Wiskunde D Online uitwerking 4 VWO blok 7 les 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Wiskunde D Online uitwerking 4 VWO blok 7 les 3"

Transcriptie

1 Paragraaf Vergelijkige va vlakke Opgave a Dat zij de pute A, B, E e F e alle pute die verder op de voorkat va de kubus ligge. b Dat zij de pute A, C, E e G e alle pute die i het diagoaalvlak met A, C, E e G va de kubus ligge. c I het Oxz-vlak ligge de pute A e H op de lij x + z. Het vlak door deze lij, evewijdig met de y-as is het diagoaalvlak met daari A, B, G e H. Dat vlak bevat alle pute die voldoe aa de vergelijkig x + z. Opgave a Uitschrijve geeft: x (,,) ( x, y, z) x + y + z x + y + z. Dus x worde tot x + y + z. ka uitgewerkt b I oderdeel a hebbe we gezie dat x. Omdat geldt p (,,) (,0,0) volgt dus x p. Het rechterlid aar liks brege geeft x p 0. I paragraaf hebbe we gezie dat de distributieve wet geldt, dus x p ( x p). c Er geldt x + z x + 0 y + z (,0,) ( x, y, z) x. Dus ku je schrijve als x, wat x + z. Ook geldt a (,0,0). Bereke u: a (,0,) (,0,0). Werk u uit: ( x a) x a 0. d We kue x + y herschrijve i de vorm x met (,,0 ) e x ( x, y, z). De vector staat loodrecht op het vlak. Opgave a Op de x-as geldt y 0 e z 0, dus da volgt uit de vergelijkig x 6, e het sijput met de x-as is (6, 0, 0). Op soortgelijke wijze volge de sijpute met de y-as e de z-as: (0, 6, 0) e (0, 0, 6). Zie de atwoorde i het boek voor de tekeig. b I het Oxy-vlak is z 0, dus da wordt de vergelijkig x + y 6. Voor lij AB geldt x, dus daar is y, e da hebbe we het sijput (,, 0). Voor het sijput met lij BC geldt x + y 6 e y, dus x e het sijput is (,, 0). Op soortgelijke wijze worde de overige sijpute gevode. c OF is ee lij i het diagoaalvlak OBFH. De lij EG staat loodrecht op HF, wat dit zij diagoale i het vierkat EFGH. De lij EG staat ook loodrecht op OH, dus op het hele diagoaalvlak OBFH. Omdat EG loodrecht staat op vlak OBFH, staat EG loodrecht op iedere lij i dat vlak, e dus ook op OF. d BE staat loodrecht op het vlak OAFG, dus op iedere lij i dat vlak e dus ook op lij OF. april 06

2 e Maak ee tekeig va vlak OBFH. De legtes va OH e BF zij, de legtes va OB e FH zij, wat dit zij diagoale i vierkate met zijde met legte gelijk aa. H N F S O B Het put N ligt midde op HF, wat N is het sijput va de diagoale i vierkat EFGH. Teke u ook lije OF e BN. Driehoee OBF e BFN zij gelijkvormig, wat beide zij rechthoekig, e de verhoudige va de rechthoekszijde zij gelijk: OB/BF / e BF/FN /. Hieruit volgt dat FOB NBF. Maar omdat FOB + OFB 90, volgt u ook i driehoek SBF: SBF + BFS NBF + BFO FOB + BFO 90 e dus is de hoek bij S ook 90. Er geldt: OF f (,,) e B b (,,) (,,0) (,,). Bereke u: OF B (,,) (,,) 0, dus OF e BN staa loodrecht op elkaar. Opgave a Op de x-as geldt y 0, z 0, dus da is x 6 e het sijput is (6, 0, 0). Op de y-as geldt x 0, z 0, dus da is y 6 e het sijput is (0, 6, 0). Op de z-as geldt x 0, y 0, dus da is z 6 e het sijput is (0, 0, ). Zie verder de tekeig bij de atwoorde i het boek. b I het Oxy-vlak is z 0, dus de vergelijkig va de sijlij is x + y 6. Voor de lij AB geldt x, dus y e het sijput is (,, 0). Voor de lij BY geldt y, dus x e het sijput is (,, 0). I het Oxz-vlak is y 0, dus de vergelijkig va de sijlij is x + z 6. Voor de lij AE geldt x, dus z e het sijput is (, 0, ). I het Oyz-vlak is x 0, dus de vergelijkig va de sijlij is y + z 6. Voor de lij CG geldt y, dus z e het sijput is (0,, ). Verder heeft U ee sijput met de z-as i (0, 0, ) e dit is ook ee put op de ribbe. c De vergelijkig va het vlak is x + y + z 6. Coëfficiëte va x, y e zij zij, e dus ee ormaalvector is (,, ). d Bekijk OEG. De zijde va deze driehoek zij allemaal eve lag, dus de driehoek is gelijkzijdig. N is het midde va EG, dus ON is hoogtelij i OEG e ON staat loodrecht op EG. april 06

3 e Teke rechthoek OBFH. H N F M O B OHN e NFM zij gelijkvormig, wat beide zij rechthoekig e de verhoudig va de rechthoekszijde is i beide driehoeke gelijk: OH/HN / e NF/FM /. Dus NOH FNM. Maar ook geldt: HNO + NOH 90. Da volgt: HNO + FNM HNO + NOH 90, dus ONM 90 e ON e NM staa loodrecht op elkaar. Opgave 5 a I opgave hebbe we gezie dat ON loodrecht stat op vlak EGM, wat ON staat loodrecht op EG e ook op MN. De afstad va O tot vlak OGM is dus de legte va ON. Die legte kue we berekee met de tekeig i uitwerkig a): ON OH + HN + ( ) 6. b Pute A, C e H ligge eve ver va O, dus vlak ACH staat loodrecht op OF. Vector OF (,,). Dele we deze vector door, da blijft de richtig gelijk, dus (,, ) is ee ormaalvector. c Zie de uitwerkig i het boek. Opgave 6 a Vul achtereevolges de coördiate va A (, 0, 0), H (0, 0, 5) e C (0,, 0) i, i de x y z vergelijkig + +, e steeds volgt dat de gelijkheid geldt. 5 b Vermeigvuldig de vergelijkig met 5 60, da volgt de vergelijkig 0x + 5y + z 60. De coëfficiëte va x, y e z zij 0, 5 e, dus (0, 5, ) is ee ormaalvector. x c Op de x-as geldt y 0, z 0, da wordt de vergelijkig e x. Het sijput is da (, 0, 0). z Op de z-as geldt x 0, y 0, da wordt de vergelijkig 5 e z 5. Het sijput is da (0, 0, 5). d De variabele y komt iet voor i de vergelijkig, dus het vlak is evewijdig met de y-as. e Vermeigvuldig de vergelijkig met 5, da volgt 5x + z 5 e ee ormaalvector is (5, 0, ). april 06

4 Opgave 7 a Om het sijput met de z-as te bepale trekke we lij EG, met i het midde N. Put N ligt i vlak OBH. Omdat de afstad HN de helft is va de afstad OB, is de z-coördiaat va het sijput tweemaal de z-zoördiaat va put H, dus (0, 0, 0). Op soortgelijke wijze volge de sijpute (6, 0, 0) e (0, 8, 0). x y z b Met de iformatie i het grijze vlak bove de opgave volgt u: + +. Vermeigvuldig met , da volgt: 0 x + 5y + z 0 e de ormaalvector is (0, 5, ). c Vlak BEH sijdt de x-as iet, de y-as i (0,, 0) e de z-as i (0, 0, 5). Ee vergelijkig is dus: y + z 5, ofwel 5 y + z 0, met ormaalvector (0, 5, ). d Evewijdige vlakke hebbe dezelfde ormaalvector, dus ee vlak evewijdig aa BEH heeft y z vergelijkig + d. Het put (0, 0, 0) ligt i dit vlak, dus d 0. 5 Opgave 8 De coördiate va de sijpute met de asse zij makkelijk te bepale. Maak twee coördiate gelijk aa 0 e bereke da de derde met de vergelijkig. De resultate e tekeige staa bij de atwoorde i het boek. Opgave 9, 0, Zie de uitwerkige bij de atwoorde i het boek. Opgave De vlakke zij evewijdig e staa loodrecht op de diagoaal i de kubus. Ee ormaalvector is dus (,, ) e de vergelijkige zij x + y + z d. Het vlak het dichtste bij O sijdt de x-as i (, 0, 0). Vul dit i i de vergelijkig e da volgt d. De vergelijkig is dus x + y + z. Het adere vlak sijdt de x-as i (9, 0, 0), zodat de vergelijkig x + y + z 9 is. Opgave a Vul de coördiate va de pute i i de vergelijkig e da klopt steeds de vergelijkig. b Er geldt: AB b a ( 0,,0) (6,0,0) ( 6,,0). Bereke (,, ) AB (,, ) ( 6,,0) 0. Er geldt: AC c a ( 0,0, ) (6,0,0) ( 6,0, ). Bereke (,, ) AC (,, ) ( 6,0, ) 0. april 06

5 Opgave 5 - Vectore i het vlak zij (,, 5) (,, ) (0,, ) e (, 6, 0) (,, ) (,, -). Ee vector loodrecht op (0,, ) is (b,, -). Als het iproduct va (,, -) e (b,, -) gelijk moet zij aa 0, da moet gelde: b + 0, ofwel b -7 e (-7,, -) staat loodrecht op dit vlak. Ee vergelijkig va het vlak is da -7x + y z d. Het put (,, ) moet i dit vlak ligge, dus moet gelde: -7 + d, ofwel d -8. De vergelijkig wordt -7x + y z -8, of ook wel 7x y + z 8. - Vectore i het vlak zij (,, 5) (,, ) (,, ) e (,, 5) (,, 0) (0, 0, 5). Ee vector loodrecht op (0, 0, 5) is (b,, 0). Als (b,, 0) loodrecht moet staa op (,, ), da moet gelde: b , ofwel b -. Ee ormaalvector is dus (-,, 0) e ee vergelijkig va het vlak is -x + y d. Het put (,, ) moet i dit vlak ligge, dus d 0 e de vergelijkig is -x + y 0. - Vectore i het vlak zij (,, 5) (,, ) (,, ) e (,, ) (-,, ) (5,, 0). Ee vector loodrecht op (5,, 0) is (-, 5, b). Als (-, 5, b) loodrecht moet staa op (,, ), da moet gelde: b 0, ofwel b -½ e ee e ormaalvector is (-, 5, -½). Vermeigvuldige met geeft ee ormaalvector (-, 0, -9). Ee vergelijkig va het vlak is x - 0y + 9z d. Het put (,, ) moet i dit vlak ligge, dus d e de vergelijkig is x - 0y + 9z 9. - Vectore i het vlak zij (,, ) (,, ) (, 0, 0) e (, 6, 0) (,, ) (,, -). Ee vector loodrecht op (, 0, 0) is (0, b, ). Als (0, b, ) loodrecht moet staa op (,, -), da moet gelde: 0 + b + - 0, ofwel b ¾ e (0, ¾, ) is ee ormaalvector. Vermeigvuldige met geeft ee ormaalvector (0,, ) e ee vergelijkig va het vlak is y + z d. Put (,, ) ligt i dit vlak, dus + 8 d. De vergelijkig is y + z 8. Opgave 6 - Twee vectore i het vlak zij (,, -) (,, ) (, -, -6) e (7, 0, 5) (,, ) (6, -, ). Ee vector (a, b, ) moet loodrecht staa op (, -, -6), ofwel: a + b , ofwel a b + 6 e de vector is (b + 6, b, ). Deze vector moet loodrecht staa op (6, -, ), ofwel: (b + 6) 6 + b Hieruit volgt b -9/ e a -7/. De vector (a, b, ) is dus (-7/, -9/, ). Vermeigvuldig met -, da is ee ormaalvector (7, 9, -) e ee vergelijkig voor het vlak is 7x + 9y z d. Ee put i het vlak is (,, ), dus d e de vergelijkig is 7x + 9y z 9. - Twee vectore i het vlak zij (, 0, 0) (0, -, ) (,, -) e (5,, ) (, 0, 0) (,, ). Ee vector (a, b, ) moet loodrecht staa op (,, -), dus moet gelde: a + b - 0, ofwel b - / a + ½ e de vector is (a, - / a + ½, ). Deze vector moet loodrecht staa op (,, ), ofwel: a - a Hieruit volgt a e b -. De vector (a, b, ) is dus (, -, ) e ee vergelijkig voor het vlak is x y + z d. Ee put i het vlak is (, 0, 0), dus d 9 e de vergelijkig is x y + z 9. - Twee vectore i het vlak zij (,, ) (, 0, 0) (0,, ) e (,, ) (, 0, 0) (,, ). De vector (b, -, ) staat loodrecht op (0,, ) e moet ook loodrecht staa op (,, ), dus moet gelde: b Hieruit volgt b / e (/, -, ) is ee ormaalvector. Da is (, -9, 6) ook ee ormaalvector e ee vergelijkig voor het vlak is x 9y + 6z d. Ee put i het vlak is (, 0, 0), dus d e de vergelijkig is x 9y + 6z. april 06

6 Opgave 7 a Ee ormaalvector va het vlak is (,, ). Ee put B i het vlak is (0, 0, 0). Da is de afstad va 0 tot het vlak: OB (0,0,0) (,,) b Ee ormaalvector va het vlak is (,, -). Ee put B i het vlak is (, 0, 0). Da is de afstad va A tot het vlak: AB (,0,0 ) (,, ) + + ( ) c We moete eerst ee vergelijkig opstelle va het vlak. Vectore (6,, 0) (,, -) (,, ) e (0, 6, 0) (,, -) (-,, ) ligge i het vlak. Ee vector (a, b, ) moet loodrecht staa op (,, ), dus a + b + 0, ofwel b -a - e de vector (a, b, ) is (a, -a -, ). Deze moet loodrecht staa op (-,, ) dus -a 6a - + 0, ofwel a - ½ e ee ormaalvector is (- ½, -, ). Vermeigvuldige met - geeft ee ormaalvector (,, -) e ee vergelijkig va het vlak is x + y - z d. Put (0, 6, 0) ligt i dit vlak, dus d 6 e de vergelijkig is x + y - z. Hiermee is de opgave dezelfde geworde als i oderdeel b. Opgave 8 a NB: Waar i de tekeig bij de opgave ee H staat moet ee D staa. De sijpute met de asse zij (, 0, 0), (0,, 0) e (0, 0, ). Da is ee vergelijkig va het vlak x y z door die pute: + +, of ook: x + 6y + z. b Met de formule op pagia 5 e p p p 0, volgt voor de afstad: c De ihoud va ee piramide is / hoogte oppervlakte grodvlak. De hoogte is, de oppervlakte va het grodvlak is ½. Combieer de resultate tot / ½. d Bekijk dezelfde piramide als i c, maar met ACD als grodvlak e als hoogte de afstad va dat vlak tot O. De afstad va O tot het vlak is, dus moet gelde: Opp ACD, ofwel Opp ACD april 06

7 Opgave 9 I de figuur staat ee D, maar dat moet ee H zij. a Ee vergelijkig va het vlak door A, C e D is x + 6y + z. Put F heeft coördiate (,, ). Met de formule va pagia 5 volgt: b De oppervlakte va ACD. De ihoud va piramide ACDF is o Opp ACD o hoogte o 8. c De piramide ACDF blijft over als je va het blok verwijdert: piramide OACD, piramide ABCF, piramide DEFA e piramide DGFC. Dit zij allemaal piramides met hoogt e oppervlakte va het grodvlak ½. De ihoud va ieder va die piramides is dus /. De ihoud va het blok is. Haal hier keer vaaf, e da resteert voor de ihoud va de piramide ACDF precies 8. Opgave 0 a Zie de tekeig bij de atwoorde i het boek. b Ee ormaalvector va V is (,, ). W is evewijdig e heeft dus ook die ormaalvector, dus ee vergelijkig va W is x + y + z d. W gaat door het midde va de kubus, dat is put (6, 6, 6). Dus d 8 e de vergelijkig va W is x + y + z 8. c Kies ee put i het vlak V, bijvoorbeeld A (, 0, 0) e bereke de afstad tot W, met de formule op pagia 5: d De ihoud va het stuk va de kubus tusse V e W is de ihoud va de halve kubus mius de ihoud va piramide ACHD. De ihoud va de halve kubus is ½ 86. Neem voor het berekee va de ihoud va piramide ACHD de driehoek ADC als grodvlak e DH als hoogte. Da volgt voor de ihoud va piramide ACHD: / ½ 88. Voor de ihoud va het stuk tusse de vlakke volgt da april 06

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eideame wiskude B vwo 200 - II Sijde met ee hoogtelij Op ee cirkel kieze we drie vaste pute, B e C, waarbij lijstuk B gee middellij is e put C op de kortste cirkelboog B ligt. Ee put doorloopt dat deel

Nadere informatie

Beoordelingsmodel VWO wiskunde B II. Een rij. Voor de limiet geldt: u 2 u. 2u u = 1. Dit schrijven als un. De (enige) oplossing: u = 1

Beoordelingsmodel VWO wiskunde B II. Een rij. Voor de limiet geldt: u 2 u. 2u u = 1. Dit schrijven als un. De (enige) oplossing: u = 1 Beoordeligsmodel VWO wiskude B 009-II Vraag Atwoord Scores Ee rij maximumscore Voor de limiet geldt: u u u u Dit schrijve als u u+ 0 De (eige) oplossig: u maximumscore 5 vervage door i u + u + + + Dit

Nadere informatie

8 want 5,8 2 = 33,64 > 33 5 want 7,5 2 = 56,25 > 56,2 5 want 2,5 2 = 6,25.

8 want 5,8 2 = 33,64 > 33 5 want 7,5 2 = 56,25 > 56,2 5 want 2,5 2 = 6,25. Hoofdstuk WORTELS. ZIJDE EN OPPERVLAKTE VAN EEN VIERKANT a z a 9 + + + + 9 Lagzamer a Nee Hij doet alsof de oppervlakte gelijkmatig toeeemt. Je moet als zijde eme. z 0, 0, z a a 0,09 0,9 z a 0 / 00 0,

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

B C D E Welke rij is noch een Rekenkundige. noch een Meetkundige Rij? A B C D E

B C D E Welke rij is noch een Rekenkundige. noch een Meetkundige Rij? A B C D E Naam : Klas:.Datum: Ma 0 sept. 00 Rechterkat als kladblad gebruike A. 5067 De rij x, x+, x+,... is rekekudig als x gelijk is aa ) ) ) 4) 4 5) 0 6) 4 7) 8) ee getal tusse e 0 B. 57 80 De legtes a, b e c

Nadere informatie

Eindexamen wiskunde B1 vwo 2007-I

Eindexamen wiskunde B1 vwo 2007-I Eidexame wiskude B vwo 007-I havovwo.l Podiumverlichtig Ee podium is 6 meter diep. Midde bove het podium hagt ee balk met tl-buize. De verlichtigssterkte op het podium is het kleist aa de rad, bijvoorbeeld

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eidexame wiskude B vwo 200 - II Formules Vlakke meetkude Verwijzige aar defiities e stellige die bij ee bewijs moge worde gebruikt zoder adere toelichtig. Hoeke, lije e afstade: gestrekte hoek, rechte

Nadere informatie

5.1 Punten, lijnen en vlakken [1]

5.1 Punten, lijnen en vlakken [1] 5.1 Punten, lijnen en vlakken [1] Snijdende lijnen hebben een snijpunt. De snijdende lijnen FH en EG liggen in het vlak EFGH. Snijdende lijnen liggen altijd in één vlak. Een vlak is altijd plat en heeft

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur Eame VW 05 tijdvak doderdag 8 jui.0-6.0 uur wiskude B (pilot) Dit eame bestaat uit 7 vrage. Voor dit eame zij maimaal 79 pute te behale. Voor elk vraagummer staat hoeveel pute met ee goed atwoord behaald

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

AFSTANDEN EN HOEKEN IN

AFSTANDEN EN HOEKEN IN AFSTANDEN EN HOEKEN IN Kls 6N e 7N K. Temme INHOUD. DE AFSTAND AN TWEE PUNTEN.... DE AFSTAND AN EEN PUNT EN EEN LIJN.... DE AFSTAND AN EEN PUNT EN EEN LAK... 7. DE AFSTAND AN EEN LIJN EN EEN LAK... 9.

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 6 les 4

Wiskunde D Online uitwerking 4 VWO blok 6 les 4 Wiskunde Online uitwerking 4 VWO blok 6 les 4 Paragraaf 4 Het inproduct om hoeken te berekenen Opgave a e hoek is kleiner dan 4, want het dak zelf staat onder een hoek van 45, en de kilgoot loopt schuin

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

Praktische opdracht: Complexe getallen en de Julia-verzameling

Praktische opdracht: Complexe getallen en de Julia-verzameling Praktische opdracht: Complexe getalle e de Julia-verzamelig Auteur: Wiebe K. Goodijk, Zerike College Hare Beodigde Voorkeis: 1 = i Het complexe vlak. Notatie: z = a + bi of z = r(cosϕ + i si ϕ) Regel va

Nadere informatie

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β.

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β. 1 Synthetische RM 1. (a) Geef de definitie van de loodrechte stand van twee vlakken. (b) Geen stellingen die voorwaarden uitdrukken opdat twee vlakken orthogonaal zijn. (c) Steun op 1a of 1b om te bewijzen

Nadere informatie

6.1 Kijkhoeken[1] Willem-Jan van der Zanden

6.1 Kijkhoeken[1] Willem-Jan van der Zanden 6.1 Kijkhoeken[1] Het plaatje is een bovenaanzicht; De persoon kan het gedeelte binnen de kijkhoek zien; De twee rode lijnen zijn kijklijnen; De kijklijnen geven de grenzen aan van het gebied dat de persoon

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 009 tijdvak wiskude B, Het correctievoorschrift bestaat uit: Regels voor de beoordelig Algemee regels Vakspecifieke regels Beoordeligsmodel 5 Izede scores Regels voor de beoordelig

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 23 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 23 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eame VWO 200 tijdvak 2 woesdag 23 jui 3.30-6.30 uur wiskude B Bij dit eame hoort ee uitwerkbijlage. Dit eame bestaat uit 7 vrage. Voor dit eame zij maimaal 80 pute te behale. Voor elk vraagummer staat

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

Een meetkundige constructie van de som van een meetkundige rij

Een meetkundige constructie van de som van een meetkundige rij Ee meetkudige costructie va de som va ee meetkudige rij [ Dick Kliges ] Iets verder da Euclides deed Er wordt door sommige og wel ees gedacht dat Euclides (hij leefde rod 300 v. Chr.) allee over meetkude

Nadere informatie

Hoofdstuk 1 Rijen en webgrafieken

Hoofdstuk 1 Rijen en webgrafieken Hoofdstuk Rije e wegrafieke Voorkeis: Rije ladzijde V-a u 7 + v +, c De vergelijkig 7 + +, oplosse geeft, e dus 8. Ze hee eide 8 rode gelope. V- u, u met u V-a u + ( ) + + s u + u + u +... + u + + 8 +

Nadere informatie

de oplossingen zijn van d d 1 = 0. Hoofdvraag 7. Als de lenge van de zijde van een vijfhoek 1 is, dan heeft de diagonaal als lengte

de oplossingen zijn van d d 1 = 0. Hoofdvraag 7. Als de lenge van de zijde van een vijfhoek 1 is, dan heeft de diagonaal als lengte De Gulde Sede Ee project va begeleid zelfstadig lere i het vijfde jaar. Ee samewerkig tusse Sit Ja Berchmas i Westmalle, Spijker i Hoogstrate e Sit Jozef i Esse. Vrage Bladzijde 6. Too aa dat i ee petago

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

6 Het inwendig product

6 Het inwendig product 6 Het iwedig prdct Te algebra e meetkde gescheide vakke ware, was h vrtgag lagzaam e h t beperkt Maar sids beide vakke zij vereigd, hebbe ze elkaar derlig versterkt e zij ze gezamelijk pgetrkke aar perfectie

Nadere informatie

7 Totaalbeeld. Samenvatten. Achtergronden. Testen

7 Totaalbeeld. Samenvatten. Achtergronden. Testen 7 Totaalbeeld Samenvatten Je hebt nu het onderwerp "Vectormeetkunde" doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet

Nadere informatie

7.1 Recursieve formules [1]

7.1 Recursieve formules [1] 7.1 Recursieve formules [1] Voorbeeld: 8, 12, 16, 20, 24, is ee getallerij. De getalle i de rij zij de terme. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is de vijfde term (u

Nadere informatie

RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM T212-HCMEM-H7911 Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald.

RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM T212-HCMEM-H7911 Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM T1-HCMEM-H7911 Voor elk oderdeel is aagegeve hoeveel pute kue worde behaald. Atwoorde moete altijd zij voorzie va ee berekeig, toelichtig of argumetatie.

Nadere informatie

Rijen met de TI-nspire vii

Rijen met de TI-nspire vii Rije met de TI-spire vii De tore va Pisa Me laat ee bal valle vaaf de tore va Pisa(63m hoog) Na elke keer stuitere haalt de bal og ee vijfde va de voorgaade hoogte. Gevraagd zij: a) De hoogte a de e keer

Nadere informatie

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur 4 Van D naar 3D Verkennen Van D naar 3D Inleiding Verkennen Bekijk de applet. Met de rechter muisknop kun je het assenstelsel om de oorsprong draaien en de fig van alle kanten bekijken. Beantwoord nu de

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 7 les 2

Wiskunde D Online uitwerking 4 VWO blok 7 les 2 Wiskunde D Online uitwerking 4 VWO lok 7 les Paragraaf Loodrechte stand en inproduct Opgave De lijnen HM En BD snijden elkaart, want ze liggen eide in het vlak door de punten H, D, B en M Ze snijden elkaar

Nadere informatie

Opgave 5 Onderzoek aan β -straling

Opgave 5 Onderzoek aan β -straling Eidexame vwo atuurkude 214-I - havovwo.l Opgave 5 Oderzoek aa β -stralig Zoals beked bestaat β -stralig uit elektroe. Om ee oderzoek aa β -stralig te doe heeft Harald ee radioactieve bro met P-32 late

Nadere informatie

Convergentie, divergentie en limieten van rijen

Convergentie, divergentie en limieten van rijen Covergetie, divergetie e limiete va rije TI-spire e rije 7N5p GGHM 22-23 Eigeschappe rekekudige rij b = begiwaarde v = verschil tusse twee opeevolgede terme recursieve formule: u = u + v met u = b directe

Nadere informatie

figuur 2.50 Microscoop

figuur 2.50 Microscoop 07-01-2005 10:20 Pagia 1 Microscoop Ileidig Ee microscoop is bedoeld om kleie voorwerpe beter te kue zie, zie figuur 2.50. De bolle les dicht bij het oog (het oculair) heeft ee grote diameter. De bolle

Nadere informatie

wiskunde A pilot vwo 2016-I

wiskunde A pilot vwo 2016-I wiskude A pilot vwo 06-I Aalscholvers e vis maximumscore 3 De viscosumptie per dag is 30 0 0,36 + 696 0, 85 ( 788 (kg)) I de maad jui is dit 30 788 (kg) Het atwoord: 38 000 ( 38 duized) (kg) Als ee kadidaat

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

Doorsnede inhoud vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74250

Doorsnede inhoud vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74250 Auteur VO-content Laatst gewijzigd Licentie Webadres 24 mei 2016 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/74250 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet. Wikiwijs

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

5 Lijnen en vlakken. Verkennen. Uitleg

5 Lijnen en vlakken. Verkennen. Uitleg 5 Lijnen en vlakken Verkennen Lijnen en vlakken Inleiding Verkennen Bekijk de applet. Je ziet hoe een vlak kan worden beschreven met behulp van een vergelijking in x, en z. In de applet kun je de drie

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame HAVO 2013 tijdvak 2 woesdag 19 jui 13.30-16.30 uur wiskude A Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 21 vrage. Voor dit exame zij maximaal 80 pute te behale. Voor elk vraagummer

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

6 Ligging. Verkennen. Uitleg

6 Ligging. Verkennen. Uitleg 6 Ligging Verkennen Ligging Inleiding Verkennen Door in de applet het assenstelsel te draaien kun je nagaan of twee lijnen een snijpunt hebben. Je kunt ook andere lijnen proberen door de punten A, B, C

Nadere informatie

2 Veelhoeken 1 REGELMATIGE VEELHOEKEN

2 Veelhoeken 1 REGELMATIGE VEELHOEKEN Veelhoeke 1 EGELMATIGE VEELHOEKEN Voor meetkudige figure met meer da vier zijde geruike we vaak de verzamel aam veelhoeke. Als we te make hee met regelmatige veelhoeke, kue we hu omtrek e oppervlakte erekee

Nadere informatie

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken.

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken. HET BELANG VAN KP HART Vrage Tijdes de voordracht op augustus 007 hebbe we de volgede vrage besproke. Hoe ku je izie dat ee vierkat, bij gegeve omtrek, de rechthoek met de maximale oppervlakte is? Hoe

Nadere informatie

Programma. Opening Een laatste opmerking over hfst 1 vragen over hfst 1?

Programma. Opening Een laatste opmerking over hfst 1 vragen over hfst 1? Opening Een laatste opmerking over hfst 1 vragen over hfst 1? Voorkennis hfst 2 ontbinden in factoren (waarom ook al weer?) kwadratische functies 1 pw en eerste 2 uur vanmorgen science plein hw in orde?

Nadere informatie

Thema: Ruimtelijke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.

Thema: Ruimtelijke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd 12 August 2016 Licentie CC Naamsvermelding 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/74248 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl) Wiskude B, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 0 Tijdvak Izede scores Uiterlijk op jui de scores va de alfabetisch eerste vijf kadidate per school op de daartoe

Nadere informatie

Thema: Ruimtelijke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74248

Thema: Ruimtelijke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74248 Auteur VO-content Laatst gewijzigd 21 oktober 2016 Licentie CC Naamsvermelding 3.0 Nederland licentie Webadres https://maken.wikiwijs.nl/74248 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet. Wikiwijs

Nadere informatie

Toelichting bij Opbrengstgegevens VAVO 2011-2013

Toelichting bij Opbrengstgegevens VAVO 2011-2013 Toelichtig bij Opbregstgegeves VAVO 2011-2013 Ihoud Ileidig Aatal deelemers exame Kegetalle toezicht exames CE-cijfer alle vakke CE-cijfer alle vakke - tred SE-cijfer mius CE cijfer alle vakke Percetage

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,

Nadere informatie

Vlakke meetkunde en geogebra

Vlakke meetkunde en geogebra Vlakke meetkunde en geogebra Open de geogebra-app. Kies het algebra- en tekenvenster. Aan de linkerkant zie je het algebravenster en rechts daarvan het tekenvenster met een x-as en een y-as. Om een rooster

Nadere informatie

Rijen. 6N5p

Rijen. 6N5p Rije 6N5p 0-03 Rije Ileidig I de wiskude werke we vaak met formules e/of fucties die elke mogelijke waarde aa kue eme. Als bijvoorbeeld f( x) = 5x + 5x 3, da ku je voor x (bija) elke waarde ivulle e ka

Nadere informatie

Artikel. Regenboog. Uitgave Auteur.

Artikel. Regenboog. Uitgave Auteur. Artikel Regeboog Uitgave 206- Auteur HC jy886@teleet.be De eerste overtuigede verklarig va de regeboog werd i 704 door Isaac Newto beschreve i zij boek Optics. Newto toode aa dat wit licht ee megelig is

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

Vwo wiskunde D Inproduct

Vwo wiskunde D Inproduct Vwo wiskunde D Inproduct 1 Inhoudsopgave Inproduct 1 Lijnen in de ruimte 1 Loodrechte stand en inproduct 7 3 Vergelijkingen van vlakken 16 4 Het inproduct om hoeken te berekenen 7 Antwoorden 39 verbeterde

Nadere informatie

Thema: Ruimtelijke figuren vmbo-b34. CC Naamsvermelding 3.0 Nederland licentie.

Thema: Ruimtelijke figuren vmbo-b34. CC Naamsvermelding 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd 13 April 2016 Licentie CC Naamsvermelding 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/74196 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2010 tijdvak 2 dinsdag 22 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

Oefenopgaven Stelling van Pythagoras.

Oefenopgaven Stelling van Pythagoras. Oefenopgaven Stelling van Pythagoras. 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en CD. B. Laat door middel van berekening zien dat hoek B van driehoek ABC

Nadere informatie

tafel, inclusief de speelruimte, te plaatsen, volgens het advies van de leverancier afgerond 31 m 2 is.

tafel, inclusief de speelruimte, te plaatsen, volgens het advies van de leverancier afgerond 31 m 2 is. Tafeltennistafel Op de foto hiernaast staat een betonnen tafeltennistafel voor buiten. De tafel bestaat uit 2 onderdelen: een cilindervormige poot en een blad dat hierop bevestigd is. Het massieve blad

Nadere informatie

2. Limiet van een rij : convergentie of divergentie

2. Limiet van een rij : convergentie of divergentie 2. Limiet va ee rij : covergetie of divergetie 2. Eigelijke of eidige limiet 2.. Voorbeeld I ee bos staa 4 bome. De diest bosbeheer zal jaarlijks 2% bome kappe e ieuwe aaplate. Zal het bos verdwije? Zal

Nadere informatie

Proeftentamen IBK1LOG01

Proeftentamen IBK1LOG01 Proeftetame IBK1LOG01 Opgave 1 ( 20 pute) Beatwoord de oderstaade vrage met waar of iet waar: 1.De bereikbaarheid va iformatie over ee product bij ee iteretwikel is ee voorbeeld va pre-trasactie elemet

Nadere informatie

Hoofdstuk 10 Meetkundige berekeningen

Hoofdstuk 10 Meetkundige berekeningen Hoofdstuk 10 Meetkundige berekeningen Les 0 (Extra) Aant. Voorkennis: Hoeken en afstanden Theorie A: Sinus, Cosinus en tangens O RHZ tan A = A RHZ O RHZ sin A = SZ A RHZ cos A = SZ Afspraak: Graden afronden

Nadere informatie

Hoofdstuk 6 : Projectie en Stelling van Thales

Hoofdstuk 6 : Projectie en Stelling van Thales Hoofdstuk 6 : Projectie en Stelling van Thales - 127 1. Projectie op een rechte (boek pag 175) x en y zijn twee... rechten. We trekken door het punt A een evenwijdige rechte met de rechte y en noemen het

Nadere informatie

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek.

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek. 006 Wolters-Noordhoff bv Groige/Houte De steekproefomvag Ee toelichtig op het belag e het berekee va de steekproefomvag i marktoderzoek. Ihoud 1 Ileidig Eerst ekele defiities 3 Steekproefomvag e respose

Nadere informatie

4 A: = 10 B: 4 C: 8 D: 8

4 A: = 10 B: 4 C: 8 D: 8 Hoofdstuk OPPERVLAKTE VWO 0 INTRO A: + 6 = 0 B: C: 8 D: 8 DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0 Daar gaan twee halve

Nadere informatie

2.1 Cirkel en middelloodlijn [1]

2.1 Cirkel en middelloodlijn [1] 2.1 Cirkel en middelloodlijn [1] Hiernaast staat de cirkel met middelpunt M en straal 2½ cm In het kort: (M, 2½ cm) Op de zwarte cirkel liggen alle punten P met PM = 2½ cm In het rode binnengebied liggen

Nadere informatie

Periodiciteit bij breuken

Periodiciteit bij breuken Periodiciteit bij breuke Keuzeodracht voor wiskude Ee verdieede odracht over eriodieke decimale getalle, riemgetalle Voorkeis: omrekee va ee breuk i ee decimale vorm Ileidig I deze odracht leer je dat

Nadere informatie

7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1

7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1 H GONIOMETRIE HAVO.0 INTRO a : 00 (het touw is in de tekening 6 cm) a 6 km : 00.000 = 6 cm b 6 a Schaal :. b 9. TEKENEN OP SCHAAL a 7 a (moeilijk nauwkeurig te meten) b : 000 c Ik meet cm dus in werkelijkheid

Nadere informatie

Deel A. Breuken vergelijken 4 ----- 12

Deel A. Breuken vergelijken 4 ----- 12 Deel A Breuke vergelijke - - 0 Breuke e brokke (). Kleur va elke figuur deel. Doe het zo auwkeurig mogelijk.. Kleur va elke figuur deel. Doe het telkes aders.. Kleur steeds het deel dat is aagegeve. -

Nadere informatie

n = n Leg uit of een oog onder water het meest lijkt op een oog in lucht van een verziende of van een bijziende. Maak daarbij gebruik van figuur 5.

n = n Leg uit of een oog onder water het meest lijkt op een oog in lucht van een verziende of van een bijziende. Maak daarbij gebruik van figuur 5. Duikbril Oder water ku je iet scherp zie. Dat komt doordat het hoorvlies aa de voorkat va het oog da cotact maakt met water i plaats va met lucht. Oder water ligt bij ee ormaalzied oog i ogeaccommodeerde

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Eindexamen havo wiskunde B 0-II Beoordelingsmodel Windenergie maximumscore Als de 60 000 gigawattuur windenergie 40% van het totaal is, dan is de voorspelde totale energiebehoefte maximaal Het totaal is

Nadere informatie

PARADOXEN 9 Dr. Luc Gheysens

PARADOXEN 9 Dr. Luc Gheysens PARADOXEN 9 Dr Luc Gheyses LIMIETEN, AFGELEIDEN EN INTEGRALEN: ENKELE MERKWAARDIGE VERHALEN Ileidig: verhale over ifiitesimale Ee ifiitesimaal (of ifiitesimaal kleie waarde) is ee object dat mi of meer

Nadere informatie

Extra oefenmateriaal H10 Kegelsneden

Extra oefenmateriaal H10 Kegelsneden Deel 1 Extra oefenmateriaal H10 Kegelsneden 1. Bereken de inhoud van de volgende twee afgeknotte figuren. 2. Hiernaast zie je een afgeknot zeszijdig prisma. Het grondvlak is een regelmatige zeshoek met

Nadere informatie

Opvouwbare kubus (180 o )

Opvouwbare kubus (180 o ) Workshop Verpakkingen NWD 18 februari 2012 hm / rvo Opvouwbare kubus (180 o ) - Een bouwplaat van de kubus en een voorbeeldfoto - Als je een mooi wilt maken: een A4-tje 160 g wit papier en een schutblad,

Nadere informatie

Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende.

Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende. Cabri-werkblad Rond het zwaartepunt van een driehoek Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende. Stelling De verbindingslijn van de middens van twee zijden van

Nadere informatie

16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1

16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1 Hoofdstuk OPPERVLAKTE HAVO 5 a De rechthoeken zijn bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers.. INTRO Oppervlakte snelweg = 0 km 8 m = 0.000 m 8 m = 360.000 m. Zijde vierkant = 360. 000 = 600

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B 1 Analytische meetkunde Inhoud 1.1. Coördinaten in het vlak 1.2. Vergelijkingen van lijnen 1.3. Vergelijkingen van cirkels 1.4. Snijden 1.5. Overzicht In opdracht van: Commissie

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olmpiade 2006-2007: eerste ronde 1 Hoeveel punten kunnen een rechthoek en een cirkel maimaal gemeen hebben? (A) 2 (B) 4 (C) 6 (D) 8 (E) 10 2 Van de volgende drie uitspraken R : 2 = R

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Stelling van Pythagoras vmbo-kgt12. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie.

Stelling van Pythagoras vmbo-kgt12. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd Licentie Webadres 25 May 2016 CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie http://maken.wikiwijs.nl/57160 Dit lesmateriaal is gemaakt met Wikiwijs Maken van

Nadere informatie

Eindexamen wiskunde B1-2 havo 2008-II

Eindexamen wiskunde B1-2 havo 2008-II Koffiekan Bij het zetten van koffie wordt soms een koffiezetapparaat gebruikt. eze opgave gaat over een koffiezetapparaat waarbij de koffiekan, zonder het handvat en de bovenrand, de vorm heeft van een

Nadere informatie

Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc)

Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc) . Ileidig: Complexe getalle I de wiskude stelt zich het probleem dat iet bestaat voor de reële getalle of dat de vergelijkig x + 0 gee reële ulpute heeft. Om dit euvel op te losse werd het getal i igevoerd

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 008 tijdvak woensdag 18 juni 13.30-16.30 wiskunde B1, Bij dit examen hoort een uitwerkbijlage. it examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 81 punten te behalen. Voor elk

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 008-009: tweede ronde ( 7) = (A) 7 (B) 7 (C) 7 of + 7 (D) 7 (E) onbepaald Beschouw de rij opeenvolgende natuurlijke getallen beginnend met en eindigend met Wat is het middelste

Nadere informatie

Hoofdstuk 5 : De driehoek

Hoofdstuk 5 : De driehoek Hoofdstuk 5 : De driehoek - 89 1. Congruente figuren Figuren die elkaar volkomen kunnen bedekken noemen we congruente figuren. Congruente figuren hebben dezelfde vorm (~ ) en dezelfde grootte (=). Als

Nadere informatie

Wiskundige toepassingen bij Thermodynamica - 1 WISKUNDE. toegepast bij THERMODYNAMICA

Wiskundige toepassingen bij Thermodynamica - 1 WISKUNDE. toegepast bij THERMODYNAMICA iskudige toeassige bij Thermodyamia - ISKUNDE toegeast bij THERMODYNAMICA iskudige toeassige bij Thermodyamia - INTEGRATIETECHNIEKEN Toeassigsvoorbeeld - Het ogeome vermoge va ee omressor Beshouw oderstaad

Nadere informatie

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel.

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Raaklijnen Verkennen Raaklijnen Inleiding Verkennen Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Uitleg Raaklijnen Uitleg Opgave 1 Bekijk de Uitleg. a) Wat is de vergelijking

Nadere informatie

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21. Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde

Nadere informatie