exponentiële standaardfunctie

Maat: px
Weergave met pagina beginnen:

Download "exponentiële standaardfunctie"

Transcriptie

1 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is lim g 0

2 9.0 Voorkennis In de grafiek is de de eponentiële standaardfunctie f( ) getekend; D f = R, B f = (0, ) met de -as als asymptoot. (Dit volgt uit: lim 0 ); Elke functie g met 0 < g < heeft deze vorm; Voor 0 < g < is lim g 0

3 De zwarte grafiek is f() = De blauwe grafiek is g() = + 3 dus een translatie (0,3) van f(). De horizontale asymptoot is y = 3 met bereik B f = (3, ) De rode grafiek is h() = +3 dus een translatie (-3,0) van f(). De horizontale asymptoot is y = 0 met bereik B f = (0, ) 9.0 Voorkennis De groene grafiek is k() = 3 dus een verm. t.o.v. de -as met 3 van f(). De horizontale asymptoot is y = 0 met bereik B f = (0, ) 3

4 9.0 Voorkennis Voorbeeld : Gegeven is functie f( ) 3 Welke waarden neemt f() aan voor? Stap : Stel de formule van de horizontale asymptoot op: f() = 0,5 Er geldt: 3 lim 0 Dit geeft de horizontale asymptoot y = - Stap : Lees het antwoord af uit een plot van de functie op je GR en let hierbij op de horizontale asymptoot. Voor geldt - < f() 0,5 4

5 9.0 Voorkennis Voorbeeld : Zorg dat alle losse getallen rechts komen te staan. Zorg dat links alleen nog maar een macht staat. Schrijf de vergelijking in de vorm g A = g B Je kunt de grondtallen nu wegstrepen 5

6 9.0 Voorkennis Voorbeeld : 4 3 ( ) ( ) Zorg dat links en rechts hetzelfde grondtal komt te staan. Gebruik de rekenregels voor machten Je kunt de grondtallen nu wegstrepen 6

7 9.0 Voorkennis Voorbeeld: Zorg dat er links slechts één macht komt te staan. Gebruik hierbij de rekenregels voor machten. Zorg dat links alleen nog maar een macht staat. Schrijf de vergelijking in de vorm g A = g B Je kunt de grondtallen nu wegstrepen 7

8 9.0 Voorkennis Voorbeeld: De hoeveelheid bacteriën groeit eponentieel. Op tijdstip t = 5 zijn er.000 bacteriën. Op tijdstip t = zijn er bacteriën. Stel de formule op van het aantal bacteriën N om t uur. Stap : Bij een eponentieel verband hoort de formule: N = b g t met b = beginhoeveelheid en t = tijd Stap : Bereken de groeifactor van t = 5 tot t = (g 7uur ) g 7uur = N ,5 N

9 9.0 Voorkennis Voorbeeld: Stap 3: Bereken de groeifactor per uur (g): 7 7 g g7 uur (3,5),95... => N = b,95 t Stap 4: Bereken de beginhoeveelheid: N = b,95 t = b, = b 8,56. b 87 => N = 87,0 t 9

10 9. Logaritmen [] We hebben de functie f() = De oplossing van de vergelijking f() = 8 is 3. Bestaat er nu een functie g() zodat geldt: g(8) = 3? Ja, en dit is de functie: g() = log(). De oplossing van de vergelijking g(8) = log(8) = 3. Of in woorden: Tot welke macht moet je verheffen om 8 te krijgen. Er geldt dus: Uit = 8 volgt log(8) = Hieruit valt af te leiden: log(8) = log( ) = De macht en de logaritme vallen als het ware tegen elkaar weg. In het algemeen geldt: Hieruit valt af te leiden: Uit g log(y) = volgt y = g g log(y) = g log(g ) = 0

11 9. Logaritmen [] Voorbeeld: log( ) log( ) log( ) log( ) Schrijf de getallen in log(.) als een de macht. Tot welke macht moet je verheffen om -,5 te krijgen?

12 9. Logaritmen [] Voorbeeld: Los algebraïsch op: f() = + 3 log(3-4) <0 Stap : Los de vergelijking f() = 0 op. 3 log(3 4) 0 3 log(3 4) (losse getallen naar rechts) ( g log() = y volgt = g y toepassen)

13 9. Logaritmen [] Voorbeeld : 5 log( ) 7 5 log( ) 6 5 log( ) Zorg dat alle losse getallen rechts komen te staan. Zorg dat links alleen nog maar een logaritme staat. Gebruik de regel: Uit g log() = y volgt = g y 3

14 9. Logaritmen [3] In de grafiek is de functie f() = log() getekend; D f = (0, ), B f = R met de y-as als asymptoot; Elke functie g log() met g > heeft deze vorm. 4

15 9. Logaritmen [3] In de grafiek is de functie f() = ½ log() getekend; D f = (0, ), B f = R met de y-as als asymptoot; Elke functie g log() met 0 < g < heeft deze vorm. 5

16 9. Logaritmen [3] Herhaling: In het algemeen geldt: Uit g log() = y volgt = g y Er bestaat dus een verband tussen een machtsfunctie en een logaritmische functie. De grafieken van f() = en g() = log() spiegelen in de lijn y =. We noemen f en g nu inverse functies. 6

17 9. Logaritmen [3] De grafieken van f() = (½) en g() = ½ log() spiegelen in de lijn y =. We noemen f en g nu inverse functies. 7

18 9. Logaritmen [4] Berekenen van logaritme met de GR: Maak gebruik van de regel: g log( a) p 0 log( a) log( a) p 0 log( g) log( g) De log-toets op de GR heeft als grondtal 0. Voor het (nieuwe) grondtal p wordt in dit geval dus 0 genomen. Voorbeeld: log(5) log(5),3 log() 8

19 9. Logaritmen [5] Voorbeeld : Teken de grafiek van f() = + 3 log(3-4) Stap : Bereken het domein van de functie f() 3 4 > 0 3 > 4 > 3 Dus D f = (, ). De verticale asymptoot is de lijn = 3 Herhaling: In het algemeen geldt: Uit g log() = y volgt = g y g y is per definitie groter dan 0, dus hieruit volgt dat de term die bij g log() tussen de haakjes staat ook groter dan 0 moet zijn. 3 9

20 9. Logaritmen [5] Voorbeeld : Teken de grafiek van f() = + 3 log(3-4) Stap : Maak een tabel (op de GR) met een aantal waarden van f() y,63 3,47 3,89 4,8 Stap 3: Teken de grafiek van f() met de waarden uit. Geef de verticale asymptoot weer met een stippellijn 0

21 9. Logaritmen [5] Voorbeeld : Los algebraïsch op: f() = + 3 log(3-4) 0 Stap : Los de vergelijking f() = 0 op. 3 log(3 4) 0 3 log(3 4) (losse getallen naar rechts) ( g log() = y volgt = g y toepassen)

22 9. Logaritmen [5] Voorbeeld : Los algebraïsch op: f() = + 3 log(3-4) 0 Stap : Maak een schets. Stap 3: De oplossing is nu: (Let op het bestaan van de asymptoot)

23 9. Logaritmen [6] Voorbeeld : Bereken eact: 3 + = = 80 + = 3 log(80) = log(80) Voorbeeld : Bereken eact: = = 5 3 = 0 3 = log(0) = log(0) 3 3

24 9. Logaritmen [7] Voorbeeld: Maak vrij bij de formule y = ,5 +,8 y = ,5 +, ,5 +,8 = y 0 0,5 +,8 = y 40 0,5 +,8 = log(y 40) 0,5 = -,8 + log(y 40) = -3,6 + log(y 40) 4

25 9. Rekenregels en vergelijkingen [] Voor logaritmen gelden de volgende rekenregels (met g > 0, g, a en b > 0) () log( ab) log( a) log( b) g g g () g a log g log( ) g (4) a log( b) a g log( g a ) b (3) g log( a n ) n g log( a) (5) g log() = y volgt = g y Voorbeeld: log( 6) 3 log( 5) 4 (3) log( a ) n log( a) g n g log( 6) log( 5 ) 4 3 (4) a g log( g a ) log( 6) log( 5 ) log( ) 3 4 log( 6) log( 5) log( 6) log( 656) log( 000) () log( ab) log( a) log( b) g g g 5

26 9. Rekenregels en vergelijkingen [] Voor logaritmen gelden de volgende rekenregels: () log( ab) log( a) log( b) g g g () g a log g log( ) g (4) a log( b) a g log( g a ) b (3) g log( a n ) n g log( a) (5) g log() = y volgt = g y Voorbeeld : log( ) 4 log() 3 3 log( ) log(3 ) log( ) log( ) log(3) log(6) log( ) log(48) voldoet (3) + (4) () Je mag de logaritmen nu wegstrepen Controleer altijd de oplossingen 6

27 9. Rekenregels en vergelijkingen [] Voor logaritmen gelden de volgende rekenregels: () log( ab) log( a) log( b) g g g () g a log g log( ) g (4) a log( b) a g log( g a ) b (3) g log( a n ) n g log( a) (5) g log() = y volgt = g y Voorbeeld : log( ) log(5 3) log() log( ) log(5 3) log( ) log(53) ,5( voldoet niet) 3( voldoet) (3) + (4) () Je mag de logaritmen nu wegstrepen Controleer altijd de oplossing(en) 7

28 9. Rekenregels en vergelijkingen [3] Etra rekenregels voor logaritmen: ) ) 3) g g g log( a) log( a) log( g) log( a) p log( a) log( p) log( a) log( a) p log( g) log( g) log( g) log( p) g g g log( a) log( a) log( a) g log( a) log( a) g g log( g ) log g 8

29 9. Rekenregels en vergelijkingen [3] Voorbeeld: 4 log( ) log( ) log( ) log(4) log( ) log( ) log( ) log( ) log( ) log( ) log(( ) ) = ( - ) = = 0 ( )( 4) = 0 - = 0 of 4 = 0 = of = 4 gebruik Kruiselings vermenigvuldigen gebruik g log( a) p p log( a) log( g) log( a ) n log( a) g n g Alleen = 4 voldoet ( = leidt tot het nemen van de logaritme van een negatief getal) 9

30 9. Rekenregels en vergelijkingen [4] Voorbeeld : 3 log () 3 log() = 0 Neem 3 log() = p p p = 0 p(p ) = 0 p = 0 of p = 0 p = 0 of p = 3 log() = 0 of 3 log() = = 3 0 of = 3 = of = 3 Beide oplossingen voldoen 30

31 9. Rekenregels en vergelijkingen [4] Voorbeeld : 6 6 p 6 p p p 6 p p 6 0 ( p )( p3) 0 p 0 of p 3 0 p of p 3 of 3 k n.. log(3) Vervang door p Vermenigvuldig alle termen met p Gebruik: g log() = y volgt = g y 3

32 9. Rekenregels en vergelijkingen [4] Voorbeeld : 4 4 ( ) 4 ( ) 4 p p p4 p 4 0 ( p 6)( p 7) 0 p 6 0 of p 7 0 p 6of p 7 6 of 7 k n.. of log(7) Vervang door p Gebruik: g log() = y volgt = g y 3

33 9.3 Eponentiële en logaritmische formules [] Voorbeeld: De bevolking van een stad groeit jaarlijks met 5%. Bereken hoeveel jaar het duurt voordat de bevolking verdubbeld is. Dit is de verdubbelingstijd. Stap : Bereken de groeifactor per jaar: Stap : Stel de eponentiële formule op: N =,05 t 5 g,05 00 Stap 3: Los de vergelijking,05 t = algebraïsch op:,05 t = ( g log() = y volgt = g y ) t =,05 log() p 0 g log( a) log( a) t = log()/log(,05) log( a) p 0 t 4, jaar log( g) log( p) Let op: Bij een halveringstijd (0 < g < ) los je g t = 0,5 op 33

34 9.3 Eponentiële en logaritmische formules [] Logaritmisch papier; is papier met een logaritmische schaalverdeling; De afstand van tot 0 is even groot als de afstand van 0 tot 00; Van 0 tot 0 staan er 0 horizontale lijnen; Van 0 tot 30 staan er 0 horizontale lijnen; Van 30 tot 40 staan er 5 horizontale lijnen; Van 40 tot 50 staan er 5 horizontale lijnen; Van 50 tot 60 staan er horizontale lijnen; 34

35 9.3 Eponentiële en logaritmische formules [3] Een eponentiële functie wordt op logaritmisch papier een rechte lijn. Voorbeeld: Stel de formule op van N als functie van t. Stap : Lees twee punten af die op de lijn liggen t = met N = t = 8 met N = 0 35

36 9.3 Eponentiële en logaritmische formules [3] Stap : Lees twee punten af die op de lijn liggen: t = met N = EN t = 8 met N = 0 Stap : Bereken de groeifactor tussen deze twee tijdstippen: Stap 3: Bereken de groeifactor per tijdseenheid: 6 g g 0, Stap 4: Bereken nu de beginhoeveelheid b in de formule: N = b,467 t Vul hiervoor één van de twee punten op de lijn in: = b,467 = b,54 b = 0,98 Dus N = 0,93,47 t 36

37 9.3 Eponentiële en logaritmische formules [3] De zwarte grafiek is f() = De donkerblauwe grafiek is g() = + 3 dus een translatie (0,3) van f() De groene grafiek is h() = 3 dus een verm. t.o.v. de -as met 3 van f() De lichtblauwe grafiek is j() = 3 dus een verm. t.o.v. de y-as met 3 van f() De rode grafiek is k() = +3 = 3 = 8 [Hieruit volgt dat een translatie van (-3, 0) van f() gelijk is aan een verm. t.o.v. de -as met 8 van f()] 37

38 9.3 Eponentiële en logaritmische formules [3] De zwarte grafiek is f() = log() De rode grafiek is h() = log(-3) dus een translatie (3,0) van f() De groene grafiek is j() = 3 log() dus een verm. t.o.v. de -as met 3 van f() De lichtblauwe grafiek is k() = log( ) dus een verm. t.o.v. de y-as met 3 van f() De donkerblauwe grafiek is g() = 3 log() + 3 = log() + log( 3 ) = log(8) [Hieruit volgt dat een translatie van (0,3) van f() hetzelfde is als een verm. t.o.v de y-as met van f()] 8 38

39 9.4 Het grondtal e [] Voorbeeld : Bereken de afgeleide van f() = a. We weten niet wat deze afgeleide is, daarom berekenen we deze afgeleide via een limiet. f ( h) f ( ) a a f '( ) lim lim h0 h h0 h h h a a a ( a ) a lim lim h0 h h0 h h ( a ) lim a h0 h h f (0 h) f (0) a a f '(0) lim lim h0 h h0 h h ( a ) lim h0 h 0h 0 f '( ) f '(0) a Let op: Als het grondtal e (,78 ) is dan geldt: f() = e en f () = e 39

40 9.4 Het grondtal e [] Rekenregels voor de e-macht: p p q pq e pq e e e [] e [] q e q p pq p p p e e [3] ( ae) a e [4] e 0 n [5] e [6] n e p q q q p e e [7] e e [8] q Let op: Dit zijn dezelfde rekenregels voor machten zoals je eerder geleerd hebt. 40

41 Voorbeeld : Herleid: (e + 3) (e + 3) = (e ) + 3 e + 3 = e 4 + 6e + 9 Voorbeeld : Los algebraïsch op: e + e = Het grondtal e [] e + e = 3 (e ) + e 3 = 0 Neem e = p p + p 3 = 0 (p )(p + 3) = 0 p = of p = -3 e = of e = -3 e = e 0 geen oplossing = 0 4

42 9.4 Het grondtal e [3] Herhaling rekenregels voor differentiëren: f() = a => f () = 0 f() = a n => f () = na n- f() = c g() => f () = c g () f() = g() + h() => f () = g () + h () p() = f() g() => p () = f () g() + f() g () (som - regel) (product - regel) t( ) n( ) t '( ) t( ) n'( ) q( ) q'( ) ( quotiënt regel) n( ) ( n( )) Voorbeeld : 3 f ( ) 5e 5e f '( ) 5e 3 5e 4 4

43 9.4 Het grondtal e [3] Voorbeeld : g() = (3 + 3)e 3e g () = [3 + 3] e + (3 + 3)e [e ] - [3e ] g () = 6 e + (3 + 3)e 3e g () = ( )e g () = (3 + 6)e Voorbeeld 3: 6 5 h ( ) e e [6 5]' [ e ]' (6 5) h'( ) ( e ) e 6 e (6 5) e (6 6 5) e e 6 e 43

44 9.4 Het grondtal e [3] Voorbeeld 4 (Combinatie kettingregel en productregel): f() = e 3-6 f () = [] e [e 3-6 ] [] = en [e 3-6 ] u(v) = e v met u (v) = e v. v() = 3 6 met v () = 3 [productregel] [kettingregel] [e 3-6 ] = u (v) v () = 3e 3-6 f () = [] e [e 3-6 ] = e e 3-6 = (6 + ) e

45 9.4 Het grondtal e [3] Voorbeeld 5 (Combinatie kettingregel en quotiëntregel): e g ( ) 6 ( 6) [ e ]' [ 6]' e g'( ) ( 6) [ 6]' en [ e ]' v v u( v) e met u'( v) e. v( ) met v'( ) [ e ]' u'( v) v'( ) e ( 6) e e g'( ) ( 6) ( ) e ( 6) 45

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

12.0 Voorkennis. Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op.

12.0 Voorkennis. Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op. 12.0 Voorkennis Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op. Stap 1: Bepaal de richtingscoëfficiënt van l:y = ax + b : y yb ya 123 9 a 3 x x x 8 5 3 Hieruit

Nadere informatie

9.1 Logaritmische en exponentiële vergelijkingen [1]

9.1 Logaritmische en exponentiële vergelijkingen [1] 9.1 Logaritmische en eonentiële vergelijkingen [1] Voor logaritmen gelden de volgende rekenregels: (1) log( ab) log( a) log( b) g g g () g g g (4) (3) g n g (5) g log() = y volgt = g y Voorbeeld: a log

Nadere informatie

Paragraaf 9.1 : Logaritmen

Paragraaf 9.1 : Logaritmen Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Paragraaf 9. : Logaritmen Les Logaritmen Definitie Logaritmen Hoofdregel : g t = b t = g log b met domein b>0 Om logaritmen uit

Nadere informatie

rekenregels voor machten en logaritmen wortels waar of niet waar

rekenregels voor machten en logaritmen wortels waar of niet waar Hoofdstuk 5 - machten, eponenten en logaritmen rekenregels voor machten en logaritmen wortels waar of niet waar 0. voorkennis HERLEIDEN VAN MACHTEN - rekenregels voor machten Bij het vermenigvuldigen van

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

exponentiële verbanden

exponentiële verbanden exponentiële verbanden . voorkennis Procenten en vermenigvuldigingsfactoren Procentuele toename met p%: g = + p 00 p = ( g ) 00 Procentuele afname met p%: g = p 00 p = ( g) 00 De constante factor In 859

Nadere informatie

Paragraaf 5.1 : Wortelvormen en Breuken

Paragraaf 5.1 : Wortelvormen en Breuken Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 1 van 11 Paragraaf 5.1 : Wortelvormen en Breuken Les 1 : Wortelformules, Domein en Bereik Definities Domein = { alle -en die je mag invullen in de formule

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Paragraaf 5.1 : Machten en wortels

Paragraaf 5.1 : Machten en wortels Hoofdstuk 5 Machten, exponenten en logaritmen (H Wis B) Pagina 1 van 1 Paragraaf 5.1 : Machten en wortels Machtsregels SPECIAAL GEVAL MACHTREGEL 1 : MACHTREGEL 2 : MACHTREGEL : a p a q = a p+q a p aq =

Nadere informatie

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies Basisvormen (algeraische denkeenheden) van algeraische epressies/functies,,,..,,, g g, log( ), sin(), cos() polynoomfuncties gerokenfuncties, vermenigvuldigingsfunctie Soort functies Standaardvormen met

Nadere informatie

HOOFDSTUK 3 : LOGARITMISCHE FUNCTIES

HOOFDSTUK 3 : LOGARITMISCHE FUNCTIES HOOFDSTUK : LOGARITMISCHE FUNCTIES Kern : Logaritmen a) D t 5 t (D in grammen ; t in dagen) D 5 9 gram b) 5 t t 6 t log 6 log 6 log a) log9 9 b) 5 log5 5 5 5 c) log 5 5 d) 5 e loge 7 e e 7 7 e) log 5 5

Nadere informatie

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0.

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0. Gegeven is de functie.0 Voorkennis Deze functie bestaat niet bij een van. Invullen van = geeft een deling door 0. De functie g() = heeft als domein R en is een ononderbroken kromme. Deze functie is continu

Nadere informatie

Paragraaf 12.1 : Exponentiële groei

Paragraaf 12.1 : Exponentiële groei Hoofdstuk 12 Exponenten en logaritmen (V5 Wis A) Pagina 1 van 12 Paragraaf 12.1 : Exponentiële groei Les 1 Exponentiële functies Definitie Exponentiële functies Algemene formule : N = b g t waarbij b =

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

Analyse. Samenvatting: logaritmen. Frank Derks Gerard Heijmeriks www.demathe.nl

Analyse. Samenvatting: logaritmen. Frank Derks Gerard Heijmeriks www.demathe.nl Analyse Samenvatting: logaritmen Frank Derks Gerard Heijmeriks www.demathe.nl 1. Inhoudsopgave 1. Inhoudsopgave... 2 2. Exponentiële functies... 3 2.1. Inleiding... 3 2.2. Groeifactoren en groeipercentages...

Nadere informatie

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a Samenvatting wiskunde h4 hoofdstuk 3 en 6, h5 hoofdstuk 4 en 6 Hoofdstuk 3 Voorkennis Bij het rekenen met machten gelden de volgende rekenregels: - Bij een vermenigvuldiging van twee machten met hetzelfde

Nadere informatie

Samenvatting wiskunde B

Samenvatting wiskunde B Samenvatting wiskunde B Dit is een samenvatting van het tweede deel van Getal en Ruimte VWO wiskunde B. In deze samenvatting worden hoofdstuk 5, 6 en 7 behandeld. Ik hoop dat deze samenvatting je zal helpen!

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

Paragraaf 4.1 : Kwadratische formules

Paragraaf 4.1 : Kwadratische formules Hoofdstuk 4 Werken met formules H4 Wis B) Pagina 1 van 10 Paragraaf 41 : Kwadratische formules Les 1 : Verschillende vormen Er zijn verschillende vormen van kwadratische vergelijkingen die vaak terugkomen

Nadere informatie

7,7. Samenvatting door Manon 1834 woorden 3 mei keer beoordeeld. Wiskunde C theorie CE.

7,7. Samenvatting door Manon 1834 woorden 3 mei keer beoordeeld. Wiskunde C theorie CE. Samenvatting door Manon 1834 woorden 3 mei 2016 7,7 13 keer beoordeeld Vak Wiskunde Wiskunde C theorie CE. Permutaties: -Het aantal permutaties van drie dingen die je kiest uit acht dingen is: 8*7*6= 336.

Nadere informatie

Hoofdstuk 9 - exponentiele verbanden. [KC] exponentiële verbanden

Hoofdstuk 9 - exponentiele verbanden. [KC] exponentiële verbanden Hoofdstuk 9 - exponentiele verbanden [KC] exponentiële verbanden 0. voorkennis Procenten en vermenigvuldigingsfactoren Procentuele toename met p%: g = 1 + p 100 p = ( g 1) 100 Procentuele afname met p%:

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

7.1 De afgeleide van gebroken functies [1]

7.1 De afgeleide van gebroken functies [1] 7.1 De afgeleide van gebroken functies [1] Regels voor het differentiëren: f() = a geeft f () = a f() = a geeft f () = a f() = a geeft f () = 0 Algemeen geldt: f() = a n geeft f () = na n-1 Voorbeeld 1:

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Errata Moderne wiskunde 9e editie VWO B deel 2 hoofdboek

Errata Moderne wiskunde 9e editie VWO B deel 2 hoofdboek Onderstaande verbeteringen zijn gebaseerd op de eerste druk van deze titel. In bijdrukken worden fouten hersteld. Het is dus goed mogelijk, dat hier verbeteringen staan, die bij een nieuwe druk al zijn

Nadere informatie

Wiskunde 20 maart 2014 versie 1-1 -

Wiskunde 20 maart 2014 versie 1-1 - Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6

Nadere informatie

Paragraaf 13.1 : Berekeningen met de afgeleide

Paragraaf 13.1 : Berekeningen met de afgeleide Hoofdstuk 13 Toepassingen vd differentiaalrekening (V5 Wis A) Pagina 1 van 7 Paragraaf 13.1 : Berekeningen met de afgeleide Differentiëren van e-machten en logaritmen f() = e f () = e f() = ln() f () =

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Paragraaf 11.0 : Voorkennis

Paragraaf 11.0 : Voorkennis Hoofdstuk 11 Verbanden en functies (H5 Wis B) Pagina 1 van 15 Paragraaf 11.0 : Voorkennis Les 1 : Stelsels, formules en afgeleide Los op. 3x + 5y = 7 a. { 2x + y = 0 2x + 5y = 38 b. { x = y + 5 a. 3x +

Nadere informatie

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie.

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. 14.0 Voorkennis De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. Evenwichtsstand = (min + max)/2 = (-100 + 300)/2 = 100 Amplitude = max evenw.

Nadere informatie

Oefentoets uitwerkingen

Oefentoets uitwerkingen Vak: Wiskunde Onderwerp: Hogere machtsverb., gebr. func=es, exp. func=es en logaritmen Leerjaar: 3 (206/207) Periode: 3 Oefentoets uitwerkingen Opmerkingen vooraf: Geef je antwoord al=jd mét berekening

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

Logaritmische functie

Logaritmische functie Logaritmische functie WISNET-HBO update aug 2013 1 Inleiding De bedoeling van deze les is het repeteren met pen en papier van logaritmen. Voorkennis van de rekenregels van machten is voor deze les beslist

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Standaardafgeleiden. Wisnet-HBO. update maart 2011

Standaardafgeleiden. Wisnet-HBO. update maart 2011 Standaardafgeleiden Wisnet-HBO update maart 2011 1 Inleiding Als je nog niets over differentiëren weet, kun je beter eerst naar de les Wat is Differentiëren gaan in Wisnet Verder zijn er Maplets om de

Nadere informatie

Toegepaste Wiskunde deel 1

Toegepaste Wiskunde deel 1 Toegepaste Wiskunde deel Uitwerkingen etra opgaven hoofdstuk Functies. y f ( ) 4 ( )( ) is minimaal -4 voor 0 y g f ( ) ( ) 4 ( )( ) bestaat wanneer D en B 4, ( )( ) 0, voor het domein en het bereik geldt

Nadere informatie

11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20

11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20 .0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:

Nadere informatie

Exponentiële vergelijkingen en groei

Exponentiële vergelijkingen en groei Exponentiële vergelijkingen en groei De gelijkheid 10 2 = 100 bevat drie getallen: 10, 2 en 100. Als we van die drie getallen er één niet weten moeten we hem kunnen berekenen. We kunnen dus drie gevallen

Nadere informatie

Paragraaf 13.0 : Limieten en absolute waarde

Paragraaf 13.0 : Limieten en absolute waarde Hoofdstuk 13 Limieten en Asymptoten (V6 Wis B) Pagina 1 van 13 Paragraaf 13.0 : Limieten en absolute waarde Definitie absoluuttekens pp = { p absoluut of de absolute waarde van p } pp = { altijd positief

Nadere informatie

exponentiële en logaritmische functies

exponentiële en logaritmische functies CAMPUS BRUSSEL Opfriscursus Wiskunde exponentiële en logaritmische functies Exponentiële en logaritmische functies Machten van getallen 000 euro wordt belegd aan een samengestelde interest van % per jaar

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f() = Differentiequotiënt van f() op [0, 3] = y f (3) f (0) 6 0 30 30 y 1 16.1

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Paragraaf 9.1 : Twee soorten groei

Paragraaf 9.1 : Twee soorten groei Hoofdstuk 9 Exponentiële Verbanden (H5 Wis A) Pagina 1 van 9 Paragraaf 9.1 : Twee soorten groei Les 1 Lineaire en exponentiele groei Definitie Lijn = LINEAIRE GROEI Algemene formule van een lijn : y =

Nadere informatie

Logaritmen. Het tijdstip t waarop S(t) = is op de t-as aangegeven. Dat tijdstip komt niet mooi uit. Dat tijdstip noemen 5,3

Logaritmen. Het tijdstip t waarop S(t) = is op de t-as aangegeven. Dat tijdstip komt niet mooi uit. Dat tijdstip noemen 5,3 5 Logaritmen 1 We bekijken de Shigella-bacterie uit opgave 1 van de vorige paragraaf. Hieronder staat een stukje van de grat fiek van de functie S(t) = 5,. Het tijdstip t waarop S(t) = 100.000 is op de

Nadere informatie

Wiskunde voor bachelor en master Deel 1 Basiskennis en basisvaardigheden. c 2015, Syntax Media, Utrecht Uitwerkingen hoofdstuk 11

Wiskunde voor bachelor en master Deel 1 Basiskennis en basisvaardigheden. c 2015, Syntax Media, Utrecht  Uitwerkingen hoofdstuk 11 Wiskunde voor bachelor en master Deel Basiskennis en basisvaardigheden c 05, Syntax Media, Utrecht www.syntaxmedia.nl Uitwerkingen hoofdstuk.. a. In de onderstaande figuur zijn de grafieken van y = ( )x,

Nadere informatie

Rekenregels voor het differentiëren

Rekenregels voor het differentiëren Rekenregels voor het differentiëren Wisnet-HBO update febr. 2010 1 Inleiding Als je nog niets over differentiëren weet, kun je beter eerst naar de les "Wat is Differentiëren" gaan. Verder zijn er Maplets

Nadere informatie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie Wiskunde 2 september 2008 versie 1-1 - Op hoeveel verschillende manieren kun je drie zwarte pionnen verdelen over de 32 zwarte velden van een schaakbord? (Neem aan dat op elk veld hooguit één pion staat.)

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

logaritmen WISNET-HBO update jan Zorg dat je het lijstje met rekenregels hebt klaarliggen als je met deze training begint.

logaritmen WISNET-HBO update jan Zorg dat je het lijstje met rekenregels hebt klaarliggen als je met deze training begint. Training Vergelijkingen met logaritmen WISNET-HBO update jan. 0 Inleiding Voor deze training heb je nodig: de rekenregels van machten de rekenregels van de logaritmen Zorg dat je het lijstje met rekenregels

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

8 Oefeningen bij dehoofdstukken 5, 6 en 7 van deel Logaritmen met andere grondtallen dan Overzicht en oefening bij logaritmen 10

8 Oefeningen bij dehoofdstukken 5, 6 en 7 van deel Logaritmen met andere grondtallen dan Overzicht en oefening bij logaritmen 10 deel 2 Inhoudsopgave 8 Oefeningen bij dehoofdstukken 5, 6 en 7 van deel 1 3 9 Logaritmen met andere grondtallen dan 10 6 10 Overzicht en oefening bij logaritmen 10 Dit is een vervolg op Verbanden, Exponenten

Nadere informatie

Paragraaf 6.1 : Kwadratische formules

Paragraaf 6.1 : Kwadratische formules Hoofdstuk 6 Machtsverbanden (V Wis A) Pagina 1 van 10 Paragraaf 6.1 : Kwadratische formules Gegeven is de formule W(x) = x 2 + 8x met W de winst in euro s per uur en x het aantal producten dat per uur

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Voorwoord Rekenvaardigheden

Voorwoord Rekenvaardigheden Voorwoord In het middelbaar onderwijs hebben zich de laatste jaren grote veranderingen voltrokken: de tweede fase met de daaraan verbonden profielkeuze en het studiehuis zijn ingevoerd. In sommige opzichten

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Paragraaf 14.0 : Eenheidscirkel

Paragraaf 14.0 : Eenheidscirkel Hoofdstuk 14 Allerlei formules (V6 Wis A) Pagina 1 van 12 Paragraaf 14.0 : Eenheidscirkel De eenheidscirkel met graden Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat

Nadere informatie

H9 Exponentiële verbanden

H9 Exponentiële verbanden H9 Exponentiële verbanden Havo 5 wiskunde A Getal & Ruimte deel 3 PTA 1 Oefenmateriaal examens 2 Voorkennis Rekenen met procenten Formule van procentuele verandering Vermenigvuldigingsfactor Procent op

Nadere informatie

2.0 Voorkennis. Rekenregels machten: 5) a 0 = 1. p p q p q a p q q. p q pq p p p. Willem-Jan van der Zanden

2.0 Voorkennis. Rekenregels machten: 5) a 0 = 1. p p q p q a p q q. p q pq p p p. Willem-Jan van der Zanden 2.0 Voorkennis Voorbeeld: (a + b) 2 = a 2 + 2ab + b 2 (a + b) 3 = (a +b)(a2 + 2ab + b2) = a 3 + 2a 2 b + ab 2 + a 2 b +2ab 2 + b 3 = a 3 + 3a 2 b + 3ab 2 + b 3 Rekenregels machten: p p q pq a pq 1) a a

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e 1/3/2017. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e 1/3/2017. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 1/3/2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding

Nadere informatie

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i 16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =

Nadere informatie

5.1 Hogeremachtswortels [1]

5.1 Hogeremachtswortels [1] 5. Hogeremchtswortels [] De functie x 2 = p heeft twee oplossingen ls p > 0; De functie x 2 = p heeft één oplossing ls p = 0; De functie x 2 = p heeft geen oplossingen ls p < 0; Het bovenstnde geldt bij

Nadere informatie

) translatie over naar rechts

) translatie over naar rechts Hoofdstuk opmerkingen/adviezen Leer deze grafieken precies! Zorg dat je de volgende formules ziet in de grafieken: Periode sinus, cosinus en tangens: resp,, sin( ) sin( ) cos( ) cos( ) cos( ) c a k a k

Nadere informatie

Verbanden en functies

Verbanden en functies Verbanden en functies 0. voorkennis Stelsels vergelijkingen Je kunt een stelsel van twee lineaire vergelijkingen met twee variabelen oplossen. De oplossing van het stelsel is het snijpunt van twee lijnen.

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

7.1 Ongelijkheden [1]

7.1 Ongelijkheden [1] 7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.

3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. 3.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. y = -4x + 8 kan herschreven worden als y + 4x = 8 Dit is een lineaire vergelijking met twee variabelen. Als je

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 78 punten te behalen. Voor elk

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 018 tijdvak woensdag 0 juni 1.0-16.0 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 7 punten te behalen. Voor elk vraagnummer

Nadere informatie

Algemene informatie. Inhoudelijke informatie

Algemene informatie. Inhoudelijke informatie Informatie over Colloquium doctum Wiskunde niveau 2 voor Bedrijfskunde, Economie, Fiscale Economie en Mr.-Drs. Programma Economie en Recht ERASMUS UNIVERSITEIT ROTTERDAM Algemene informatie Tijdsduur:

Nadere informatie

In een zware tornado worden maximale windsnelheden van ongeveer 280 km/u bereikt.

In een zware tornado worden maximale windsnelheden van ongeveer 280 km/u bereikt. Tornadoschalen In tornado s kunnen hoge windsnelheden bereikt worden. De zwaarte of heftigheid van een tornado wordt intensiteit genoemd. Er zijn verschillende schalen om de intensiteit van een tornado

Nadere informatie

Paragraaf 11.1 : Grafieken en Gebieden

Paragraaf 11.1 : Grafieken en Gebieden Hoofdstuk 11 Formules en Variabelen (H5 Wis A) Pagina 1 van 9 Paragraaf 11.1 : Grafieken en Gebieden Definitie Halfvlak Halfvlak = { Gebied onder / boven / links / rechts van een lijn } Om een halfvlak

Nadere informatie

Hoofdstuk 6 - de afgeleide functie

Hoofdstuk 6 - de afgeleide functie Hoofdstuk 6 - de afgeleide functie 0. voorkennis Het differentiequotiënt Het differentiequotiënt van y op de gemiddelde verandering van y op [ ] is: A B de richtingscoëfficiënt (ook wel helling) van de

Nadere informatie

13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen.

13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen. 13.0 Voorkennis Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen. Op het interval [-2; -0,94) is de grafiek dalend; Bij x =

Nadere informatie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE Vaardigheden 1: Informatievaardigheden X X : Onderzoeksvaardigheden

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 donderdag 19 mei uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 donderdag 19 mei uur Eamen HAVO 011 tijdvak 1 donderdag 19 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 19 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Exponentiële functies

Exponentiële functies Eponentiële functies In de vorige paragraaf hebben we alleen positieve getallen in de eponent gekozen. Nu laten we alle getallen als eponent toe. 1 Als je een fles melk uit de koelkast haalt, zal de temperatuur

Nadere informatie

Differentiëren. Training met de rekenregels en de standaard afgeleiden

Differentiëren. Training met de rekenregels en de standaard afgeleiden Differentiëren Training met de rekenregels en de standaard afgeleiden Wisnet-HBO update maart 2011 Voorkennis Repeteer de standaardafgeleiden en de rekenregels voor differentiëren. Draai eventueel het

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

Willem van Ravenstein

Willem van Ravenstein Willem van Ravenstein 1. Variabelen Rekenen is het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken je de bewerkingen machtsverheffen en worteltrekken.

Nadere informatie

Eindexamen wiskunde B pilot havo I

Eindexamen wiskunde B pilot havo I Overlevingstijd Als iemand in koud water terecht komt, daalt zijn lichaamstemperatuur. Als de lichaamstemperatuur is gedaald tot 30 ºC ontstaat een levensbedreigende situatie. De tijd die verstrijkt tussen

Nadere informatie

Dictaat Rekenvaardigheden. Faculteit Wiskunde en Informatica

Dictaat Rekenvaardigheden. Faculteit Wiskunde en Informatica Dictaat Rekenvaardigheden Faculteit Wiskunde en Informatica 7 mei 007 Voorwoord Voorwoord In het middelbaar onderwijs hebben zich de laatste jaren grote veranderingen voltrokken: de tweede fase met de

Nadere informatie

wiskunde B havo 2018-II

wiskunde B havo 2018-II Piano In figuur 1 zijn de witte en zwarte toetsen van een gewone piano getekend. In totaal heeft deze piano 88 toetsen. figuur 1 De toetsen worden genummerd van links naar rechts. Zie figuur, waarin de

Nadere informatie