnen van een lineaire vergelijking de richtingscoëfficiënt van een lijn bepalen. Leerlingen kunnen aan de hand van twee gegeven punten een vergelijking van een lijn l opstellen. Leerlingen kunnen m.b.v hun vergelijkingen het snijpunt berekenen van de lijn l met lijn m. Leerlingen kunnen een stelsel van eerstegraads vergelijkingen oplossen. Y = ax + b ( a 0 ) Teken de Lijn l met de vergelijking y = 2x +2. Bepaal de rc van lijn met een vergelijking 2X -4y =3 Stel een vergelijking van lijn l op die door de punten (5, 2 ) en ( 3,-3 ) gaat. Gegeven de lijn l met de vergelijking 3x 2y = 1 en lijn m met de vergelijking y x = 1 Bepaal de coördinaten van het snijpunt. { LV11 Leerlingen kunnen de oplossingsverzameling van een stelsel met meerdere ongelijkheden in R x R tekenen. 6 Bepaal het gebied aangegeven door 2X y > ^ y + x < 0 ^ 2x -3y > 5

7 LV11 Leerlingen kunnen eerstegraads ongelijkheden oplossen Los op: -3x < 6 LV11 Leerlingen kunnen het bouwschema van een lineaire functie f(x ) = ax + b ( a 0 ) opschrijven. LV11 Leerlingen kunnen de grafiek tekenen van en lineaire functie Teken de grafiek van de functie f (x ) = -3x +5 LV11 Leerlingen kunnen met een gegeven lineaire functie de snijpunten berekenen van de grafiek met de coördinaatassen Snijpunt met de x as: f (x ) = 0 : Snijpunt met de y as: f ( 0 ) LV11 Leerlingen kunnen met m.b.v twee gegeven punten de richtingscoëfficiënt van een lijn bepalen en de eerste graadsfunctie opschrijven. Bepaal de rc van een lijn l die gaat door ( 3, 2 ) en ( 5, 1 ) en bepaal tevens de functie. Leerlingen kunnen een lineaire vergelijking omzetten in een lineaire functie. y 2x + 3 = 0 gelijkwaardig met y = 2x 3 f ( x ) = 2x - 3 7

8 Leerlijnen rekenen - wiskunde elfjarig basisonderwijs Domein: Vergelijkingen/ongelijkheden/functies Onderwerp:Kwadratische vergelijkingen, ongelijkheden, kwadratische functies en grafieken Code Leerdoel Inhoud KV 11 Leerlingen kunnen het bouwschema van een kwadratische vergelijking herkennen en opschrijven met en KV 11 Leerlingen kunnen kwadratische vergelijkingen oplossen in d.m.v. : 1. Ontbinden 2. Kwadraat afsplitsen 3. abc-formule 1. x² + 5x + 6 = 0 x² - 9 = 0 2. Kwadraat afsplitsen a(x- p)² + q = 0 ^ ( a 0 ) 3. abc- formule KV 11 Leerlingen kunnen m.b.v. de discriminant onderzoeken of een kwadratische vergelijking oplosbaar is. Discr.D = b² - 4ac uitgaande van het bouwschema: ax² + bx + c = 0 (a 0). 8

9 KV 11 Leerlingen kunnen mbv de discr. het aantal oplossingen v/e kwadratische vergelijking aangeven KV 11 KV 11 Leerlingen kunnen het functievoorschrift van een kwadratische functie opschrijven Leerlingen kunnen van een kwadratische functie: Nulpunten, sym-as, extremen, snijpunten m/d y-as berekenen KV 11 Leerlingen kunnen mbv kwadraat afsplitsen de extremen v/e kwadratische functie bepalen p) 2 + q voor a > 0 top min ( p, q ) ; voor a < 0 top max ( p,q) KV 11 KV 11 Leerlingen kunnen de grafiek v/e kwadratische functie tekenen Leerlingen kunnen een tweedegraads ongelijkheid oplossen d.m.v aflezen v/d grafiek Dalparabool en bergparabool tekenen Los op in 9

10 Leerlijnen wiskunde rekenen elfjarig basisonderwijs Domein: Goniometrie Code Leerdoel Inhoud G1. Leerlingen kennen de goniometrische verhoudingen (sinus, cosinus en tangens) G2. Leerlingen kennen de waarden van de sinα, cosα en tanα in de verschillende kwadranten Sin α cos α tan α G3. Leerlingen kennen de goniometrische eigenschappen en kunnen die toepassen G4. Leerlingen kennen het verband tussen sinx en cosx in een eenheidscirkel Leerlingen kunnen werken met de tabel van de goniometrische verhoudingen t/m 90º G5. Leerlingen kunnen de sinus, cosinus en tangens van 30º, 45º, 60º berekenen m.b.v de eenheidscirkel Sin 225 º = sin (180º + α ) α = 45º -Sin 45º= sin²x + cos²x = 1 ; G6. Leerlingen kennen de sinus, cosinus en tangens van 0º, 90º,180º,270º en 360º m.b.v de eenheidscirkel G7 Leerlingen kunnen de goniometrische verhoudingen van de hoeken in een rechthoekige driehoek aangeven G8 Leerlingen kunnen goniometrische vergelijkingen oplossen Los op sinx = 1; cosx = 1 10

11 G9 Leerlingen kennen de sinusregel en kunnen deze regel toepassen in verschillende soorten driehoeken = = G10 Leerlingen kunnen goniometrie toepassen in driedimensionale figuren G11 Leerlingen kunnen goniometrie gebruiken in praktische situaties Iemand zit in een boom van 15 meters hoog. De man ziet een stilstaande auto onder een hellingshoek van 35º. bereken de G12 Leerlingen kennen de cosinusregel en kunnen deze regel toepassen afstand tussen de boom en de auto. 11

12 Leerlijnen rekenen-wiskunde elfjarig basisonderwijs Domein: Vectoren Code Inhoud VE11 Leerlingen kennen het begrip vector Vector is een verzameling van pijlen met de dezelfde richting en dezelfde lengte VE 11 Leerlingen kunnen vectoren tekenen VE11 Leerlingen kunnen m.b.v vectoren translaties uitvoeren VE11 Leerlingen kunnen vectoren optellen ( ) + ( )=( ) VE11 Leerlingen kunnen de lengte van vectoren berekenen ( ) = m.b.v stelling van Pythagoras VE11 Leerlingenn kunnen vectoren vermenigvuldigen met getallen 12

13 Leerlijnen rekenen wiskunde elfjarig basisonderwijs. Domein: Gelijkvormigheid Gelijkstandigheid Code Leerdoel Inhoud GG11 Leerlingenn kennen het begrip gelijkvormigheid Twee figuren zijn gelijkvormig als: 1. De overeenk. hoeken even groot zijn 2. De lengten van de zijden van de ene figuur evenredig zijn met de lengthen van de overeenk. Zijden van de andere figuur GG11 Leerlingen kunnen aan de hand van twee gelijkvormige figuren berekenen wat de lengtevergrotings factor k is Lengtevergrotende factor k = 2 GG11 Leerlingen kunnen aan de hand van de lengte vergrotingsfactor berekenen (zie tekening ) 13

14 GG11 Leerlingen kennen het begrip gelijkstandig Twee figuren zijn gelijkstandig als: 1. Ze gelijkvormig zijn 2. De overeenkomstige zijden parallel zijn 14

15 Leerlijnen rekenen wiskunde elfjarig basisonderwijs Domein: Rijen Code Leerdoel Inhoud R11 De leerlengen kunnen de regelmaat in een rij bepalen 2, 3, 5, 8,,, R11 De leerlingen kunnen werken met een Fibonacci rij 2, 5, 7, 12,,, R11 De leerlingen kennen het begrip meetkundige rij Een meetkundige rij is een rij waarbij het quotiënt van elk twee opeenvolgende termen constant is R11 De leerlingen kunnen werken met een meetkundige rij 6, 12, 24, 48,,, R11 De leerlingen kennen het begrip rekenkundige rij Een rekenkundige rij is een rij waarbij het verschil van elk twee opeenvolgende termen constant is 15

16 R11 De leerlingen kunnen werken met een rekenkundige rij 8, 12, 16, 20,,, 16

17 Leerlijnen rekenen wiskunde elfjarig basisonderwijs Domein: Afbeeldingen in het platte vlak Code Leerdoel Inhoud A11 A11 Leerlingen n kunnen spiegelen in een lijn Leerlingen kunnen spiegelen in een punt P(x, y) P (2a x, y) P(x, y) P (x, 2b - y) P(x, y) P (y, x) P(x, y) P (-y, -x) P(x, y) P (2a x, 2b - y) A11 Leerlingen kunnen transleren over een vector P(x, y) P (x + m, y + n) A11 Leerlingen kunnen roteren om de oorsprong over 90 P(x, y) P (-y, x) A11 Leerlingen kunnen roteren om de oorsprong over -90 P(x, y) P (y, -x) 17

18 A11 Leerlingen kunnen roteren om de oorsprong P(x, y) P (-x, -y) 18

19 Leerlijnen rekenen wiskunde elfjarig basisonderwijs. Domein: Cirkels en lijnen Code Leerdoelen Inhoud CL11 Leerlingen kennen het bouwschema van een cirkel C: (x a) 2 + (y - b) 2 2 ( a,b ) is het middelpunt ; R is de straal. = R CL11 Leerlingen kunnen aan de hand van twee gegeven punten een vergelijking van een cirkel bepalen Gegeven een cirkel C met middelpunt (1,5) en deze cirkel gaat door het punt (5,2) R = = = C : (x - 1) 2 + (y - 5) 2 = 25 19

20 CL1 Leerlingen kunnen het snijpunt (raakpunt) van een cirkel en een lijn berekenen Gegeven de cirkel C: (x - 3) 2 + y 2 = 9 en de lijn l met de vergelijking y = x. Bereken de snijpunten van l met C 20

21 Leerlijnen rekenen wiskunde elfjarig basisonderwijs Domein: Statistiek Code Leerdoelen Inhoud ST11 De leerlingenn kennen het begrip statistiek Statistiek is de wetenschap die zich bezig houdt met het verzamelen en ordenen van gegevens ST11 Leerlingen kunnen grafieken tekenen en kunnen gegevens aflezen van grafieken 500 Staafdiagram Jan Feb 0 Mrt ST11 Leerlingen kennen de begrippen gemiddelde, frequentie, modus (modale klasse), mediaan Waarn. Getallen: 2, 7,,5, 2, 5 Orden: 2,2,5,5, 7 Mediaan is 5 Modus is 5 Gem. = 21

22 ST11 Leerlingen kunnen gegevens in een frequentie tabel plaatsen W. get Freq

23 Leerlijn rekenen wiskunde elfjarig basisonderwijs Middenbouw Domein: Onderwerp: goederenhandel /winkelen Bruto, Tarra en Netto Code Einddoelen Inhoud G8 De leerlingen kunnen de begrippen bruto, tarra en netto eieren met rek SRD 16,50 hanteren eieren zonder rek SRD15,00 Tarraprijs = Brutoprijs Nettoprijs G8 G8 De leerlingen kunnen opdrachten uitvoeren waarin de begrippen bruto,tarra en netto voorkomen. De leerlingen kunnen opdrachten m.b.t.markt en winkelsituaties uitvoeren Bruto kg (150 vaten) Tarra kg(1 vat weegt 10 kg ) Netto...kg In een doos zijn er 24 blikken bruine bonen met een nettogewicht van gram Het tarragewicht van 5 blikken is 125 gram Het Brutogewicht van 1 blik is... Het brutogewicht van 2 kisten met spijkers is totaal 300 kg.tarra is 5 %. De spijkers worden verkocht voor SRD 5,50 per kg.de totale opbrengst is... G8 De leerlingen zijn in staat redactiesommen te maken waarbij de begrippen inkoop, verkoop, winst en verlies 23 Het nettogewicht van 1 emmer zoutvlees is 26 kg. Het tarragewicht van 1 emmer is 1 kg. Het gewicht van het water in elke emmer is 3 kg. Het brutogewicht van 1 emmer zoutvlees is... Iemand koopt een huis van SRD ,-. Hij verkoopt het met 10% winst. Hoeveel is de verkoopprijs van het huis?

24 G8 uitgedrukt kunnen worden in procenten. De leerlingen kunnen een korting op de verkoopsprijs uitdrukken in procenten Een huis van SRD ,- heeft brandschade opgelopen. Het wordt verkocht voor SRD 65000,-. Hoe groot is het verlies? Ook uitdrukken in procenten. Korting wil zeggen wat gaat er af. Een tafel is geprijsd voor SRD 180,-. De klant krijgt SRD 18,- aan korting. Hoeveel moet de klant betalen? Hoeveel procent korting is dat? 24

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

Standaardfuncties. x c

Standaardfuncties. x c Standaards Constante Parameter We geven in dit document een overzicht van een aantal veelvoorkomende s. We geven steeds het voorschrift en de grafiek. (Ter herinnering: het domein vermelden we niet, het

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

Tweede graadsfuncties

Tweede graadsfuncties CAMPUS BRUSSEL Opfriscursus Wiskunde Tweede graadsfuncties Deel 1: kwadratische vergelijkingen en ongelijkheden Tweede-graadsfuncties 1 Gevraagd: hoeveel moet je aan het reisagentschap betalen als er 20

Nadere informatie

klas 3 vwo Checklist VWO klas 3.pdf

klas 3 vwo Checklist VWO klas 3.pdf Checklist 3 VWO wiskunde klas 3 vwo Checklist VWO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de grafiek

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen

Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen Getallenkennis Target 1 Les 1: getalbegrip to 10 000 000 wb. p. 1+2, sb 1 Les 5: kommagetallen tot 0,001 wb. p. 8-9, sb 5 Les 12: breuken vergelijken en sorteren wb. p. 15-16, sb 10 Les 13: breuk als operator,getal,verhouding,

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14 INHOUD 1 De cirkel 9 1.1 Definities en benamingen 9 Oefeningen 11 1.2 Cirkel door drie punten 13 Oefeningen 14 1.3 Onderlinge ligging van een rechte en een cirkel 20 1.3.1 Aantal snijpunten van een rechte

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

Eerste deel van de cursus Algebra

Eerste deel van de cursus Algebra Eerste deel van de cursus Algebra Procentrekenen Toename met p%: groeifactor = 1 + p% Afname met p% : groeifactor = 1 p% Toename in procenten = Afname in procenten = toename beginwaarde afname beginwaarde

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 100 000 10 Les 2: Natuurlijke getallen kleiner dan 1 000 000

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Inhoudsopgave. I Theorie 1

Inhoudsopgave. I Theorie 1 Inhoudsopgave I Theorie 1 1 Verzamelingen 3 1.1 Inleiding........................................ 3 1.2 Bewerkingen met verzamelingen........................... 6 1.2.1 Vereniging (unie) van twee verzamelingen.................

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

Tussendoelen in MathPlus

Tussendoelen in MathPlus MALMBERG UITGEVERIJ B.V. Tussendoelen in MathPlus Versie 1 Inhoud Tussendoelen onderbouw in MathPlus... 2 Tabel tussendoelen... 2 1HVG... 7 Domein Rekenen... 7 Domein Meten en tekenen... 9 Domein Grafieken

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2009

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2009 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 009 VK : WISKUNE TUM : VRIJG 0 JULI 009 TIJ : 09.45.45 UUR ------------------------------------------------------------------------------------------------------------------------

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

DE basis WISKUNDE VOOR DE LAGERE SCHOOL

DE basis WISKUNDE VOOR DE LAGERE SCHOOL Inhoud GETALLENKENNIS 13 1 Getallen 13 2 Het decimale talstelsel 14 3 Breuken 16 Begrippen 16 Soorten breuken 16 Een breuk vereenvoudigen 17 4 Breuken, percenten, kommagetallen 18 Breuk omzetten in een

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie

Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deze mappen willen wegwijzers aanreiken om vanuit begrip en respect het beste te halen uit die leerlingen die de basis wiskundeleerstof uit

Nadere informatie

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen Referentieniveaus uitgelegd De beschrijvingen zijn gebaseerd op het Referentiekader taal en rekenen'. In 'Referentieniveaus uitgelegd' zijn de niveaus voor de verschillende sectoren goed zichtbaar. Door

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat.

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat. Het gevolgde leerplan is D/2002/0279/047. In de onderstaande tabel vind je een overzicht van de doelstellingen en waar ze in Delta Nova 4a en 4b (leerweg 5) terug te vinden zijn. B = basisdoelstelling

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 008 VK : WISKUNE TUM : ONERG 0 JULI 008 TIJ : 09.45.5 UUR (MULO-III KNITEN) 09.45.45 UUR (MULO-IV

Nadere informatie

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo Docentenhandleiding Netwerk 3e editie deel 3B havo 0 Hoofdstuk 7 Verschillende verbanden Beginniveau Al eerder hebben de leerlingen kennis gemaakt met lineaire, kwadratische en exponentiële verbanden.

Nadere informatie

Paragraaf 1.1 : Lineaire functies en Modulus

Paragraaf 1.1 : Lineaire functies en Modulus Hoofdstuk 1 Functies en Grafieken (V4 Wis B) Pagina 1 van 9 Paragraaf 1.1 : Lineaire functies en Modulus Les 1 : Lineaire Formules Definities Algemene formule van een lijn : y = ax + b a = hellingsgetal

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 15 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld.

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Wiskunde juli 2009 Laatste aanpassing: 29 juli 2009. Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Vraag 1 Wat is de top van deze parabool 2 2. Vraag

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B Leerstof voortentamen wiskunde B In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde B op havo niveau te beginnen met het voortentamen van december 2017. Deze specificatie

Nadere informatie

HAVO wiskunde B checklist 5 HAVO wiskunde B

HAVO wiskunde B checklist 5 HAVO wiskunde B Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO wiskunde B checklist 5 HAVO wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan.

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2013

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2013 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 2013 VK : WISKUNE TUM : WOENSG 03 JULI 2013 TIJ : 09.45 11.25 UUR (MULO III kandidaten) 09.45

Nadere informatie

12. Uitwerkingen van de opgaven

12. Uitwerkingen van de opgaven 12. Uitwerkingen van de opgaven 12.1. Uitwerkingen opgaven van hoofdstuk 3 Opgave 3.1 3,87 0,152 641, 2 Bereken met behulp van Maxima: 2,13 7,29 78 0,62 45 (%i1) 3.87*0.152*641.2/(2.13*7.29*78*0.62*45);

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk.

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk. Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar 2017 2018 Wiskunde 4 Basis Periode Wat moet je kennen en kunnen? (deel)taken Toets-vorm Duur Weging Herkan sing Wijze van

Nadere informatie

Hoofdstuk 10 Meetkundige berekeningen

Hoofdstuk 10 Meetkundige berekeningen Hoofdstuk 10 Meetkundige berekeningen Les 0 (Extra) Aant. Voorkennis: Hoeken en afstanden Theorie A: Sinus, Cosinus en tangens O RHZ tan A = A RHZ O RHZ sin A = SZ A RHZ cos A = SZ Afspraak: Graden afronden

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen Onderwerp Lineaire verbanden H1 20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen 26 De leerling leert te

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters, stelsels 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk.

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk. Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar 2017 2018 Wiskunde 3 Basis Periode Wat moet je kennen en kunnen? (deel)taken Toets-vorm Duur Weging Herkan sing Wijze van

Nadere informatie

Tussendoelen havo en examenprogramma wiskunde-tl

Tussendoelen havo en examenprogramma wiskunde-tl Tussendoelen havo en examenprogramma wiskunde-tl In deze bijlage staan alle inhoudelijke tussendoelen voor de onderbouw havo met hun specificaties. Bij elke specificatie wordt vermeld of ze deel uitmaakt

Nadere informatie

INLEIDING FUNCTIES 1. COÖRDINATEN

INLEIDING FUNCTIES 1. COÖRDINATEN INLEIDING FUNCTIES 1. COÖRDINATEN...1 2. FUNCTIES...2 3. ARGUMENT EN BEELD...3 4. HET FUNCTIEVOORSCHRIFT...4 5. DE FUNCTIEWAARDETABEL...5 6. DE GRAFIEK...6 7. FUNCTIES HERKENNEN...7 8. OPLOSSINGEN...9

Nadere informatie

7.1 Ongelijkheden [1]

7.1 Ongelijkheden [1] 7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

Inleiding goniometrie

Inleiding goniometrie Inleiding goniometrie We bekijken de volgende twee hellingen: 1 2 Duidelijk is dat de tweede helling steiler is dan de eerste helling. Ook zien we dat hellingshoek 2 groter is dan hellingshoek 1. Er bestaat

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo havo/vwo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal:

Nadere informatie

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2 Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 007 VK : WISKUNE TUM: WOENSG 04 JULI 007 TIJ : 09.45.5 UUR (TOELTING VWO/HVO/NTIN) 09.45.45

Nadere informatie

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort Schoolexamen leerjaar 3, schooljaar 2015-2016 Moderne wiskunde 9e editie deel 3 code eenheid vorm duur kansen kader 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk

Nadere informatie

Paragraaf 1.1 : Lineaire verbanden

Paragraaf 1.1 : Lineaire verbanden Hoofdstuk 1 Formules, grafieken en vergelijkingen (H4 Wis B) Pagina 1 van 11 Paragraaf 1.1 : Lineaire verbanden Les 1 Lineaire verbanden Definitie lijn Algemene formule van een lijn : y = ax + b a = richtingscoëfficiënt

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

Jaaroverzicht Kompas zesde leerjaar

Jaaroverzicht Kompas zesde leerjaar Week 1 WB 6A 3 Jaaroverzicht Kompas zesde leerjaar Getallenkennis Bewerkingen Meten en Les 1 Getalbegrip tot 10 000 000 Week 2 Les 1 Kommagetallen tot op Week 3 Les 1 Breuken vergelijken en ordenen Soorten

Nadere informatie

Eindexamen wiskunde B pilot havo II

Eindexamen wiskunde B pilot havo II Eindexamen wiskunde B pilot havo 0 - II Beoordelingsmodel Mosselen maximumscore L = 9 invullen in de gegeven formule geeft C 5 De hoeveelheid gefilterd water is (ongeveer) 5 = 8 ml per dag Dit is meer

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB Deel 3 vwo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

1 Overzicht voorkennis algebraïsch rekenen

1 Overzicht voorkennis algebraïsch rekenen 1 Overzicht voorkennis algebraïsch rekenen 1 Merkwaardige producten, ontbinden in factoren 1.1 Merkwaardige producten ( ) ( ) a+ b = a + ab+ b a b = a ab+ b ( ) ( ) a+ b = a + ab+ ab + b a b = a ab+ ab

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Bijlage 11 - Toetsenmateriaal

Bijlage 11 - Toetsenmateriaal Bijlage - Toetsenmateriaal Toets Module In de eerste module worden de getallen behandeld: - Natuurlijke getallen en talstelsels - Gemiddelde - mediaan - Getallenas en assenstelsel - Gehele getallen met

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie