Extra oefenmateriaal H10 Kegelsneden

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Extra oefenmateriaal H10 Kegelsneden"

Transcriptie

1 Deel 1 Extra oefenmateriaal H10 Kegelsneden 1. Bereken de inhoud van de volgende twee afgeknotte figuren. 2. Hiernaast zie je een afgeknot zeszijdig prisma. Het grondvlak is een regelmatige zeshoek met zijden 6. Het bovenvlak is een zeshoek met zijden 2. De loodrechte afstand tussen bovenvlak en ondervlak is 10. Bereken de inhoud in twee decimalen nauwkeurig. 3. Hoeveel liter gaat er in het speelgoedemmertje hiernaast? 4. Hiernaast zie je een originele klok. Het is een piramide die verdeeld is in 4 stukken. De middelste twee stukken draaien rond en geven zo de uren en minuten aan. Aan de vorm van de piramide kun je dan zien hoe laat het is!! (Of als je een watje bent, dan kijk je naar de schaalverdeling op de middelste twee stukken) De vier stukken van de piramide hebben hoogtes (van onder naar boven) gelijk aan 4, 3, 2 en 6 cm. Het grondvlak is een vierkant met zijden 12. Bereken de inhoud van de vier afzonderlijke stukken.

2 5. Hiernaast zie je in het blauw de uitslag van de mantel (dat is het gekromde oppervlak) van een afgeknotte kegel. Bereken de inhoud van die afgeknotte kegel. Geef je antwoord in één decimaal nauwkeurig. 6. Het heerlijke toetje hiernaast heeft een grondcirkel met straal 8 cm. De bovencirkel heeft straal 6 cm. Bereken de hoogte van het toetje als de inhoud gelijk is aan 850 cm 3 7. Een goudstaaf heeft als grondvlak een rechthoek van 18 bij 7,2 cm en als bovenvlak een rechthoek van 15 bij 6 cm. De hoogte van de goudstaaf is 4 cm. Goud heeft een soortelijk gewicht van 19,3 gram per cm 3. a. Toon aan dat deze goudstaaf de vorm van een afgeknotte piramide heeft. b. Bereken het gewicht van deze goudstaaf. Bron bovenstaande opgaven: Meer oefenen: zie

3 Uitwerkingen 1. Linkerfiguur Over hoogteverschil 3 wordt de diameter ook 3 minder. Als de diameter nul moet worden is dat 8 minder, dus zal de oorspronkelijke hoogte ook 8 zijn geweest. Hele kegel: 1 / 3 π = 42 2 / 3 π Bovenste deel: 1 /3 π 2,5 2 5 = 125 /12π Afgeknotte kegel: 42 2 /3π /12π = 32 1 /4π Rechterfiguur: Over hoogteverschil 8 wordt de zijde 6 minder. Δh 8?? Δz 6 8?? = 10 2 /3 Hele piramide: 1 / /3 = /9 Bovenste deel: 1 / /3 = 3 5 /9 Afgeknotte piramide: Een regelmatige zeshoek met zijden 6 bestaat uit zes gelijkzijdige driehoeken met zijden 6. Voor de hoogte h daarvan geldt: h = 6 2 h 2 = 27 h = 27 De oppervlakte van zo'n driehoek is dan 1 / = 3 27 De oppervlakte van de zeshoek is dan Over hoogteverschil 10 neemt de zijde 4 af, dus als de zijde 6 moet afnemen hoort dat bij hoogteverschil 15. De inhoud van de oorspronkelijke piramide was 1 / = De oorspronkelijke hoogte was 15, en de hoogte van het afgesneden deel is 5, dus dat is verkleiningsfactor 1 /3.

4 De inhoud van het afgesneden deel is dan ( 1 /3) 3 = 1 /27 deel van de oorspronkelijke piramide, dus het overgebleven afgeknotte deel is 26 /27 deel. De inhoud is dan 26 / = 14 4 /9 27 = 75,06 3. uit gelijkvormigheid volgt 10 /(25 + h) = 7 /h 7(25 + h) = 10h h = 10h 3h = 175 h = 58 1 /3 dus de totale hoogte was 83 1 /3 cm Inhoud hele kegel: 1 /3 π /3 = 8726,65 Inhoud onderste kegel: 1 /3 π /3 = 2993,24 Inhoud van de emmer is 8726, ,24 = 5733,41 cm 3 Dat is 5,7 liter. 4. De hele piramide heeft inhoud 1 / ( ) = 720 cm 3 Het bovenste deel heeft hoogte 6 dus verkleiningsfactor 6 /15 De inhoud is dan ( 6 / 15 ) = 46,08 De bovenste twee delen hebben samen hoogte 8, dus verkleiningsfactor 8 /15 De inhoud is dan ( 8 /15) = 109,23 Dan heeft het tweede deel inhoud 109,23-46,08 = 63,15 De bovenste drie delen hebben samen hoogte 11, dus verkleiningsfactor 11 /15 De inhoud is dan ( 11 /15) = 283,95 Dan heeft het derde deel inhoud 283,95-109,23 = 174,72 Dan heeft het vierde deel inhoud ,95 = 436,05 5. Het bovenvlak heeft omtrek 1 /4 2 π 4 = 2π (rood) De straal is dan 1 Het ondervlak heeft omtrek 1 /4 2 π 10 = 5π (groen) De straal is dan 2,5 Dan is x = 1,5 h 2 + 1,5 2 = 6 2 geeft h = 33,75 = 5,81 over hoogteverschil 5,81 neemt de straal 1,5 af Δh 5,81?? Δr 1,5 2,5

5 ?? = 9,68 dus de oorspronkelijke hele kegel had hoogte 9,68 Inhoud hele kegel: 1 /3 π 2,5 2 9,68 = 63,37 Inhoud bovenste deel: 1 /3 π 1 2 3,87 = 4,06 Inhoud afgeknotte kegel is 63,37-4,06 = 59,3 6. Noem de hoogte van het toetje h De straal is 2 afgenomen over hoogteverschil h Dan had de oorspronkelijke kegel hoogte 4h Inhoud oorspronkelijk kegel: 1 /3π 8 2 4h = 85 1 /3hπ Deel dat eraf is gehaald heeft inhoud 1 /3π 6 2 3h = 36hπ Afgeknotte deel heeft dan inhoud 85 1 /3πh - 36hπ = 49 1 /3hπ = ,99h = 850 h = 5,5 cm 7. a. 18 /7,2 = 2,5 en 15 /6 = 2,5 en die zijn dus gelijk. Dat betekent dat ondervlak en bovenvlak gelijkvormig zijn, dus dat de lengte en breedte evenveel (relatief) zijn afgenomen. De opstaande ribben zullen elkaar daarom in één punt ontmoeten, dus is het een piramide. b. De lengte gaat van 18 naar 15, dus neemt 3 af over een hoogte van 4 cm. De hoogte van de oorspronkelijke piramide zal dan 6 4 = 24 cm zijn inhoud hele piramide: 1 /3 18 7,2 24 = 1036,8 inhoud bovenste deel 1 / = 600 De goudstaaf heeft inhoud 1036,8-600 = 436,8 cm 3 Hij weegt 436,8 19,3 = 8430,24 gram en dat is ongeveer 8,4 kg

6 Extra oefenmateriaal H10 Aanzichten Deel 2 1. Hieronder zie je drie stapels met kubusjes. Teken daarvan de drie aanzichten. 2. Teken een zijaanzicht, een vooraanzicht en een bovenaanzicht van de volgende ruimtelijke figuren. 3. Van een regelmatige piramide met vierkant grondvlak worden alle middens van aangrenzende ribben met elkaar verbonden. Teken de aanzichten van het lichaam dat daardoor ontstaat.

7 4. Hiernaast staan van een ruimtelijke figuur een bovenaanzicht en een vooraanzicht getekend. a. Gijs denkt dat de figuur een kubus met een gat erin is. Leg duidelijk uit waarom dat niet zo kan zijn. b. Teken een ruimtelijke figuur die wél bij deze beide aanzichten zou kunnen horen. 5. Hieronder zie je de drie aanzichten van een ruimtelijke figuur. Maak een (ruimtelijke) tekening van die figuur.

8 6. In de kubus hiernaast is een rode draadfiguur getekend, waarmee steeds middens van vlakken of ribben met elkaar worden verbonden. a. Teken een vooraanzicht van de rode figuur. b. Teken een aanzicht in de richting BD van de rode figuur. c. Teken een aanzicht in de richting DF van de rode figuur. 7. Ik heb thuis drie wasbakken naast elkaar. Het gat waardoor het water wegstroomt heeft voor alle drie een andere vorm: een cirkel, een vierkant en een kruis (zie figuur). Dat vind ik als wiskundige nou eenmaal mooi. Plotseling bedenk ik me, dat, als ik de drie gaten beschouw als aanzichten van een ruimtelijke figuur, dat dan die figuur als stop voor alle drie de gaten gebruikt kan worden! Schets een ruimtelijk figuur die daaraan voldoet. Bron:

9 Uitwerkingen 1a. 1b. 1c. 2a.

10 2b. 2c.

11 2d. 2e.

12 3 4a. Als het een kubus met een gat erin zou zijn, dan zou je stippellijntjes moeten zien op de plaatsen waar het gat binnen in de kubus zit. Die zijn er niet... 4b. 5a.

13 5b. 5c. 6a. 6b. De hoekpunten en ribben van de kubus zijn er voor de duidelijkheid in het zwart bij gegeven.

14 6c. De hoekpunten en ribben van de kubus zijn er voor de duidelijkheid in het zwart bij gegeven. 7. Zoiets als hiernaast

15 Deel 3 Extra oefenmateriaal H10 Perspectief 1. Maak de volgende drie perspectieftekeningen van een balk af.

16 2. Leg uit welke vorm van perspectief bij onderstaande foto's is gebruikt en teken de plaats van de horizon. 3. examenopgave Hieronder zie je een schematische tekening van de ingang van een station. Naar de deur loopt een betonnen pad met aan weerszijden drie rijen vierkante tegels. Om het pad wat op te fleuren heeft een kunstenaar een zuil ontworpen in de vorm van een vierzijdig prisma (ABCDA'B'C'D') met als grondvlak het parallellogram ABCD dat linksonder is getekend. In de tekening van het station zijn de plaatsen van de punten A, B, S, D en S' aangegeven. Maak de perspectieftekening van de zuil af.

17 4. Examenvraagstuk 1992 Een oude molen is verbouwd tot woonruimte. De romp van de molen heeft een regelmatige achthoek als grondvlak. Dat grondvlak heeft zijden van allemaal 3 meter. Hieronder is een begin gemaakt van een tekening van het grondvlak in perspectief. Hierin zijn GF en BC evenwijdig. Maak die perspectieftekening af. Bron:

18 Uitwerkingen a. bodemlijn TQ naar de horizon doortrekken geeft V UV tekenen en WV lijn QR evenwijdig aan TU geeft punt R lijn QP evenwijdig aan WT geeft punt P PS evenwijdig aan QR en even lang geeft punt S. WX evenwijdig aan TU en even lang geeft punt X. b AB en CD snijden geeft V1 en de horizon AE verlengen geeft V2 op de horizon. CV2 tekenen EF evenwijdig aan AC snijden met CV2 FV1 en DV2 snijden geeft EV1 en BV2 snijden geeft H.

19 c BF en DH snijden geeft V1 en de horizon. AD verlengen geeft V3 AB verlengen geeft V2 V3B en V2D snijden geeft C V1A en V2F snijden geeft E FV3 en HV2 snijden geeft G 2. 3.

20 de rode lijnen geven de plaats van de horizon de blauwe lijnen geven daarna de plaats van C in het grondvlak (met de verdwijnpunten V1 en V2) AC snijdt de horizon in een derde verdwijnpunt V, en de lijn S'V snijden met de lijnen van A en C recht omhoog geeft de plaats van A' en C' in het bovenvlak Dan geeft tenslotte het snijden van A'V2 en A'V1 met de lijnen vanaf B en D recht omhoog de plaatsen B' en C' in het bovenvlak. 4. BG en CF snijden geeft V1 en de horizon evenwijdig aan BC. AB geeft dan V2, en op V2F moet E liggen geeft V3 en op V3C moet E liggen Daarmee is de plaats van E bepaald. AG EH is evenwijdig aan de horizon, en H moet ook op AV1 liggen. Dus daarmee ligt H vast. AD is evenwijdig aan de horizon en D moet op EV1 liggen. Dus daarmee is D bepaald.

Hoofdstuk 2 boek 1 havo b Oppervlakte en inhoud.

Hoofdstuk 2 boek 1 havo b Oppervlakte en inhoud. Hoofdstuk boek havo b Oppervlakte en inhoud.. Vlakke figuren, oppervlakte.. Het halve cirkeltje boven past precies in het halve cirkeltje onder, dan komt er een rechthoek met breedte en lengte 4 + + +

Nadere informatie

Hoofdstuk 6 Inhoud uitwerkingen

Hoofdstuk 6 Inhoud uitwerkingen Kern Prisma en cilinder a De inhoud is G h=,5 = 4,5cm. b Die inhoud is even groot. a De inhoud is G h= ( 4) 8 = 64 cm b Op iedere hoogte geldt dat de doorsnede van het rechte prisma dezelfde oppervlakte

Nadere informatie

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Indien van toepassing: schrijf je berekening op. Tekening altijd met geodriehoek en potlood. Omtrek rechthoek

Nadere informatie

Hoofdstuk 2: Kijken. Vraag 2 a) Zevende traptrede van onderen. b) Eén optrede is ongeveer 20 cm, dus het oog was ongeveer 140 cm boven de vloer.

Hoofdstuk 2: Kijken. Vraag 2 a) Zevende traptrede van onderen. b) Eén optrede is ongeveer 20 cm, dus het oog was ongeveer 140 cm boven de vloer. 1 Hoofdstuk 2: Kijken Vraag 1 a) Op de hoogte van de horizon. Ongeveer op de hoogte van de vierde rij ramen van het rechter gebouw. b) Ongeveer 4 etages van 3 meter = 12 meter. De pilaar van het rechter

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2010 tijdvak 2 dinsdag 22 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten

Nadere informatie

Antwoordmodel - In de ruimte

Antwoordmodel - In de ruimte Antwoordmodel - In de ruimte Vraag 1 Welke ruimtefiguren (of delen van) herken je op de volgende foto s? a Foto 1. Balk, prisma, cilinder en kubus. b Foto 2. Cilinder, balk, kubus en prisma c Foto 3. Balk,

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2014 tijdvak 2 dinsdag 17 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Hoofdstuk 2 Oppervlakte en inhoud

Hoofdstuk 2 Oppervlakte en inhoud Hoofdstuk 2 Oppervlakte en inhoud Les 1 Aant. 2.1 Oppervlakte van vlakke figuren Theorie A: Oppervlakte van vlakke figuren Oppervlakte driehoek = ½ zijde bijbehorende hoogte Oppervlakte parallellogram

Nadere informatie

Aanzichten en inhoud. vwo wiskunde C, domein G: Vorm en ruimte

Aanzichten en inhoud. vwo wiskunde C, domein G: Vorm en ruimte Aanzichten en inhoud vwo wiskunde C, domein G: Vorm en ruimte 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld in het kader van de nieuwe

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Eindexamen wiskunde B havo II

Eindexamen wiskunde B havo II Tonregel van Kepler In het verleden gebruikte men vaak een ton voor het opslaan en vervoeren van goederen. Tonnen worden ook nu nog gebruikt voor bijvoorbeeld de opslag van wijn. Zie de foto. foto Voor

Nadere informatie

REKENEN. Les Probleemoplossend Rekenen. Hoofdstuk 13 -

REKENEN. Les Probleemoplossend Rekenen. Hoofdstuk 13 - REKENEN Les 2.3.7 Probleemoplossend Rekenen Hoofdstuk 13 - VANDAAG Studiewijzer Terugblik Probleemoplossend Rekenen Tijd om te oefenen Opgaven Proefexamen STUDIEWIJZER 2.3.2 Lengte en Oppervlakte 2.3.3

Nadere informatie

Examen HAVO. tijdvak 1 vrijdag 19 mei uur

Examen HAVO. tijdvak 1 vrijdag 19 mei uur Examen HVO 2017 tijdvak 1 vrijdag 19 mei 13.30-16.30 uur oud programma wiskunde Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel

Nadere informatie

Thema: Ruimtelijke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74248

Thema: Ruimtelijke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74248 Auteur VO-content Laatst gewijzigd 21 oktober 2016 Licentie CC Naamsvermelding 3.0 Nederland licentie Webadres https://maken.wikiwijs.nl/74248 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet. Wikiwijs

Nadere informatie

04 Meetkunde. hoofdstuk. 4.1 Uitslagen

04 Meetkunde. hoofdstuk. 4.1 Uitslagen hoofdstuk 0 eetkunde bladzijde 06 e schuine muren aan de benedenkant van de woning. e vloeren en de plafonds zijn regelmatige zeshoeken of regelmatige driehoeken. ovenaanzicht:. Uitslagen bladzijde 08

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2010 tijdvak 2 dinsdag 22 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 26 vragen. Voor dit examen zijn maximaal 77 punten te behalen.

Nadere informatie

1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is.

1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is. 1 2 1 Wiskunde, zeker duimstok Timmerman Hoe lang iets is. Blokhaak: Timmerman Of een hoek haaks is. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. Zeven munten: een van 1-eurocent, twee van 2-eurocent,

Nadere informatie

Hoofdstuk 5 Oppervlakte uitwerkingen

Hoofdstuk 5 Oppervlakte uitwerkingen Kern Vlakke figuren a Rechthoek, parallellogram, driehoek Oppervlakte rechthoek = lengte reedte = d Oppervlakte parallellogram = lengte hoogte = d Oppervlakte driehoek = asis hoogte = d a Knip de parallellogram

Nadere informatie

Oppervlakte en inhoud van ruimtelijke figuren

Oppervlakte en inhoud van ruimtelijke figuren 4 Oppervlakte en inhoud van ruimtelijke figuren BALK EN KUBUS hoogte Figuur lengte reedte In figuur is een alk getekend. Bij een alk zijn steeds de twee tegenover elkaar liggende vlakken gelijk. Alle vlakken

Nadere informatie

Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud

Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud antekening HVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud Les 1 Oppervlakte driehoeken Oppervlakte driehoek = ½ basis hoogte Oppervlakte parallellogram = basis hoogte Oppervlakte trapezium = ½ (basis + top)

Nadere informatie

Thema: Ruimtelijke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.

Thema: Ruimtelijke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd 12 August 2016 Licentie CC Naamsvermelding 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/74248 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein

Nadere informatie

Tweepuntsperspectief I

Tweepuntsperspectief I 1 G Tweepuntsperspectief I 1. We verlaten even het perspectief en bekijken een vierkant ABCD op ware grootte. M is het middelpunt van het vierkant. PQ is een horizontale lijn door M. Zeg dat P en Q de

Nadere informatie

Met behulp van deze gegevens kan worden berekend welke maximale totale behoefte aan elektrische energie in Nederland er voor 2050 wordt voorspeld.

Met behulp van deze gegevens kan worden berekend welke maximale totale behoefte aan elektrische energie in Nederland er voor 2050 wordt voorspeld. Windenergie Er wordt steeds meer gebruikgemaakt van windenergie. Hoewel de bijdrage van windenergie nu nog klein is, kan windenergie in de toekomst een grote bijdrage aan onze elektriciteitsvoorziening

Nadere informatie

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur 4 Van D naar 3D Verkennen Van D naar 3D Inleiding Verkennen Bekijk de applet. Met de rechter muisknop kun je het assenstelsel om de oorsprong draaien en de fig van alle kanten bekijken. Beantwoord nu de

Nadere informatie

Examen HAVO. Wiskunde B (oude stijl)

Examen HAVO. Wiskunde B (oude stijl) Wiskunde B (oude stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 9 juni 3.30 6.30 uur 20 02 Voor dit examen zijn maximaal 90 punten te behalen; het examen bestaat uit 9 vragen.

Nadere informatie

Doorsnede inhoud vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74250

Doorsnede inhoud vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74250 Auteur VO-content Laatst gewijzigd Licentie Webadres 24 mei 2016 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/74250 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet. Wikiwijs

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 20 tijdvak 2 woensdag 22 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk

Nadere informatie

Thema: Ruimtelijke figuren vmbo-b34. CC Naamsvermelding 3.0 Nederland licentie.

Thema: Ruimtelijke figuren vmbo-b34. CC Naamsvermelding 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd 13 April 2016 Licentie CC Naamsvermelding 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/74196 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur Examen HVO 2013 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Hoofdstuk 3 - Piramides - uitwerkingen

Hoofdstuk 3 - Piramides - uitwerkingen Wiskunde Leerjaar 1 - periode Ruimtemeetkunde Hoofdstuk - iramides - uitwerkingen 1. iramide Hiernaast staat een regelma/ge vierzijdige piramide met (dus) een vierkant grondvlak. e hoogte van deze piramide

Nadere informatie

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β.

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β. 1 Synthetische RM 1. (a) Geef de definitie van de loodrechte stand van twee vlakken. (b) Geen stellingen die voorwaarden uitdrukken opdat twee vlakken orthogonaal zijn. (c) Steun op 1a of 1b om te bewijzen

Nadere informatie

6.1 Kijkhoeken[1] Willem-Jan van der Zanden

6.1 Kijkhoeken[1] Willem-Jan van der Zanden 6.1 Kijkhoeken[1] Het plaatje is een bovenaanzicht; De persoon kan het gedeelte binnen de kijkhoek zien; De twee rode lijnen zijn kijklijnen; De kijklijnen geven de grenzen aan van het gebied dat de persoon

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 17 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 17 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2014 tijdvak 2 dinsdag 17 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 75 punten te behalen.

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

G&R havo B deel 3 10 Aanzichten en doorsneden C. von Schwartzenberg 1/16. 1a Het bovenaanzicht van het voorwerp is een cirkel. 3

G&R havo B deel 3 10 Aanzichten en doorsneden C. von Schwartzenberg 1/16. 1a Het bovenaanzicht van het voorwerp is een cirkel. 3 & havo deel 0 anzichten en doorsneden. von chwartzenberg / a et van het voorwerp is een cirkel. b Je moet tegen het (rechter of linker) zijaanzicht aankijken. rechterzijaanzicht I (opg. ) vooraanzicht

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

Antwoorden Vorm en Ruimte herhaling. Verhoudingen

Antwoorden Vorm en Ruimte herhaling. Verhoudingen Antwoorden Vorm en Ruimte herhaling Verhoudingen 1. a. Tegenover elke 4 eenheden A staan 5 eenheden B en omgekeerd. b. 125 ; 80 c. A bevat 800 exemplaren, B bevat 1000 exemplaren. d. x ; y 2. a. 3 : 2

Nadere informatie

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen Wiskunde oefentoets hoofdstuk 0: Meetkundige berekeningen Iedere antwoord dient gemotiveerd te worden, anders worden er geen punten toegekend. Gebruik van grafische rekenmachine is toegestaan. Succes!

Nadere informatie

Eindexamen vmbo gl/tl wiskunde 2011 - I

Eindexamen vmbo gl/tl wiskunde 2011 - I OVERZICHT FORMULES: omtrek cirkel = diameter oppervlakte cirkel = straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte grondvlak

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

Eindexamen wiskunde B havo I (oude stijl)

Eindexamen wiskunde B havo I (oude stijl) Twee functies en hun som In figuur 1 zijn de grafieken getekend van de functies f ( x) = 2x + 12 en g ( x) = x 1 figuur 1 y Q f g O x De grafiek van f snijdt de x-as in en de y-as in Q 4p 1 Bereken de

Nadere informatie

2.1 Cirkel en middelloodlijn [1]

2.1 Cirkel en middelloodlijn [1] 2.1 Cirkel en middelloodlijn [1] Hiernaast staat de cirkel met middelpunt M en straal 2½ cm In het kort: (M, 2½ cm) Op de zwarte cirkel liggen alle punten P met PM = 2½ cm In het rode binnengebied liggen

Nadere informatie

7 Totaalbeeld. Samenvatten. Achtergronden. Testen

7 Totaalbeeld. Samenvatten. Achtergronden. Testen 7 Totaalbeeld Samenvatten Je hebt nu het onderwerp "Vectormeetkunde" doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet

Nadere informatie

Op het werkblad staat de uitslag van een kijkdoos, die omstreeks 1980 als doos gebruikt is om gebak bij een bakker in te pakken.

Op het werkblad staat de uitslag van een kijkdoos, die omstreeks 1980 als doos gebruikt is om gebak bij een bakker in te pakken. 1 Een kijkdoos Op het werkblad staat de uitslag van een kijkdoos, die omstreeks 1980 als doos gebruikt is om gebak bij een bakker in te pakken. Knip de uitslag uit. Breng op de aangegeven plaatsen gleuven

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen VMBO-GL en TL 2011 tijdvak 1 maandag 23 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift

Nadere informatie

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO Hoofdstuk 1 KENNISMAKEN c 1.0 INTRO 1 a Door een kael te spannen en daar langs te rijden. Met een kael van de juiste lengte die je evestigt aan een punt in de grond (het middelpunt) c Met twee latten die

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2014 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

4 A: = 10 B: 4 C: 8 D: 8

4 A: = 10 B: 4 C: 8 D: 8 Hoofdstuk OPPERVLAKTE VWO 0 INTRO A: + 6 = 0 B: C: 8 D: 8 DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0 Daar gaan twee halve

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2008-2009: eerste ronde 1 Hoeveel is 2 5 7? (A) 10 21 (B) 25 7 (C) 7 10 (D) 1 15 (E) 29 21 2 Welke van volgende sommen is gelijk aan 10? (A), + 5,555 (B) 2,222 + 6,666 (C),

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 4

Uitwerkingen oefeningen hoofdstuk 4 Uitwerkingen oefeningen hoofdstuk 4 4.4.1 Basis Lijnen en hoeken 1 Het assenstelsel met genoemde lijnen ziet er als volgt uit: 4 3 2 1 l k -4-3 -2-1 0 1 2 3 4-1 -2-3 n m -4 - Hieruit volgt: a Lijn k en

Nadere informatie

tafel, inclusief de speelruimte, te plaatsen, volgens het advies van de leverancier afgerond 31 m 2 is.

tafel, inclusief de speelruimte, te plaatsen, volgens het advies van de leverancier afgerond 31 m 2 is. Tafeltennistafel Op de foto hiernaast staat een betonnen tafeltennistafel voor buiten. De tafel bestaat uit 2 onderdelen: een cilindervormige poot en een blad dat hierop bevestigd is. Het massieve blad

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Examen HAVO. Wiskunde B (oude stijl)

Examen HAVO. Wiskunde B (oude stijl) Wiskunde B (oude stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1330 1630 uur 20 02 Voor dit examen zijn maximaal 90 punten te behalen; het examen bestaat uit 18 vragen

Nadere informatie

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

6 Ligging. Verkennen. Uitleg

6 Ligging. Verkennen. Uitleg 6 Ligging Verkennen Ligging Inleiding Verkennen Door in de applet het assenstelsel te draaien kun je nagaan of twee lijnen een snijpunt hebben. Je kunt ook andere lijnen proberen door de punten A, B, C

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B- Van ABC is de asis BC = en de hoogte AD =. De oppervlakte van ABC is : = 9. Van KLM is de asis KM = 5 + 9 = en de hoogte NL. B-a KN = 5 NL = KL = 5 + 69 NL = = De oppervlakte

Nadere informatie

Eindexamen wiskunde B havo I (oude stijl)

Eindexamen wiskunde B havo I (oude stijl) Een functie Voor 0 < = x < = 2π is gegeven de functie figuur 1 f(x) = 2sin(x + 1 6 π). In figuur 1 is de grafiek van f getekend. y 1 f 4 p 1 Los op: f(x) < 1. De lijn l raakt de grafiek van f in het punt

Nadere informatie

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21. Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 VBO en MAVO Klas 3 en 4 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

HET IS EEN PRISMA, OF TOCH NIET...

HET IS EEN PRISMA, OF TOCH NIET... In dit artikel laten we zien hoe je een kubus, een rombendodecaëder en een afgeknotte octaëder kunt omvormen tot een. Om de constructie zelf uit te voeren, heb je de bouwtekeningen nodig die bij dit artikel

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 008 tijdvak woensdag 18 juni 13.30-16.30 wiskunde B1, Bij dit examen hoort een uitwerkbijlage. it examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 81 punten te behalen. Voor elk

Nadere informatie

16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1

16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1 Hoofdstuk OPPERVLAKTE HAVO 5 a De rechthoeken zijn bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers.. INTRO Oppervlakte snelweg = 0 km 8 m = 0.000 m 8 m = 360.000 m. Zijde vierkant = 360. 000 = 600

Nadere informatie

5.0 INTRO. Hoofdstuk 5 DE RUIMTE IN

5.0 INTRO. Hoofdstuk 5 DE RUIMTE IN 93 5.0 INTRO 1 Op het werkblad vind je vier bouwplaten. Knip ze uit en zet ze in elkaar. Je krijgt drie piramides en een kubusvormige doos zonder deksel. a De drie piramides passen precies in de doos.

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Welke ongelijkheid is juist? (A) 3 5 < 2 6 (C) 5 6 < 3 (B) 3 7 < 2 (D) 5 7 < 2 10 (E) 5 < 6 7 2 Hoeveel vierkante meter is 1600 vierkante centimeter?

Nadere informatie

AFSTANDEN IN PERSPECTIEF

AFSTANDEN IN PERSPECTIEF ESECTIEFTEKENEN AFLEVEING 2 In de eerste aflevering over perspectieftekenen, afgelopen november in ythagoras, hebben we het tekenen van evenwijdige lijnen geïntroduceerd. In deze aflevering denken we na

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten te behalen.

Nadere informatie

Handig met getallen 4 (HMG4), onderdeel Meetkunde

Handig met getallen 4 (HMG4), onderdeel Meetkunde Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek

Nadere informatie

Examen VMBO-GL en TL 2005

Examen VMBO-GL en TL 2005 Examen VMBO-GL en TL 2005 1 tijdvak 1 donderdag 26 mei 13.30 15.30 uur WISKUNDE CSE GL EN TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 91

Nadere informatie

handleiding pagina s 434 tot Handleiding 1.2 Huistaken huistaak 12: bladzijde Werkboek

handleiding pagina s 434 tot Handleiding 1.2 Huistaken huistaak 12: bladzijde Werkboek week 13 les 5 toets en foutenanalyse handleiding pagina s 434 tot 443 nuttige informatie 1 Handleiding 1.1 Kopieerbladen pagina s 374 en 375: vierhoeken pagina 376: eigenschappen van diagonalen in vierhoeken

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur Examen HAVO 2008 tijdvak 1 dinsdag 20 mei 13.30-16.30 uur wiskunde B1,2 Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Eindexamen wiskunde B1-2 havo 2008-I

Eindexamen wiskunde B1-2 havo 2008-I Steeds meer vlees In wordt voor de periode 1960-1996 zowel de graanproductie als de vleesproductie per hoofd van de wereldbevolking weergegeven. Hiervoor worden twee verticale assen gebruikt. De ronde

Nadere informatie

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1 H5 Ruimtelijke figuren in het plat VWO 5.0 INTRO a een vierkant ; een lijnstuk ; een vierkant Bijvooreeld zo: Het laagste punt is het midden van het grondvlak. Snij van een kurk aan weerszijden een stuk

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

Examen HAVO en VHBO. Wiskunde B

Examen HAVO en VHBO. Wiskunde B Wiskunde B Examen HAVO en VHBO Hoger Algemeen Voortgezet Onderwijs Vooropleiding Hoger Beroeps Onderwijs HAVO Tijdvak 1 VHBO Tijdvak 2 Dinsdag 23 mei 13.30 16.30 uur 00 Dit examen bestaat uit 19 vragen.

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 006-007: tweede ronde 1 In een rechthoekige driehoek verdeelt de bissectrice uit een scherpe hoek de overstaande zijde in twee stukken met lengten 4 en 5 (zie figuur) De oppervlakte

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE A: +6=0 B: C: 8 D: 8.0 INTRO. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve rechthoeken

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve

Nadere informatie

Eindexamen wiskunde vmbo gl/tl 2009 - II OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

Eindexamen wiskunde vmbo gl/tl 2009 - II OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

oppervlakte grondvlak hoogte oppervlakte grondvlak hoogte

oppervlakte grondvlak hoogte oppervlakte grondvlak hoogte Examen Wiskunde VMBO-GL en TL 2007 wiskunde CSE GL GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olmpiade 2006-2007: eerste ronde 1 Hoeveel punten kunnen een rechthoek en een cirkel maimaal gemeen hebben? (A) 2 (B) 4 (C) 6 (D) 8 (E) 10 2 Van de volgende drie uitspraken R : 2 = R

Nadere informatie

Eindexamen wiskunde B1-2 havo 2008-II

Eindexamen wiskunde B1-2 havo 2008-II Koffiekan Bij het zetten van koffie wordt soms een koffiezetapparaat gebruikt. eze opgave gaat over een koffiezetapparaat waarbij de koffiekan, zonder het handvat en de bovenrand, de vorm heeft van een

Nadere informatie

Eindexamen wiskunde B havo 2011 - I

Eindexamen wiskunde B havo 2011 - I Overlevingstijd Als iemand in koud water terecht komt, daalt zijn lichaamstemperatuur. Als de lichaamstemperatuur is gedaald tot 30 ºC ontstaat een levensbedreigende situatie. De tijd die verstrijkt tussen

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2009 tijdvak 2 dinsdag 23 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

Eindexamen wiskunde B1-2 havo 2007-I

Eindexamen wiskunde B1-2 havo 2007-I Eindexamen wiskunde B- havo 007-I Beoordelingsmodel Vraag Antwoord De wet van Moore maximumscore 3 Van 96 tot 975 is 4 jaar Het aantal transistors volgens de formule is dus 4 7 4 = 5, dus 5 transistors

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 200-2005: tweede ronde De tweede ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Wat ga jij leren?... 4 Hoofdstuk 1 - Lijnen, hoeken en driehoeken Lijnen en lijnstukken... 6 Lijn en lijnstuk... 7 Evenwijdige lijnen...

Wat ga jij leren?... 4 Hoofdstuk 1 - Lijnen, hoeken en driehoeken Lijnen en lijnstukken... 6 Lijn en lijnstuk... 7 Evenwijdige lijnen... 0 Wat ga jij leren?... 4 Hoofdstuk 1 - Lijnen, hoeken en driehoeken... 6 1.1 Lijnen en lijnstukken... 6 Lijn en lijnstuk... 7 Evenwijdige lijnen... 8 Snijdende lijnen... 8 Loodrechte lijnen... 12 1.2 Hoeken...

Nadere informatie

WISKUNDE-ESTAFETTE KUN Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE KUN 2001 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Iemand bevindt zich te A en moet per fiets naar B, waar hij om precies 4 uur wil aankomen.

Nadere informatie

OVERZICHT FORMULES: Eindexamen wiskunde vmbo gl/tl 2005 - I. omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

OVERZICHT FORMULES: Eindexamen wiskunde vmbo gl/tl 2005 - I. omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen. Instap. Een opgave uit de oefentoets:

Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen. Instap. Een opgave uit de oefentoets: Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen Instap Een opgave uit de oefentoets: Van welke verpakkingen is de vorm een prisma? A. Pak spaghetti blikje chocomel doosje

Nadere informatie